
PROTEUS: AN APPROACH TO INTERFACE EVALUATION

Jonathan Crellin.

People and Computer Interaction Systems Research Group (PACIS), The Computing
Department, Faculty of Mathematics, The Open University, Walton Hall, MILTON KEYNES,
MK7 6AA. United Kingdom.

PROTEUS is a number of software tools which allow the implementation of an iterative, user centred
approach to software (particularly interface) design, using rapid prototyping. The tools allow automated
collection of questionnaire data, logging of system usage, and the central technique which is the
collection of a qualitative representation of users perception of an interface design space, using the
Construct Elicitation System. This data is fed back to the designer, and increases understanding user
needs in relation to an interface. The paper describes the development of PROTEUS as an integrated
evaluation tool, and reports on some of the empirical work underlying the approach embodied by
PROTEUS, including its integration into the design of a small but real system.

1: INTRODUCTION

1.1. The failure of analytic approaches

It is possible to distinguish between interface evaluation
methods, and interface evaluation approaches. Approaches
is used here to describe the underlying philosophy of the
evaluation. Methods are the techniques of data collection
employed. Different approaches may use the same methods
of data collection, but analyse the data in different ways.
Formal approaches focus on the structure of the interface,
within the context of human cognition models. They
evaluate features of interface such as complexity and
consistency, Grudin (1989). Such methods frequently fail to
predict the future success of interfaces.

1.2. Problems with Empirical Approaches

Empirical approaches use an experimental or controlled
observational paradigm. They involve evaluating
performance of users with the interface on bench mark tasks
aiming to predict how effective the interface will prove to be
in real use. External variables (such as interruption) are
controlled, and clear behavioural performance measures for
performance on the interface are stated before evaluation
takes place. However such evaluation approaches still fail to
predict performance in real situations.

1.3. Contextual Approach

Whiteside et al (1988) suggests a contextual approach to
interface evaluation. Such an approach collects experience
as it happens, in the context where it usually occurs. This
approach seeks to understand the experience of using an
interface, as it is used in a real situation.

1.4. The problems of contextual methodology

The methods employed by contextual approaches are usually
video observation, verbal protocols, and software logging.
Unfortunately the first two methods for collecting experience
are usually highly intrusive, and likely to alter the very
phenomena which one wishes to observe.

1.5. Knowledge elicitation techniques as a basis for
evaluation.

Techniques used for knowledge elicitation for expert
systems may offer some useful methods for use within
software evaluation, Briggs (1987). If such techniques are
used it remains necessary to distinguishing between an
objective description of an interface, and the subjective
experience of using the interface. The knowledge elicitation
approach can be used to identify users mistaken
assumptions about an interface. However what does
mistaken actually mean in this context? It could be argued
that user mistakes are actually due to designers poor
conception of a users viewpoint. Such users mistakes
highlight a difference in designer and user perspectives.

1.6. Designer and Users

Designers and users have distinct differences. Designers
see systems as a whole, they see the source code which
makes up the system, and by the nature of their profession
they spend a lot of time considering the link between the
underlying system and the interface. Users are only directly
aware of a systems interface, and knowledge of the
underlying system is inferred from their experience with the
interface. There are also differences which stem from a
different knowledge of what is possible within the
technology. The lack of knowledge of what is possible can
make users ask for things that are difficult to achieve (for
example a natural language interface), but at the same time,
that lack of knowledge can mean users do not think of
possible alternative ways of doing things (for example
considering using pull-down menus rather than buttons).

Involvement of users in the design process is usually
considered a 'good' thing, as it helps avoid the most obvious
design trap, of ending up with a design that is considered at
best uncomfortable or unpleasant to use, or at worst simply
unusable. The term 'user-centred design' has been used to
describe a range of design methodologies. At one end of the
range of user centredness this can be a fairly small amount
of evaluation of the software as it is used by a number of
typical users. The evaluation can often involve looking at a
feature of the interaction which the designer has decided (in
the light of psychological/ergonomic guidelines) to be
relevant to the performance of the system. At the other end
of the spectrum, the user can design the majority of the
system himself, by using some type of application-builder.
The dimension here is one of emphasis on a designers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

design skills. At one extreme the responsibility for
identifying the important features of the design lie with the
designer, at the other end the responsibility is entirely placed
on the user. One can see advantages with both approaches.
Designers are expected to have knowledge which transcends
a particular domain, and thus can see things about a design
which may not be apparent to users-as-designers. If
designers have any value this is what their value must be.
Marcus(1983) refers to three perspectives on design.First
the outerface, which are the final products of computation,
text, tables, graphics. All of these can be printed, projected,
or can appear on a VDU. People who use this information
need have very little real understanding of how computers
work. Second the interface which is the frames for
command/control and documentation, that the computer
system user encounters. This human computer connection
allows the human to manipulate and control the machine,
without which the computer is a useless tool. Thirdly the
innerface which is the frames of command/control and
documentation that are avaialble to the designer and only he
sees. They depict programming languages, software tools
and operating systems. This special perspective that only a
designer has can lead to enhanced control over the design
space but also misunderstanding of user perspectives.

