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A robotic welding system using image processing techniques 

and a CAD model to provide information to 

a multi-intelligent decision module. 
 

Abstract 

 

A system is proposed that uses a combination of techniques to suggest weld requirements for ships parts.  These 

suggestions are evaluated, decisions are made and then weld parameters are sent to a program generator.  New 

image capture methods are being combined with a decision making system that uses multiple parallel AI 

techniques.  A pattern recognition system recognizes shipbuilding parts using shape contour information.  

Fourier-descriptors provide information and neural networks make decisions about shapes.  The system has 

distinguished between various parts and programs have been generated so that the methods have proved to be 

valid approaches. 

 

1. Introduction 

 

Although some shipyards have used robots for welding steel for 20 years, the integration of robotic welding 

presents problems [1-3].  Low levels of repeatable welds within some ships means that, although the quality and 

speed of robotic welding are acceptable, the generation of programs capable of applying weld has proved difficult 

[4-6].  Many welding robots work primarily in “teach-and-playback” mode with teach pendants and joysticks [7-

9] but that further limits flexibility and other programming methods are being considered such as intelligent 

pointers [10,11]. 

 

Although the superstructure of a ship may be complicated, it can be complexity of scale [4].  A ship’s 

superstructure can be a complicated object made from a large number of simple objects.  Most are made from 

either metal bar (of varying sizes and shapes) or metal plate and additional items are often cut from metal plate 

[12]. 

 

A new automated welding system is being created that uses artificial intelligence (AI) techniques to determine 

where to weld these sorts of parts.  New image capture methods are being combined with a decision making 

system that uses multiple parallel AI techniques.  The proposal uses object oriented programming techniques to 

create the framework for the system and uses imaging software to capture and process image data.   

 

The system was to have used a combination of AI techniques [13-16] to suggest weld requirements [2,5].  The 

original flow diagram for the new system is shown in figure 1.  Suggestions were to be evaluated and decisions 

made regarding weld(s) without any reference to the available computer aided design (CAD) information and 

without considering the use of a graphical user interface.  The parameters were then to be sent to a program-

generator to produce a robot program for the shop-floor. 

 

The image-capture [17] and program-generator systems are working [4] and a camera mounted above the 

assembly line at VT Shipbuilding in Portsmouth captured images (frames) and new image-processing and object-

recognition sub-systems have been successfully created that operate on the images.  The decision-module is now 

under construction. 

 

New sub-systems have successfully distinguished between various ships’ parts by processing shape information 

so that Fourier-descriptors can be extracted and sets of descriptors associated with training-sets in order to make 

decisions [4].  In that work the images were broken into equal segments and the segments represented as complex 

numbers by referring coordinate points to a random starting point.  Fourier-descriptors were extracted by 

transforming object descriptions into the frequency domain.  

 

Since data points around the contour were expressed as complex number values and not as complex functions of 

length, the usual complex form of Fourier series was of little use.  As contours were sampled, Discrete Fourier 

Transforms (DFTs) were considered but were replaced by more efficient Fast Fourier Transforms (FFTs).  Once 

transformed then data was expressed as Phase & Magnitude.  The modulus of this transformed data was 

considered in order to discard phase information, and consequently, discard operations that effected phase.  

Descriptors were now invariant (within a small error) for rotation, dilation and translation. 

 

Figure 1 here – First System Flow Diagram for the planned new system 

 

Page 1 of 19 Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 
2. Artificial Intelligence Techniques 
 

AI techniques are discussed that are being tested for use within the proposed system. 

 

2.1 Fuzzy expert systems 
 

Fuzzy logic can deal with uncertainties generated by incomplete or partially corrupt data.  The technique uses the 

mathematical theory of fuzzy sets to simulate human reasoning.  Humans can easily deal with ambiguity (areas of 

grey) in terms of decision making, yet machines find it difficult [18,19].   Bloch stated that there are a number of 

reasons why imprecision was inherent to images: imprecise limits between structures or objects, limited 

resolution, numerical reconstruction methods and image filtering[18].  Fuzzy Logic is well suited to this area. 

