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Spatio–Temporal Rain Attenuation Model for
Application to Fade Mitigation Techniques

Boris Christian Grémont, Member, IEEE, and Miodrag Filip, Member, IEEE

Abstract—We present a new stochastic-dynamic model useful
for the planning and design of gigahertz satellite communications
using fade mitigation techniques. It is a generalization of the
Maseng–Bakken and targets dual-site dual-frequency rain attenu-
ated satellite links. The outcome is a consistent and comprehensive
model capable of yielding theoretical descriptions of: 1) long-term
power spectral density of rain attenuation; 2) rain fade slope;
3) rain frequency scaling factor; 4) site diversity; and 5) fade
duration statistics using a novel method based on Markov Chains.
We also present a simple rain attenuation synthesizer matching
the predictions of the theoretical model.

Index Terms—Diversity, dynamic, propagation, rain, statistics.

I. INTRODUCTION

I N THE CONTEXT of millimeter wave satellite communi-
cations, fade mitigation techniques (FMTs), refer to adap-

tive communication systems that try and compensate in real
time for tropospheric attenuation effects affecting the slant path.
The broad design objective is to design communication sys-
tems which try and maximize overall channel utilization while
meeting specific quality of service requirements [1] and [2]. In
order to control FMT techniques in real-time, it is necessary
to have a precise knowledge of most dynamic and statistical
characteristics of rain-induced attenuation which is the main
source of channel impairment encountered at frequencies above
10 GHz, [3].

While first-order statistics of rain exceeded on an average
climatic year allow to determine the achievable long-term
quality of service (e.g., Throughput and BER availability, [4]),
a natural extension is to consider a second correlated link also
affected by rain. This provides: 1) possibility to study systems
using site-diversity system as a FMT, [5] and 2) analysis of
simultaneous up- and down-link attenuations of a satellite link
through a transparent transponder [6].

Other characteristics which are usually referred to as second-
order or dynamic characteristics [7] are useful for the design
of the control algorithm that is required to drive any particular
FMT [8] and [9]. Fade slope statistics, [10], have applications
for the short-term prediction of rain attenuation which is useful
whenever the deployment of an FMT is not instantaneous but
rather has a finite response time. Fade duration and interfade
duration statistics, ([11] and [12]) are necessary to evaluate the
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long-term behavior of a rain fade countermeasure. This could
for example be used to dimension the required window (buffer)
size in layers of typical protocol stacks. It could also be useful
for the study of adaptive FMT system relying on so-called time-
diversity, [13]. Knowledge of the frequency scaling factor of
rain attenuation, [14], is necessary for systems where the actual
measurement of the fades is made at a frequency different from
that of the actual information-bearing signals.

When no experimental data is available, it may be required to
use a software simulator of the satellite faded channel, [15] for
characterizing the short-term behavior of an FMT. To be of real
use, any proposed rain synthesizer should be accompanied with
corresponding theoretical first- and second-order statistics, [16],
so that actual delivery of a suitable quality of service (QoS) can
be assessed on a long-term basis, [17]. For maximum portability
and ease of estimation, the number of required input parameters
should be kept to a minimum while still achieving meaningful
predictions.

This paper presents a generalization of the stochastic-dy-
namic model first proposed by Maseng and Bakken (MB) in
[18] which attempts to match all these criteria. In particular,
the MB model is extended to two arbitrarily correlated satellite
links at two different carrier frequencies. It is also inspired
from the seminal works in [19]–[21] which to a lesser extent
attempted to achieve very similar objectives.

This dual-frequency scenario, with particular assumptions on
the space-time cross-correlation function of the rainfield, will be
shown to provide a mathematically-consistent way of deriving
expressions for: 1) of rain attenuation’s power spectral density
(PSD); 2) dual-location site diversity systems; 3) rain attenua-
tion frequency scaling factor; 4) rain fade slope statistics; and
5) a new computational method based on Markov chains [22]
is also applied for evaluating rain fade durations statistics and
other related quantities.