System designers are used to dealing with computer system
concepts, and use language to express those concepts.
Users language is usually specialised to cope with their own
task domain. These specialised languages form a signifigant
barrier to communication between users and designers.

1.7. An ideal method for evaluation

An ideal method for interface evaluation will have the
following characteristics:-

* Scope for automation

* User centred

* Not intrusive into the experience of using an interface

* Supports communication between users and
designers.

* Quantitative and qualitative data.

* Ecological validity supported

The repertory grid, which is used as a knowledge elicitation
tool, is an obvious candidate for software evaluation. The
method has been used for the collection of evaluative data in
a number of different domains, architecture, Honikman
(1976), marketing Stewart et al (1981). The Construct
Elicitation System (CES) has been developed at the Open
University for collection of repertory grid information in
evaluation tasks, Crellin (1988). The system has also been
used in an investigation of the meaning of a researchers
abstraction, Robson and Crellin (1988).

2. DESCRIPTION OF PROTEUS

PROTEUS is not designed to replace existing methods of
evaluating usability and performance, but to provide a
parallel analysis of user centred issues, and an input into the
design decision making. It is a tool designed to aid the
social process of designing a piece of software. The social

process is one of extending the mutual understanding
between the designer and the user. As such the tool is best
suited to circumstances where a designer is not very
experienced, and lacks the ability to gain a users perspective,
or where the perspectives of designer and user might be
expected to be radically different.

The components of PROTEUS are a shell, the different
software prototypes, a help system, and the Construct
Elicitation System. The methodology of PROTEUS is to
allow users to use the prototype systems in as near as
possible an ecologically valid environment. The system is
therefore robust, and portable, and can be used in a normal
workplace. PROTEUS can be used on a minimal Macintosh
system (Mac Plus with single internal drive), and is
consistent with the Macintosh interface guidelines. It
therefore requires no special equipement, and can be used in
a normal working environment by any Macintosh user.
Usage data is recorded unobtrusively by the system during
use, additional system logging (for example keystroke level
recording) can be recorded by code embedded in the
prototype systems. Data elicited by the Construct Elicitation
System is available for user editing, during the session. The
aim of the approach is to collect the maximum of
information about user behaviour and experience, without
intruding on the experience of using the prototype systems.
The user should feel comfortable in the use of the system,
and not feel themselves to be the object of unwanted
scrutiny.

The PROTEUS shell presents an on-line questionnaire to
collect demographic data. Access to the Construct Elicitation
System is controlled via the shell. A user can only start
using CES when she has used all the prototypes.

The Construct Elicitation System is an open ended
description and rating system, based on the Personal
Construct Psychology repertory grid Kelly (1955). Users
are asked to provide textual labels for the ways in which they
discriminate between the different prototypes. These verbal
labels form the basis of semantic differential grids, which
provide information both about the similarities between
different ways of rating, and between the different
prototypes.

3. PROTEUS AND THE RAS HELP SYSTEM

3.1. Introduction: The RAS System

RAS is a demonstration relational database program to be
used as a teaching resource in the Open University's
undergraduate program for 1990. Its primary role is to
demonstrate the structure of a relational database, and to
introduce the interrogation of relational databases using
Structured Query Language (SQL).

Although most of the system was specified by teaching
requirements, the HELP system had not been finalised. The
role of a HELP system in a teaching package is to assist the
student in completing their exercises, but not to provide a
substitute to the course material, through which primary
teaching takes place, or to distract learners from the course
material.

3.2. Subjects

Subjects were of varying backgrounds. Some were post-
graduate students working in the Faculty of Mathematics
(n=4), others were Open University technical and research
staff (n=2), and tutors from the Database course (n=4). All
subjects had prior experience of micro computers. Only the
tutors on the database course had more than a slight
knowledge of SQL and relational databases. Additionally
the system's designer completed the task.