Applications in structural object recognition and scene interpretation have been developed using Fuzzy Sets 

within Expert systems.  Fuzzy expert systems are suitable for applications that handle uncertain and imprecise 

situations but they do not have the ability to learn as the values within the system are preset and cannot be 

changed.   

 

2.2 Rule based systems 
 

A Rule-Based System describes knowledge of a system in terms of IF…THEN..ELSE.  Specific knowledge can 

be used in order to make decisions.  These systems are good at representing knowledge and decisions in a way 

that is understandable to humans.  Due to the rigid rule-base structure they are less good at handling uncertainty 

and are poor at handling imprecision. A typical rule-based system has four basic components:  a list of rules or 

rule base, which is a specific type of knowledge base; an inference engine [20,21] or semantic reasoner, which 

infers information or takes action based on the interaction of input and the rule base; temporary working memory; 

and a user interface or other connection to the outside world through which input and output signals are received 

and sent [10,11,22,23].  

  

2.3  Case based reasoning systems  
 

The concept in Case-Based Reasoning is to adapt solutions from previous problems to current problems.  These 

solutions are stored within a database and can represent the experience of human specialists.  When a problem 

occurs that a system has not experienced, it compares with previous cases and selects one that is closest to the 

current problem.  It then acts upon the solution given and updates the database depending upon the success or 

failure of the action [24].  Case-Based Reasoning systems are often considered to be an extension of Rule-Based 

Systems.  They are good at representing knowledge in a way that is clear to humans, but they also have the ability 

to learn from past examples by generating additional new cases. Case-based reasoning has been formalized for 

purposes of computer reasoning as a four-step process[25]:  1. Retrieve: Given a target problem, retrieve cases 

from memory that are relevant to solving it. A case consists of a problem, its solution, and, typically, annotations 

about how the solution was derived.  2. Reuse: Map the solution from the previous case to the target problem. 

This may involve adapting the solution as needed to fit the new situation.  3. Revise: Having mapped the previous 

solution to the target situation, test the new solution in the real world (or a simulation) and, if necessary, revise.  4. 

Retain: After the solution has been successfully adapted to the target problem, store the resulting experience as a 

new case in memory. Critics argue that it is an approach that accepts anecdotal evidence as its main operating 

principle. Without statistically relevant data for backing and implicit generalization, there is no guarantee that the 

generalization is correct.  However, all inductive reasoning where data is too scarce for statistical relevance is 

inherently based on anecdotal evidence. 

 

2.4. Fourier-descriptors 
 

Describing shapes is essential for pattern recognition [4,26,27].  Shape description techniques divide into 

boundary-based and region-based.  Region-based techniques consider whole objects while boundary-based 

techniques concentrate on boundary-lines.  Boundary-based methods are more popular because shape 

classifications are based on contour features.  Many integral transforms can be used as feature extractors, for 

example: general-integral, Mellin, Cross-correlation, Radon or Fourier-Mellin.   Fourier-Mellin descriptors have 

tended to perform better than others in noisy conditions (such as those in shipyards) but are not translation-

invariant.  Properties of DFTs are analogous to continuous Fourier Transforms.  Power spectra of DFTs are 

invariant under cyclic translation of the input vector.  Fourier-based methods can be applied efficiently using 

FFTs.  That was the selected method and shape information was processed so that Fourier-descriptors could be 

extracted.  Fourier-descriptors characterize object shapes in a frequency domain.  Shape-based objects can be 

classified using conventional Fourier-descriptors, generic Fourier-descriptors or wavelet-Fourier-descriptors.  

Generalized Fourier-descriptors are described by Smach[28]. 
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2.5 Artificial Neural Networks (ANNs) 
 

Previous work on active recognition differs in object representation, information combination and future planning.  