II. MODEL DEFINITION

There is broad agreement that point rainfall rate can be mod-
eled as a lognormal variable, [23]. A logical extension is that
the distribution of rainrate at two points on the horizontal plane
is jointly lognormal [21] with probability density function (pdf)
given by (1) at the bottom of the next page, where and are
the point rainfall rates (millimeter/hour) for the two locations
1 and 2, respectively, of interest and is the cross-correlation
factor between and .

As a short-hand, we will denote this by

(2)
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The pdf is obtained from measurements from two spatially sep-
arated rain gauges. The parameters , , 2 describe
the marginal lognormal statistics of point rainfalls, at two lo-
cations 1 and 2 of interest. These four parameters are easily
estimated from empirical or predicted distribution function of
rainfall rate (see e.g., [24] for the fitting method). The marginal
complementary cumulative distribution functions (ccdf) of
take the lognormal form

(3)
The correlation factor of point rainfall rates and is given by
(Appendix A)

(4)

The quantity denotes the yet undefined cross-correlation
factor for the reduced variables,
which are Gaussian with zero-mean and unit-variance (see
Appendix A). Considering only the horizontal plane, we may
emphasize that and thus depend on the space-time proper-
ties of the rainfall rate field by writing . Clearly,
when , the two raingauges are co-located
in space and time. In this case, the two-point rainfall rates
are perfectly correlated and bearing in mind that ,

we need that and . Similarly,
when , the two raingauges are infinitely separated in
space-time which implies that so
that from . Thus we conclude that is a
decreasing function of its argument .

Rainfall patterns can be considered from two different per-
spectives. The Lagrangian viewpoint is obtained when the ob-
server follows the moving rain storm/cell on its path over the
ground. In this case, the storm has an observable direction and
velocity of movement. The birth, development and then decay
of the raincell will appear to the observer as a time pattern. If
only one observer exists (one raingauge on a moving carriage),
no conclusions can be drawn about the size of the spatial prop-
erties or spacing between rain cells. From the Eulerian point of
view, the raingauge is immobile on the ground surface while the
rainfall structure is passing above. In this perspective, observed
time pattern of the rainfall contains combined effects of space
structure, i.e., their distance and size, development and decay,
and the velocity of storm movement. It is not possible to dis-
tinguish the effects of different velocity from different size of
raincells. A small raincell moving slowly may produce the same
time pattern as a large cell moving fast and the birth and decay
cannot be distinguished from their movement.

Let us define the separation distance between our two rain-
gauges as . Then assuming
isotropy of the rainfield may take the form

(5)

where denotes the characteristic size of raincells and ac-
counts for birth and decay of raincells. Introducing the average
advection velocity, , we can apply Taylor’s
hypothesis, [25] to the spatial component giving . We
can thus rewrite (5) as

(6)

where is a compound time constant accounting
for spatial properties and birth and decay. As in most cases,
it may prove difficult to separate spatial from temporal effects
which both play a role in setting the value of the correlation
function (this would require rain radar maps), it may be expedi-
tious to assume that where is slightly modified to
also include birth and decay. This approximation is the last term
in (6).

We will see later that the correlation function given by (4) to
(6) is consistent with the assumptions of the MB model and that
they imply point rainfall and indeed rain attenuation on a slant
path have a first-order PSD as often verified in experimental
propagation studies, [26].

Approximation (6) gives a simple and powerful way of mod-
eling dual-point rainfall intensity as encountered in terrestrial
and/or satellite communications over relatively small time scale
and small geographical extent. The use of Taylor’s hypothesis
and parameter in (6) allows to express the joint pdf of rain-
rate (2) as either or depending
on whether our interest is placed on spatial or temporal varia-
tions of the rainfield respectively. We will use this spatio–tem-
poral duality extensively to calculate below different first- and
second-order characteristics of rain attenuation.