3.3. Materials

The experimental materials consisted of two floppy discs. A
3.5 inch Macintosh boot-up disc, which contained the
PROTEUS shell, including the CES program, and a number
of prototype help systems for the RAS teaching material.
Each of the prototype help systems were implemented on the
Mac, running in a command language environment which
was very similar to the MSDos RAS environment. Only the
help commands were implemented on the Mac versions of
RAS, other functional aspects of the RAS system were not
implemented, and returned a short message to that effect if
the user attempted to type them on the Mac version of the
RAS system. Three distinct HELP systems were devised,
and one more system was added by combing elements of the
others. The HELP systems provided were:-

Declarative Textual Help, describing the purpose and effects
of the commands in detail, but not providing information
about how to implement the command.

Exemplar Help, which consisted of a valid example of the
command (executable on the RAS system), and an example
of the reply RAS would deliver if such a command was
executed.

Syntax Help, which provided a BNF syntax diagram of the
command.

Finally, Declarative and Syntax, which combined the
contents of Declarative and Syntax above.

Each of the Help systems is syntactically identical, having a
simple structure of the HELP command and a single
argument. The screen display of each system is also very
similar, resembling a message output from an IBM PC.

Subjects were also given a 5.25 inch MSDos floppy disc
which contained the RAS program, and MSDos system
files. In addition to the floppy discs subjects were given
copies of the relevant OU teaching material. This consisted
of an audio tape containing a guided tour of the RAS
program, and a draft copy of the written OU course material
. The course material introduces the RAS system and
teaches interrogation of the database using SQL.

Subjects who completed the study in the computing
laboratory had available a twin drive Amstrad 1512 PC, a
Mac Plus computer, and a tape cassette player equipped with
headphones. This equipment was located in a section of a
computing laboratory partitioned off from the 'public' area,
and was available for use anytime during the test period.

3.3. Procedure

Two procedures were adopted. The first was closer to a
laboratory procedure, with subjects working in a variable
number of sessions on the laboratory Macintosh and

Amstrad PC away from their normal workplace. The audio
material was available to these subjects and was listened to
through headphones. A draft copy of the database teaching
material was also available. The sessions took place in a
screened off section of a computing laboratory.

The second procedure was more ecologically valid, and
involved giving the subjects discs of the materials, and
allowing them to work on them in their normal place of
work, using familiar equipped. The return rate from this
procedure, was however much lower. Data from this group
is still being analysed and is not reported in this paper.

Both groups were given the experimental materials and were
asked to listen to the audio tape (introducing the RAS
system). They then had to read the extract of OU teaching
material, and try the exercises in using SQL. When they
needed help on the RAS system they were instructed to use
the help systems running on the Macintosh, although the
exercises themselves were completed on the Amstrad PC
version of the RAS system.

On booting the Macintosh, demographic data was collected
from subjects by a computer delivered questionnaire. After
this each of the prototype HELP systems were available to
subjects, accessed by clicking the appropriate button on the
Mac screen. A graphic indication of the time spent on each
prototype HELP system was given by the gradual filling in a
pie chart next to the appropriate button. Additional help on
the experimental procedure was given to subjects on screen,
accessed from a pull down menu. Finally one more button
was available on the screen, allowing access to the Construct
Elicitation System. This button could not be selected until
all the prototype HELP systems had been tried.

After completing the RAS exercises (which took up to one
hour to complete) subjects went on to the Construct
Elicitation task. Before they started generating constructs
they were asked to rate the prototype HELP systems on a ten
point semantic differential scale, with poles Unpleasant to
Use, and Pleasant to Use. The Construct Elicitation System
was loaded and the process of triadic elicitation started. The
CES uses both an open ended way of asking questions
about what characteristics of individual interfaces make them
distinct from the other interfaces (triadic elicitation) and an
ethnographic method (implication laddering) for gathering
correlates of the elicited constructs. The elicited constructs
form the poles of bi-polar semantic rating scales, on which
all the interfaces are evaluated. Feedback of the data is given
to subjects as an aid to further construing. Finally the
subject is asked to give an extended text description of each
construct.

When subjects have finished generating constructs they can
leave CES and then quit from the PROTEUS shell. If at any
stage a subject wants to refresh her mind about the prototype
HELP systems, she can leave CES and view the particular
prototype HELP system, then return to CES. When subjects
leave CES for the last time they are again asked to rate the
prototype HELP systems on the ten point semantic
differential scale. These ratings are currently used to
estimate if the process of construing alters how the interfaces
are perceived, but also provides a mean subjective usability
rating for each interface by each subject.

The users actions inside PROTEUS are monitored. When a
stimulus interface is called logging is suspended unless
supported by code inside the prototype. It is possible for

subjects to leave the RAS shell, and continue the evaluation
task at another time. Such breaks are also logged

3.5. Data

Subjects spent between two hours seven minutes and four
hours forty seven minutes on the task, and completed the

task in between one and three sessions. Between five and
ten constructs were elicited from each subject.