Invariant pattern recognition is complicated [29] and classification processes can be (1) invariant feature 

extraction or (2) feature classification.  Feature classification can be achieved using Artificial Neural Networks 

(ANNs) [3,4,10,30-32].  ANNs typically have inputs and outputs, with processing within hidden layers in 

between.  Inputs are independent variables and outputs are dependent.  ANNs are flexible mathematical functions 

with configurable internal parameters.  To accurately represent complicated relationships, these parameters are 

adjusted through a learning algorithm.  In ‘supervised’ learning, examples of inputs and corresponding desired 

outputs are simultaneously presented to networks, which iteratively self-adjust to accurately represent as many 

examples as possible [33].  Once trained then ANNs can accept new inputs and attempt to predict accurate 

outputs.  To produce an output, the network simply performs function evaluation.  The only assumption is that 

there exists some continuous functional relationship between input and output data. 

 

2.6 Feature Recognition 
 

Recording an image of ship’s part is simple, but recognizing what that image portrays requires comprehension.  

Feature recognition is a first step in translating an image of part of a ship into welding instructions.  Methods in 

the literature for automated feature recognition tend to match structures identified in a part representation with 

some pattern in a knowledge base, often using if–then rules [34].  A disadvantage is that they cannot easily deal 

with features that cannot be matched with known patterns.  Pattern Recognition techniques were originally posed 

as statistical problems, derived from work in Discriminant Analysis and applying Bayes Theorem [35]. 

 

2.7 Hybrid systems 
 

The purpose of a hybrid system is to combine desirable elements from different AI techniques.  For example, 

fuzzy expert systems are poor at learning due to the fixed nature of the values needed.  This can be improved by 

the creation of neuro-fuzzy systems.  Neural networks have the ability to learn which in turn can enable the fuzzy 

systems to learn.  This work is attempting to create new systems that are hybrids of different AI techniques in an 

effort to use the best from each technique.  Every natural intelligent system can be considered as hybrid because 

they perform mental operations on both the symbolic and subsymbolic levels.  For the past few years there has 

been an increasing discussion of the importance of A.I. Systems Integration [36,37]. 

 

3. Proposed Solution 
 

This Section explains the existing RinasWeld / Motoman System in place at VT Shipbuilding and discusses how 

additional systems may be integrated with the existing systems.  The new proposed system is discussed including: 

software systems required, image processing systems and the use of multiple artificial intelligence techniques to 

make decisions. 

 

3.1 Existing System 
 

The existing system at VTS is shown in Figure 2.  The system consists of two software systems working in series 

to construct viable robot programs.  The first system, the CAD model interpreter, accepts a CAD model and 

determines the welds required.  This data is fed to the Program Generator which re-orientates the weld 

requirements in line with the actual real-world orientation of the panel.  The program generator then sends any 

programs sequentially to the robot (normally one program per weld line).  Additional software systems could be 

incorporated into the existing system at the point where the robot programs are sent to the Robot System.  This is 

because the transmission protocol at this point is standard TCP/IP and any programs to be sent can be viewed as 

text files. 

 

3.2 Proposed System 
 

The new proposed system in Figure 3 shows that data will be gathered from a post-processed image.  The data 

will then be combined with the data contained within a CAD model.  The Multi-Intelligent Decision Module will 

then use multiple AI techniques to suggest a required weld.  This weld requirement will then be displayed for the 

operator to check.  If the operator rejects the suggestion the system will learn from that rejection and suggest a 

different requirement.  Assuming the operator now accepts the requirement, the system will generate a compatible 

robot program by using the program generator and post-processing systems. 

 
Figure 2 here – Existing RinasWeld / Motoman System 

 

Figure 3 here – Revised System Flow Diagram showing the inclusion of the 

computer aided design (CAD) model an the graphical user interface (GUI) 
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3.2 (a) Software Systems 
 

In the same way that the construction of the superstructure of a ship is broken into smaller elements such as 

sections, units and panels; the weld requirements can also be sub-divided.  Figure 4 shows that a Panel is 

considered the largest practical part. 

 

 

 

Figure 4 here – Hierarchy of a Ship Panel 

 

This is intuitive as the factory system is such that Panels have specific documentation.  It has therefore been 

proposed that each Panel be made up of a collection of one or more Jobs.  The inclusion of this layer allows 

collections of Welds (the next layer) to be logical grouped together in order to improve production efficiencies.  