To get a rough estimate of , we may consider a mean storm
velocity of 10 m/s and a raincell mean diameter of 5 km [27].
Assuming isotropy, we get an estimate of

. This compares favorable to the experimental
values and identified in [18]
and [28].

Defining km as the horizontal projections of the slant
paths with elevation angles , as local rain heights and
as the altitudes of the stations, we can calculate the projection
of the paths on the plane with . As-
suming homogeneity, the total path attenuation is

where the specific attenuations are ,

(1)
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Fig. 1. Experimental PSD displaying a first-order characteristic.

Fig. 2. Histogram of empirical values of parameter beta (Milan at 40 GHz).

Fig. 3. Theoretical conditional frequency scaling factor for two links lying in
ITU-R rainzone K at 39.12 and 20.1 GHz.

. The use of the pairs and implies that we gen-
erally consider two different carrier frequencies and/or drop size
distributions. Using a Jacobean technique described in [29], it is
quite straight forward to prove that the distribution of joint rain
attenuation is also lognormal with pdf

(7)

where:

(8)

and

(9)

III. DYNAMIC CHARACTERISTICS OF RAIN FADING

A. Spectrum of Rain Attenuation and Identification of

The work of Maseng and Bakken in [18] is extended in Ap-
pendix B to provide an exact solution for the long-term PSD,

of rain attenuation which is shown to be

(10)
In practice, the first 20 terms in the summation are sufficient to
converge to a good estimate of the PSD. Here and and

, 1, 2 [see (8)]. A more useful approximation is the
expected long-term asymptotic PSD of rain attenuation which is
shown in Appendix B to be equal to

(11)

This expression shows that the asymptotic PSD of rain at-
tenuation has a first-order low-pass characteristic [30]. This
indicates that the choice of cross-correlation function (6) is
quite appropriate. Furthermore, the space-time parameter will
affect the whole shape of the spectrum. In particular, for given
marginal statistical parameters ( ), a large value of will
tend to lower the plateau in the PSD while the cutoff frequency
of the spectrum will move toward the higher frequencies.
Hence, second-order dynamic properties such as fade slope
and fade durations will change significantly depending on the
actual value of . Note, that the cutoff rad/s is independent
of the median value of rain attenuation. This gives an easy
way to identify a value of the dynamic factor for particular
events (or average PSD on a long-term basis). For this, one
needs to compute the PSD of rain attenuation showing clearly
the cutoff frequency. The variance of the event can be estimated
for this particular event in the time domain from which can
then calculated using the inverted form of the last equation in
(11).
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TABLE I
ESTIMATED MEAN SCALING FACTORS COMPARED TO ITU-R’S

Fig. 4. Contour plot of the transition matrix.

This identification method has been applied to a particular
event of about one hour from a received beacon signal data for
southern England. The PSD is shown in Fig. 1. Note, that for
high frequencies the PSD of rain attenuation tends to a law
in agreement with experimental results [26], [30]. The identi-
fied value of is about 4 . This is quite smaller than
the long-term values reported in Section I. This may be due
to a smaller advection velocity of the raincell or a larger rain-
cell characteristic diameter. The identification of has been ap-
plied to around 70 rain events of ITALSAT beacon data col-
lected in Milan over the year 1998. The histogram in Fig. 2
shows that . This demonstrates
that for a particular location, varies over one order of mag-
nitude. Furthermore, the central value is located at about

which is also smaller than the values reported
in [18] and [28]. This indicates that the dynamic parameter is
probably dependent on local climate. Thus, ultimately, maps of

would be required for an accurate worldwide space-time rain
model.

B. Frequency Scaling Factor of Rain Attenuation

Starting from (7), a new statistical model for the frequency
scaling factor of rain attenuation is now developed. Let us con-
sider the frequency scaling factor defined by [36]

(12)

Fig. 5. Fade duration exceedance probability for attenuation thresholds of 1
(top), 3, 5, and 7 (bottom) dB.