3.6. Analysis of Data

A review of the data is presented in table 1. This shows the
quantitative data from the experiment.

Table 1: Review of Quantitative Data collected by PROTEUS.

 INTERFACES
Syntax Help Textual Help Exemplar Help Syntax and Text Help

Ratings Data
(1=unpleasant,
10=pleasant)
(ranking).

1=7(2)
2=4(2.5)
3=4.5(2.5)
4=1(4)
5=7.5(3)
6=3.5(4)
7=2.5(3)
average=4.3(3)

1=8(1)
2=4(2.5)
3=3(4)
4=2(3)
5=6(4)
6=5(2)
7=1(4)
average=4.2(2.9)

1=3.5(3.5)
2=4(2.5)
3=7(1)
4=8(2)
5=9(1.5)
6=4.5(3)
7=6.5(1)
average=6(2)

1=3.5(3.5)
2=4(2.5)
3=4.5(2.5)
4=9(1)
5=9(1.5)
6=7(1)
7=6(2)
average=6.2(2)

Number of Uses 1=1
2=2
3=3
4=3
5=6
6=6
7=3
average=3.4

1=3
2=5
3=3
4=4
5=6
6=5
7=3
average=4.14

1=2
2=3
3=2
4=3
5=9
6=2
7=2
average=3.28

1=2
2=4
3=2
4=3
5=2
6=6
7=2
average=3

Total Usage (seconds) 1=2651
2=1261
3=2014
4=321
5=327
6=404
7=305
average=1041

1=294
2=183
3=309
4=173
5=393
6=532
7=176
average=294

1=819
2=816
3=1532
4=142
5=852
6=653
7=244
average=723

1=315
2=223
3=109
4=154
5=386
6=4626
7=191
average=858

The quantitative data shows that subjects used the different
help systems between three and four times during the study.
Total usage times are probably less informative in this study
than number of uses, since users spent time doing the RAS
learning task whilst a particular help was running. Number
of uses does not vary significantly between the different
interfaces. The ratings data does give a clear indication of
user preferences regarding the different systems. The
Syntax and Text help and the Exemplar Help systems are
rated higher than the Syntax on its own or the Text on its
own. This observation is reflected in the CES data of most
subjects, with the exemplar and text and syntax help systems
matching closely on six of the seven element trees.

The data from the Construct Elicitation System has been
analysed using the FOCUS algorithm, Shaw (1980),
Jankowicz and Thomas (1982). Results from the analysis
are displayed as two binary trees per subject. The binary

trees show the similarity matchings for the constructs elicited
from subjects, and for the interfaces as the subject saw them.
This method of displaying the construct data makes certain
features more apparent. It is possible to see which interfaces
are seen as very similar, and which interfaces are seen as
quite different. It is also possible to compare individuals and
see if those similarities are common to most people or
unique to individuals.

In this study the element trees of most subjects showed a
high level of correlation between the Exemplar and
Text&Syntax help. This supports the view that the CES data
is reflecting perceived usability, as intuitively the Text and
Syntax help system would be correlated more closely with
the either of the other two systems, which are identical in
part. The CES data appears to reflect perception of the
system as a whole, rather than simply the physical
characteristics of the systems.

Construct Labels and Construct Tree for Subject 2

CONSTRUCTS:-
1: EXPLANATION STRATEGY
A: DESCRIPTIVE
B: EXEMPLARY
"Descriptive attempts to explain the relevant process,

whereas exemplary shows it."
2: FORM
A: STRUCTURAL
B: NON-STRUCTURAL
"Structural uses a formal notation, the other a natural

language description"
3: CONTENT
A: FORMAL
B: SUBSTANTIVE
"This distinction is between showing the form or grammar

of a command, and giving the substantive application
of it"

4: STYLE
A: EXPLANATORY
B: DEMONSTRATIVE
5: APPROACHES TO EXPLANATION
A: SINGLE

B: MULTIPLE
6: SCOPE
A: MINIMAL
B: FULL
7: UTILITY
A: USEFUL
B: LESSUSEFUL
"I avoided the phrase useless, as I found all of the systems

had some utility, depending on the nature of my
problem eg. wanting to know the correct grammar, or
reminding myself of the meaning of a particular term"

8: ELEGANCE
A: ELEGANT
B: INELEGANT
"An aesthetic response."
9: EASE
A: INTUITIVE
B: OBSCURE
"Whilst the syntactic form has elegance, it is not immediately

intuitive to me"