The final layer is that Welds are collections of Points.  This is where the anatomy concept falls back into line with 

the real-world. Any linear weld can be described by determining just two points, the start and end.  All the other 

points that are required can be extrapolated from these two points.  When creating the software systems to 

generate a required robot program, it was decided that an object oriented approach would reduce the development 

time.  Object oriented technique offers easier handling of complexity within software and allow changes to be 

simpler during debugging. 

 

Figure 6 shows some of the different positions that the end effector must move through to successfully weld.  The 

touch sense points allow the robot to determine the precise location of the part to be welded in relation to the end 

effector using some simple force feedback sensing [38,39].  This is important as the end effector must be 

positioned within 2mm of the correct weld start point to achieve satisfactory weld quality. 

 

 

Figure 5 here – End Effector Path Diagram 

 

 
3.2 (b)  Early Prototype Image Processing Systems 
 

The image processing systems involved detecting edges, line identification and geometric data generation[17].  

This data can then be used to identify the different objects within the image.  A software package named ‘WiT 

8.3’ by Dalsa Coreco was initially used to reduce development time of the first prototype image processing 

systems.  This software had a graphical interface which was used to create and test prototype algorithms that were 

exported as VB.net compatible functions for inclusion within a .net framework software package.  In the early 

prototypes, the image was read, converted to greyscale and then put through a low pass filter.  The low pass filter 

removed some of the noise in the image and reduced the occurrence of small random edges.  The image was then 

operated on by an edge tracing function which used a Prewitt edge detection algorithm and then collated any 

edges into a collection of geometric lines.  These lines were then overlaid onto the filtered greyscale image for 

viewing.  Later systems used Fourier-descriptors and Artificial Neural Networks and the most recent systems have 

introduced new corner finding algorithms to effectively reduce noise. 

 

3.2 (c) Multiple AI techniques 
 

The many different methods of implementing AI each have their own strengths and weaknesses.  Some effort has 

been made in combining different methods to produce hybrid techniques with more strengths and fewer 

weaknesses. The Neuro-Fuzzy system which seeks to combine the uncertainty handling of Fuzzy Systems with 

the learning strength of Artificial Neural Networks is an example of this.  This paper proposes a system of using 

multiple AI techniques to decide on weld requirements for a job.  The system will combine the Real-world visual 

data captured through the image processing algorithms with the data provided by the CAD model.  It will then use 

this combined data to present differing AI systems with the same information.  These systems will then make 

weld requirement suggestions to a Multi-Intelligent Decision Module (Figure 7).  This module will evaluate the 

suggestions and determine the optimum weld path.  The suggestions will be passed to the existing robot program 

generator. 

 

 

Figure 6 here – Multi-Intelligent Decision Module Diagram 
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4. Current Progress 
 

The current state of the research is that the robot program generation systems have been created and tested.  These 

systems have been used to produce consistent straight line welds.  A simple edge detection system was created 

using the WiT software.  Figure 1 shows the initial image.  Figure 8 shows the edges as detected by the algorithm 

created during this research.  The edge detection in this instance is good as the object can be identified from its 

perimeter detail. There is also detail present that has been caused by corners between metal pieces.  This shows 

that the edge detection is not reliant upon a high contrast.  The external perimeter detail is more defined than the 

internal detail.  The work surrounding the AI systems is in the early stages and will be taken further over the next 

six months.  During this time the multi-intelligent decision module framework will be created and combinations 

of AI techniques tested.  The AI techniques to be tested will include Rule-based, Case-based and Fuzzy systems.  

Meanwhile, improvements were made to the image processing systems. 

 

 

5. Image processing 

 

Information about shape or pattern is held within contours, so Fourier-descriptors were applied to the contours of 

shapes being classified.  The edge detected image in figure 8 was processed to produce closed line shapes so that no 

lines were left open and hanging.  Contours were assumed to be closed curves in complex space.  An arbitrary point 

moving around the contour generated a complex function `f'.  If the point moved around the contour at a constant 

velocity `v', then at every time 't' a complex number `c' was defined such that  c = f(t).  `t' is not necessarily real time, 

it represents a section of length around the contour.  Because contours were closed, it implied that there existed a 

value `T' so that  f(t + nT) = f(t),  where nT was the contour length.  So f can be expressed as a complex Fourier series.  