Fig. 6. Conditional Exceedance fade duration statistics for attenuation
thresholds of 0.1 (top), 1, 3, 5, and 10 (bottom) dB from simulation.

Applying a Jacobean technique [29], it can easily be shown that
the joint pdf of and is

(13)

Then, the conditional pdf of the frequency scaling factor can be
obtained from Bayes’ theorem

(14)

where [see (3)], .
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Fig. 7. Estimated number of events of a given duration.

Fig. 8. Performance of dual-site single rainzone diversity system (Portsmouth at 40 GHz).

Of practical interest to FMTs is the conditional expected
value of the frequency scaling factor given as a function of
the base attenuation, i.e., the quantity which can be
easily be computed from (14) yielding

(15)

In expanded form (without algebraic simplifications), this is
written as

(16)

where and .

Usually, the scaling factor is chosen so that it is greater than
unity i.e., the carrier frequency corresponding to is greater
than that corresponding to . If instead, we choose the defini-
tion that , then the integral (16) should be integrated
over the interval [0, 1], which may offer a computational advan-
tage. We have estimated the parameters, of the mar-
ginal lognormal pdfs for and , so that a good fit is obtained
with the ccdf predictions of the ITU-R rain attenuation model.
We assumed that the carrier frequency for is 32.12 GHz
while that for is 20.1 GHz, both links being in rainzone K
of the ITU-R model. Although this particular case is typical of
a Ka band satellite communications scenario, it is important to
note that the model (16) allows the scaling of attenuations from
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different rainzones with arbitrary correlation factor. We will not
attempt, however, to justify the applicability of the proposed
model in its widest generality.

Using (16), we have computed the conditional mean
of the frequency scaling factor as a function of the

base attenuation level. The correlation factor is kept as a
free parameter to see its impact on the frequency scaling factor.
The results in Fig. 3 indicate that the correlation factor plays
an important role on the actual value of the scaling factor. In
particular, the mean conditional scaling factor can be assumed
as constant for correlation factors close to unity while the
scaling factor becomes strongly base-attenuation dependent for
low correlation coefficients.

As in most satellite communication scenarios, the require-
ment is to frequency-scale attenuation on links which are geo-
graphically overlapping, the two attenuation time-series will be
highly correlated, and from Fig. 3, the mean scaling factor can
be considered as constant. Like the ITU-R model, the model
proposed here shows that the scaling factor depends on the ac-
tual frequency pair chosen for and . As an example, the
average frequency scaling factor for different frequency pairs
lying in rainzone K has been computed and is shown in Table I.
Comparing this prediction with the ITU-R model, we see that
the agreement is very good. However, unlike the ITU-R model,
(16) indicates that our scaling factor will depend on the rainzone
of the two links of interest since it depends on the actual mar-
ginal statistics of attenuation through the parameters .

C. Fade Duration Statistics Using a Markov Chain Approach

Rain fading exhibits a significant degree of time correlation, so
that the memory in the satellite environment cannot be neglected.
For voice, outage probability is usually defined as the probability
that the signal-to-noise ratio (SNR) is below a certain threshold.
However, for packet-based data communications, the duration
of a channel outage is also very important in determining its
effect on data link and/or transport layer in the OSI protocol stack
(or equivalent). More particularly, some error pattern, linked
to long rain events, will result in unrecoverable or very serious
errors which may lead to time-out expiration, congestion (or
transmission) window shrinking or even connection shutdown.
Within this context, a more appropriate definition of an outage
event is that when the SNR goes below a certain threshold

dB and stays there for longer than a certain duration, s.
Different quantities may be chosen to characterize the durations
of rain attenuation events, [37]. Basic choices should include
the unconditional and conditional pdfs of fade durations which
are linked by where ,

, 2. Although this may only be an approximation, it is
mentioned in [37] that such a formula allows to separate effects
characterizing location-dependent effect [embodied by ]