The construct tree for subject 2 is fairly typical of the
structure of data generated by CES. The construct trees
make more apparent the number of distinct ways an
individual is using to distinguish between the different
interfaces. For example it may be that constructs with very
different verbal labels attached to them are used in
approximately the same way by an individual. This is true in
the Subject 2's construct tree, where 'Style' is seen as similar
to 'Utility'. Looking at the raw rating data from subject 2 it is
possible to see that this construct is used in a similar way to
describe all the help systems, although the poles are reversed,
so that 'Useful' systems are aligned with 'Demonstrative'
systems, and 'Less Useful' systems with 'Explanatory' ones.
This helps illuminate one aspect of the task presented in this
study, where subjects were asked to complete simple
operations in SQL. In this task understanding of syntax is
much more useful than understanding why a particular
command should be use. From the point of view of a
learning package, this type of help can distract attention from
the underlying principles that are being taught.

3.6. Giving the Data back to the Designer...

PROTEUS allows the identification of user significant
issues, within an overall context of designer significant
issues. It does this by identifying both a verbal description
of the issue, and its relationships to other issues, and to
particular designs, and their features. It also allows a
designer to identify the extent to which he is cognizant of
particular issues, even though they may be expressed in
different linguistic terms. Constructs are not represented
only by verbal labels, which are open to misinterpretation
and misunderstanding especially where designers meet users
of a fairly different background (for example system
designers and OU students). The ratings data provides a
framework in which the verbal labels take on an extra
dimension.

Currently the system designer is evaluating the data from
this study, and will consider what form of improvements
should be made to the RAS help system.

4. SUMMARY

Although the study was not taken in an optimally
ecologically valid setting, in practice the laboratory
environment used was probably not distinctly different from
an ideal students learning setting. Equally the subjects used
were not directly concerned with studying an Open
University course. Fortunately all the subjects were
interested in finding out about the learning material, and after
the study all the subjects stated that they had learned a little
more about relational databases.

Although the systems evaluated were very similar to each
other, the PROTEUS methodology has produced
distinguishing data between the prototype systems. The
process of producing recommendations for the system
designer is still to be completed, and further work is being
undertaken to develop methods for giving the data back to
the designer. These include improved interactive graphical
representations of the data.

5. FURTHER WORK

The issue of giving back of data to the designer has not been
fully addressed in this paper. Current work involves
exploring ways of making the significant aspects of the CES
data more explicit to designers. Data from the CES is
currently essentially individual data, however because the
data is generated by experience of the same set of interfaces,
it becomes possible to look for similarities in construing
between individuals. Further work is currently being
undertaken in the representation of group data generated
from clustering algorithms.

ACKNOWLEDGEMENTS

The work described in this paper was supported by an Open
University research grant.

REFERENCES

Briggs, P., (1987) Usability Assessment for the Office:
Methodological Choices and their Implications, in,
Psychological Issues of Human-Computer Interaction
in the Workplace, (Frese, M., Ulich, E., and Dzida, W),
North-Holland, Amsterdam .

Crellin, J. M., (1988) Personal Construct Psychology and
the Development of a Tool for Formative Evaluation of
Software Prototypes, in: Proceedings of the Fourth
European Conference on Cognitive Ergonomics,
(Green, T. R. G. et al. ed.), Cambridge.

Grudin, J., (1989) The Case Against User Interface
Consistency, Communications of the ACM, 32, 10.

Honikman, B., (1976) Construct Theory as an Approach to
Architectural and Environmental Design, in The
Measurement of Interpersonal Space Vol 1, (P. Slater
ed.) Wiley, London.

Jankowicz, D. and Thomas, L., (1982) An algorithm for the
cluster analysis of repertory grids in human resource
development, Personnel Review, 11, 4, pp.15-22.

Kelly, G., (1955) The Psychology of Personal Constructs,
Norton, New York.

Marcus, A., (1983) Graphic Design for Computer Graphics,
in: Readings in HCI:A multidisciplinary approach,
(Buxton, W., and Baecker, R.), Morgan Kaufmann,
Los Altos, California.

Robson, J. I., and Crellin, J. M., (1989) The Control
Implications Program, in: Contemporary Ergonomics
1989: Proceedings of the Ergonomic Society's 1989
Annual Conference, (Megaw, E. D. ed.), Taylor and
Francis, London, pp.172-177.

Stewart, V., Stewart , A., and Fonda, N. (1981) Business
Applications of Repertory Grid, Mcgraw Hill (UK)
Ltd.

Whiteside J., Bennett J., Holtzblatt K., (1988) Usability
Engineering: Our experience and evolution, in:
Handbook of Human Computer Interaction,
(M.Helander ed.), Elsevier Sciences Publishers,
Amsterdam.