These Fourier coefficients depended on starting point and differed with respect to a parameter `τ' along the contour, so 

that for each τ there was a set of Fourier coefficients of the function  f(t) = f(t + τ).  If f(t) = f
(0)

(t) then other functions 

around the contour will be f(t) = f
(0)

 (t + τ). 

 

Considering: Translations, Rotation and Dilation. 

 
Translation: If An

(0)
 is a set of fourier coefficients from a contour function then translation by a complex vector Z 

results in a contour function expressed in the Inverse Fourier Series: 

 

f(t) = f(0) (t) + Z = 

infinity

∑
-infinity

 A
(0)

n
 exp [jnt] + Z 

 

Therefore the Fourier coefficients of the translated contour are: An =An
(0)

for n (where not equal to zero) and An
(0)

 + Z 

for n = 0.  All coefficients except A0 are invariant of translation.  A0 depicts the complex vector indicating the position 

of the centre of gravity. 

 

 

Rotation: If centre of gravity is at the origin then a rotation of the contour function f(t) about the origin, with an angle 

of φ produces another function f(t) where  f(t) = exp [jφ]f
(0)

 (t).  With f(t) expressed as the inverse Fourier transform,  

coefficients of the rotated contour will be: An = exp [jφ] An
(0)

. 

 

 

Dilation: Similarly, Dilation of the contour by scale factor R creates Fourier coefficients of form: An = RAn
(0)

. 

 

 

6. Extracting Fourier-descriptors 
 

The general form of fourier coefficients of a contour after Translation, Rotation and Dilation is 

An = exp [jnτ] R exp [jφ] An
(0)

, where coefficients An
(0)

 are coefficients of the original contour.  They are not useful in 

that form because they contain information on orientation, and shape only is needed.  Considering Bn = A1+n+1.A1-n / 

A
2
1, then applying that expression after rotation, dilation etc… results in an expression that does not contain τ, R or φ.  

If coefficient A0 is not used then these Bn coefficients are invariant under Translation, Rotation and Dilation.  Thus Bn 

coefficients represent shape (or form).  Fourier coefficients were invariant under Translation, Rotation and Dilation 

[4] and just represented shape.  The ANNs were trained using Backpropogation algorithms.  Nets were considered 

trained when error became zero (within pre-set ranges).  A number of teaching runs were required before outputs 

converged.  A teaching net was created to take two sets of inputs and two sets of demand vectors. 
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7. Testing 

 

To test the systems, a teaching net was created to take two sets of inputs and two sets of demand vectors.  The layout 

was a 5-38-4 pattern.  After 150 test-runs the network gave the outputs shown in Table One.  Errors were used to 

update weights within the ANN.  A number of teaching runs were required before outputs converged.  A teaching net 

was created to take two sets of inputs and two sets of demand vectors. 

 

Table 1 here - Output from two sets of inputs 

 

Weights were saved.  The application net was combined with the Description Program and set up to analyze two 

shapes in different orientations.  In 100 tests the program classified 98 shapes correctly after three frames of 

video.  The 2 pattern program operated with a 98% classification rate within three frames.  The training net was 

then modified to take 3 sets of inputs and demand vectors.  Weights were frozen after 500 test runs and the 

outputs are shown in Table 2. 

 

Table 2here  - Output from three sets of inputs 

 

Programs were tested with 3 different shapes in different orientations.  In 100 tests the program classified 97 

shapes correctly after three frames.  The 3 pattern recogniser worked with 97% classification. 

 

The results were good compared to other systems but attempts were made to improve the results further by 

carrying out some post-processessing on the edge detected image. 

 

8. Improving the system 

 

After processing the edge detected image (figure 8) to obtain a clear image (Figure 9) using geometrical rules, 

then the edge was sampled.  The continuous line was converted to equally spaced line segments and then to 

polylines by specifying endpoints for each segment.  The new sub-systems successfully distinguished between 

various ships’ parts by: 

 

• Edge detecting the image (figure 1 to figure 8). 