Fig. 9. Diversity gain as a function of reference attenuation (Portsmouth at
40 GHz).

from pure hydrometeor effect relating attenuation and duration
via . A practical viewpoint is to determine the probability

or the ccdf .
Consider a discrete-time discrete amplitude Markov chain

representing the discretized version of rain attenuation.
Assume a state space . Then the evo-
lution of can be completely described by the transition
matrix , whose elements are given by

, . is such that for any of its rows
(labeled by ) we have where is used to identify
the columns of . The steady-state distribution linked to will
be denoted by the column vector and satisfies, assuming an
arbitrary initial state, as . By setting

, , , and
and , we rewrite (7) as shown in (17) at the bottom of
the page. The conditional pdf can be found from Bayes’
theorem yielding

(18)

A typical output from (18) is shown in Fig. 4 for ,
and . As most of the elements of

are equal to zero except around the diagonal , the transi-
tions from in dB to dB can only be small over one second.
Now let dB be an arbitrary attenuation threshold relevant to
the FMT scenario being considered. We call -states the bad
states belonging to the attenuation subset
and -states the desired states belonging to ,
[40]. The conditional exceedance probability of rain fade dura-
tions [37] can be computed using the machinery developed in
[22]. For this, let us define a bad period as having a duration

if a transition from a good state ( -state) to a bad

(17)
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state , -state, is followed by consecutive -states, in turn
followed by one -state. Zorzi showed that the duration statis-
tics is

(19)

where denotes the transpose operator, is obtained from
the steady-state distribution by setting to zero all entries corre-
sponding to states which are not in . is obtained from
by setting to zero all with , and is a column vector
whose entry is one if .

Equation (19) is shown in Fig. 5 on a loglog plot. The graph
shows that the exceedance probability of rain attenuation is log-
normal in the range of durations between 10 and 1000 s. The pre-
dicted shape and dependency on attenuation thresholds seems to
fit quite well with ACTS results given in [37] but more detailed
comparison to experimental results is needed.

The theoretical prediction has also been validated against
simulated data using the rain synthesizer given in Appendix C.
Clearly the agreement is good showing that Zorzi’s method can
be used to compute fade duration statistics.

We can also estimate the expected number of rain attenuation
events greater than dB with duration of s using

(20)

where is the number of seconds in the year.
We see in Fig. 7 that we can expect 400, 30, and 3 events of

duration of 3000 s (50 mins) at the attenuation levels 1, 7, and
20 dB, respectively. This is quite plausible at 50 GHz. Further-
more, as explained in [40], we note that the number of events for
very short durations tends asymptotically to very large values.
A great advantage is that the Markov chain model, thanks to its
quantization, yields a finite number of events which is quite an
advantage.

D. Fade Slope Model

The instantaneous rate of change of rain attenuation is com-
monly referred to as the fade slope. It is particularly relevant for
systems employing predictive FMTs as investigated previously
[33], [34]. Formally, the fade slope may be defined as follows:

(21)

Based on the definition (21), detailed expressions for first order
and conditional statistics of rain fade slope were derived in [35].
These expressions will not be repeated here however it will be
remarked that they are totally compliant with the generalized
propagation model presented in this paper.

IV. DUAL-LOCATION SITE DIVERSITY MODEL

Site Diversity (SDV) consists in the selection of the least at-
tenuated link between two Earth stations pointing toward a same
satellite at any particular point in time, [41], [42]. In other words,
SDV results in selecting the best signal according to

(22)

The region in the , plane, such that
is the set of points such that

or , [29]. From this, it is clear that the
ccdf of the (balanced) pure selection site diversity system
is given by

(23)

where the joint pdf is specified in (7). Equation (23) can
be calculated more easily after using a double change of
variables shown in (24) at the bottom of the page, where the
cross-correlation factor, , is given in (5) to (6) depending
on assumptions. This reduces the problem of computing
two-dimensional Gaussian distributions which is very well
documented [43], [44].