• Sampling points around the edge detected image. 

• Calculating distance between endpoints of windows around sampled points. 

• Taking points with minimum distance to be corners. 

• Using corners and connecting lines to extract Fourier descriptors. 

• Associating sets of descriptors with training sets. 

• Deciding. 

 

Points were sampled and corners were detected based on the diagonal length of a segment’s bounding box.  

Interspacing distance was equal to the diagonal of the bounding box divided by a constant M (set to 50).  M was 

determined empirically by testing a range of values and finding the value that produced the best accuracy; 

increasing M increased noise and decreasing M created smoother edges so that some corners were removed. 

 

Points could be sampled once an interspacing distance, S, had been calculated.  An empty set was created to store 

sampled points.  Each point was then appended to that set.  A distance holder D was set to zero.  The new 

algorithm was: 
 

(i) Euclidean distance d between two consecutive points was added to D. 

 

(ii) If D was less than the interspacing distance S, then i was increment by 1 and step (i) was repeated. 

 

     Otherwise: (a) A new point, q, was created, approximately S distance away from the last sampled point.  qx and qy 

were calculated to be (S - D) / d distance between point i-1 and point i. 
   

(b) Append q to the set of sampled points and insert q before point i. 
   

(c) Repeat from step (i) without incrementing i until i > |points|. 

 

The new algorithm found corners from this primitive information and from higher-level patterns that determined 

possible insertions or corner deletions.  Firstly, corners were found based on the distance between the beginning 

of a line segment around a point and the end of that line segment. 
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For example, considering a point at pi  

 

SEGMENTi = |pi – W, pi+W|  

 

where W is a constant window and… 

 

|pi – W, pi+W| is the Euclidean distance between the points pi - W and pi + W. 

 

As the edge of a shape bends at a corner, the SEGMENT of points shortens, and a local minimum SEGMENT is a 

likely corner.  To find an initial corner set, all SEGMENTs were first computed.  Median SEGMENT length was 

found and a threshold t was set to be equal to the median x 0.9.  For each SEGMENT, if the SEGMENT was a 

local minimum below the threshold t, then the SEGMENT was a corner.  Line segments around a part all had a 

window of +/- 10 points either side of the point being considered (although +/- 5 were used in practice).  Shorter 

SEGMENTs were around some points at corners and those points were considered corners.  Points on straighter 

sections had SEGMENTs that were close to the median SEGMENT length and were not corner candidates. 

 

After this set of corners was found, some higher-level processing found missed corners and removed false 

positives.  The system checked to see if each consecutive pair of corners passed a Line-test.  This similarity was 

represented through a ratio of Distance(points; a;b) to Path - Distance(points; a;b). 

 

If the ratio was above a set threshold then the segment between points a and b was a line.  If the part segment 

between any two consecutive corners did not form a line, then there were additional corners in-between.  Missing 

corners were assumed to be approximately halfway between corners.  Since these potential corners were below 

the original threshold t, the threshold was relaxed and the new corner was taken to be the point with minimum 

SEGMENT.  This process of adding corners was repeated until all segments between pairs of consecutive corners 

were lines. 

 

A check was then conducted on subsets of triplet, consecutive corners.  If three corners were collinear, then the 

middle corner was removed.  This process checked and removed false positives.  Three consecutive corners were 

collinear if the part segment between the outer corners passed a Line-test. 

 

230 images of nine different part shapes were initially used to test the corner-finder.  A Douglas-Peucker's 

algorithm was implemented along with Sezgin's corner-finder and a simple differentiation algorithm.  The 

algorithms had filters to remove close or overlapping corners.  Two measures were used to determine the accuracy 

of the corner-finders: correct number of corners found and an all-or-nothing measure.  The first was calculated by 

dividing the number of correct corners found by the total number of correct corners perceived by observation of 

each processed image.  The second measure checked that only the minimum number of corners to segment a 

figure were found (in other words the part shape had no false positives or negatives).  That was calculated by 

taking the number of correctly segmented parts divided by the total number of parts; it was either correct or 

incorrect.   