A typical output computed from (24) is shown in Fig. 8 where
we have considered a balanced site diversity link at 40 GHz lo-
cated in the vicinity of Portsmouth assuming a fixed effective
path length through rain of 3.5 km. Generalization to unbal-
anced SDV is straight forward (it would require changing the
values of the integration limits). The site diversity gain, , is
defined as the (equi-probability) difference between the path at-
tenuation encountered on a reference link and that obtained on a
(dual-site) diversity system [45], [46] i.e., (see arrow in Fig. 8)

(25)

This is shown in Fig. 9 using the numerical outputs from (24).
We have considered a single rain-zone dual-path system. Thus
the diversity gain needs only be given with reference to the mar-
ginal statistics of one of the two sites. If we had dual rainzone
site diversity, the diversity gain would in general be different de-
pending on whether site No1 or site No2 is considered to be the
reference ccdf. Fig. 9 also shows the impact of the correlation
factor [see (24)]. Quite expectedly, high correlation factors only
provide a small diversity gain.

Finally, as indicated in (6), the cross-correlation factor is
simply an image of the impact of the separation between
the two sites of the diversity system. Clearly increasing the
separation distance will result in lower cross-correlation and
therefore larger diversity gains. This is best displayed by
considering (24) as a function of where simply becomes a
parameter. Inverting (6) allows us to express (26) and thus (25)
as a function of separation distance, , i.e., of

(27)

(24)
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Fig. 10. Diversity gain as a function of separation distance for different values of reference attenuation (1 dB steps).

where we have used and . This is
shown in Fig. 10 for two site diversity links at 20 and 40 GHz in
the Portsmouth area. The improvement in diversity gain tends
to stabilize for site separation above 20–25 km. Clearly, this
asymptotic behavior is scaled by the numerical value of
used in (27). Thus, the proposed model prompts us to estimate
from experiment the average raincell velocity ([50]) as well as
the value of the (long-term) spatio–temporal parameter at the
reference location.

The diversity gain increases with higher levels of reference
attenuation. This is consistent with the fact that high levels of
rain fades are generally more localized and thus they are more
likely to be unconnected between two separated links. Finally,
the diversity gain shows a marked dependency on carrier fre-
quency. This is consistent with the fact that fades of say 10 dB
at 20 GHz correspond to much more intense rainfall events and
thus they are more localized compared to fades of 10 dB at say
40 GHz which corresponds to a less intense and more wide-
spread raincell. It is also important to note that the model pro-
posed here concurs at least qualitatively with the predictions of
other models for site diversity such as the Hodge model [45],
[46]. However, unlike the Hodge model, the site diversity model
derived here is not empirical and is totally coherent with the
marginal cdfs for the rain attenuation encountered on our two
slant paths.

Clearly, the use of a simple exponential spatial correlation
function may not be accurate enough to model large scale site
diversity. However it is believed that the model proposed in
this paper is probably applicable to systems with maximum
separation distances of up to 30 or 40 km. If required, pre-
diction inaccuracies can artificially be compensated for by
selecting numerical values for input parameters and/or

that minimize prediction errors when compared to empirical
results (if available).

V. CONCLUSION

A generalized model of rain attenuation has been introduced.
Particular emphasis is on deriving theoretical distributions for
all quantities required for the design of communication sys-
tems using FMTs. This includes: 1) site diversity; 2) frequency
scaling factor of rain attenuation; 3) fade slope statistics ([35]);
4) PSD of rain attenuation; and 5) computation of fade duration
statistics using Markov Chains.

The proposed model is mathematically consistent and cor-
responds to a generalization of the Maseng–Bakken model to
dual-frequency links. It relies on a particular exponential as-
sumption for the space-time cross-correlation function of rain-
field. Taylor’s hypothesis is used to go from space to time (dy-
namic) characteristics. Although further validation is required,
it is believed that the proposed generalized model is applicable
to all propagation scenarios requiring statistical considerations
of the dynamic characteristics of rain microwave fading and/or
the modeling of site diversity systems typical of metropolitan
areas (60 or less).

The generalized model requires six main input parameters.
The first classical four characterize the first order-lognormal
statistics of rain attenuation They can easily be fitted to either
experimental ccdfs or from global prediction models like the
ITU-R’s.

The last two parameters are new requirements imposed
by the model proposed in this paper. The spatio–temporal
parameter ( ) and the average velocity, , of raincells, are



GRÉMONT AND FILIP: SPATIO–TEMPORAL RAIN ATTENUATION MODELFOR APPLICATION TO FMT 1253

used to characterize the space-time properties of the rainfield
at the location(s) of interest. was shown to vary over one
order of magnitude for a particular satellite link and it is almost
certain that it will also vary with actual location and climate.
Similar expectations apply to the average speed of raincells.
Thus maps of and should ultimately be provided in addition
to the standard ITU-R distributions for rainfall attenuation. A
method to estimate in the frequency domain from classical
experimental time-series has been presented. Preliminary work
on estimation of local speeds of raincells is also underway
for example in Portsmouth, [50].

APPENDIX A
CORRELATION FUNCTION OF RAIN ATTENUATION

Let us consider a joint lognormal probability density function
(pdf), , of two variables, and , both with zero
mean and unit variance and cross correlation given by

(A.1)
Now let and , then it is easily
shown that and are jointly lognormal with pdf (note the
change of into ), see (A.2) shown at the bottom of the page,
where is the cross-correlation factor between and and is
calculated below.

The (marginal) mean values of and are

(A.3)

(A.4)

The standard deviations of and are

(A.5)

(A.6)

The quantity , after applying the changes of variables
and can be written

as

(A.7)

The double integral in (A.7) can be shown to be equal to
. Using equations (A.3)–(A.6),

we can easily find the covariance function

(A.8)
and the cross-correlation factor of the two lognormal
variables is given by

(A.9)
In the particular case where and ,
the covariance becomes

(A.10)

and the correlation function becomes

(A.11)

APPENDIX B
POWER SPECTRAL DENSITY OF RAIN ATTENUATION

Assuming that , the covariance function for the
rain process, , takes the form

(A.12)

Using the Taylor series for with
, [47], (A.13) can be rewritten as

(A.14)

where we note that for the bracketed term in the middle
of (A.14) is zero. Using the Fourier Transform pair:

(A.15)

the PSD function of the rain process, , is equal to the
Fourier transform of its covariance function which gives

(A.16)
where the Dirac function term represents the square of the mean
value of the rain fading process. Although function (A.16) rep-
resents an exact solution and is easily computable (the summa-

(A.2)
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tion is negligible for ), it is of practical interest to derive
an asymptotic spectrum. In particular, if , i.e., in
the high frequency region, (A.16) is approximately equal to

(A.17)

since .
Thus, the rain process displays a characteristics in the

high frequency region. In the case where , i.e., in
the low frequency region (but with ), (A.16) becomes

(A.18)

The summation in (A.18) can be expressed in terms of the gen-
eralized hypergeometric function. However, a good approxima-
tion sufficient for our application is

(A.19)

Thus

(A.20)

The cutoff frequency of the spectrum can be determined by
evaluating for which . Using (A.18) and
(A.20), it can be shown that

(A.21)

APPENDIX C
SYNTHESIS OF TYPICAL RAIN EVENTS

The MATLAB function, shown at the bottom of the page,
generates lognormal time-series with a first-order spectral char-
acteristics.This function corresponds to an implementation of
the Maseng–Bakken model and it has been validated in terms
of its first and second-order characteristics [48], [49]. This func-
tion has been used to determine simulated fade duration statis-
tics (see Fig. 6).
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