 

Shapes were redrawn so that lines went directly from corner to corner.  This removed noise.  Fourier-descriptors 

were then extracted from the contours of the shapes being classified. 

 

The corner finding system improved on other corner-finders that were considered.  All-or-nothing accuracy for 

the new system was over 20% better than that of the Douglas-Peucker implementation. 

 

9. Testing and results for the improved system 

 

As an example, programs were tested with 3 different shapes in different orientations.  In 100 tests the program 

classified 98 shapes correctly after just one frame and better than 99 after three frames.   Programs were then 

modified to take 4 training sets and demand vectors.  This ran for 6112 test runs.  Over 50 tests the program 

classified 48 shapes correctly after just one frame and 49 after three frames. 

 

These results were compared with those achieved by the most recently published system for identifying ship’s 

parts (Sanders, 2009) and the same shapes were used for comparison.  With the 2-pattern program (bottom graph) 

that system only operated with a 98% classification rate within three frames whereas this system operated with 

close to a 100% classification rate with three frames.   The 3-pattern recogniser worked with 97% classification 

after three frames but the new system worked with 99% classification. 

 

The graph in figure 7 shows the result for distinguishing between two different ships’ parts (upper graph) and 

three different ships’ parts (lower graph).  It shows a substantial improvement when the new corner finder was 
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added.  The improvement was especially significant when a part needed to be identified quickly (after only one 

frame) or when a part needed to be identified within several other ships’ parts.  The percentage accuracy of the 

most recently published algorithm and the initial prototype system described here is shown as blocks in figure 7 

and percentage accuracy of the new algorithm is shown as blobs. 

 

 

Figure 7 here – Comparing the prototype system with the new system incorporating the corner finder. 

 

 

10. Discussion and conclusions 
 

A proposed system has been presented that uses image processing techniques in combination with a CAD model 

to provide information to a multi-intelligent decision module.  This module will use different criteria to determine 

a best weld path.  Once the weld path has been determined then the program generator and post-processor can be 

used to send a compatible program to the robot controller.  The progress so far has been described. 

 

The initial results from the whole work are suggesting that a combination of systems (Case Based Reasoning, 

Fuzzy Expert Systems, Rule-Based Systems and ANN) could offer the ability to handle the necessary uncertainty 

whilst still returning a correct weld path (when all / enough factors are known).   

 

Different shapes were successfully identified using a simple pattern recognition system that used an ANN and that 

system was improved by using a corner identifier.  The system provided shape contour information that was 

invariant of size, translation and rotation.  Since acquiring and processing new images is an expensive task, it is 

desirable to take a minimal number of additional views and the new methods quickly and successfully identified 

parts after only one frame. 

 

The new system used a rudimentary curvature metric that measured Euclidean distance between two points in a 

window but the improved accuracy and ease of implementation can benefit other applications concerning curve 

approximation, node tracing, and image-processing, but especially in identifying images of manufactured parts 

with distinct corners.  
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Figure 1 – First System Flow Diagram for the planned new system 
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Figure 2 – Existing RinasWeld / Motoman System  
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Figure 3 – Revised System Flow Diagram showing the inclusion of the 

computer aided design (CAD) model an the graphical user interface (GUI) 
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Figure 4 – Hierarchy of a Ship Panel 

PANEL 

JOB 

WELD 

JOB JOB 

WELD WELD WELD WELD 

POINT POINT POINT POINT 

Page 14 of 19Assembly Automation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – End Effector Path Diagram 
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Figure 6 – Multi-Intelligent Decision Module Diagram 
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Table 1 - Output from two sets of inputs 

Input Set Output Demand Input Set Output Demand 

1 1 
-5.99E-06 

1 
0 

2 6.05E-05 
.9999 

0 
1 
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Table 2 - Output from three sets of inputs 

 
Input Set Output Desired Output Input Set Output Desired 

Output 
1 
 
 
2 

1 
1.2E-06 
7.5E-07 
3.86E-06 

.9998 
5.69E-07 

1 
0 
0 
0 
1 
0 

3 9.87E-08 
4.6E-07 
.99999 

0 
0 
1 
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