
Generating SAT Local-Search Heuristics using a GP
Hyper-Heuristic Framework

Mohamed Bader-El-Den and Riccardo Poli

Department of Computing and Electronic Systems, University of Essex, UK

Abstract. We present GP-HH, a framework for evolving local-search 3-SAT
heuristics based on GP. The aim is to obtain “disposable” heuristics which are
evolved and used for a specific subset of instances of a problem. We test the
heuristics evolved by GP-HH against well-known local-search heuristics on a va-
riety of benchmark SAT problems. Results are very encouraging.

1 Introduction

Hyper-heuristics could simply be defined as “heuristics to choose other heuristics” [4].
A heuristic is considered as “rule of thumb” or “educated guess” that reduces the search
required to find a solution. The difference between metaheuristics and hyper-heuristics
is that the former operate directly on the targeted problem search space with the goal of
finding optimal or near optimal solutions. The latter, instead, operate on the heuristics
search space (which consists of the heuristics used to solve the targeted problem). The
goal then is finding or generating high-quality heuristics for a target problem, for a
certain class of instances of a problem, or even for a particular instance.

There are two main classes of hyper-heuristics. In a first class of hyper-heuristic
systems, which we term HH-Class 1, the system is provided with a list of preexisting
heuristics for solving a certain problem. Then the hyper-heuristic system tries to dis-
cover what is the best sequence of application for these heuristics for the purpose of
finding a solution. Different techniques have been used to build hyper-heuristic systems
of this class. Algorithms used to achieve this include, for example: tabu search [5],
case-based reasoning [6], genetic algorithms [7], ant-colony systems [22], and even
algorithms inspired to marriage in honey-bees [1].

The second approach used to build hyper-heuristic systems aims at evolving new
heuristics by making use of the components of known heuristics. We term this class HH-
Class 2. This is the approach we will adopt also in this paper. The process starts simply
by selecting a suitable set of heuristics that are known to be useful in solving a certain
problem. However, instead of directly feeding these heuristics to the hyper-heuristic
system (as an in HH-Class 1 discussed above), the heuristics are first decomposed into
their basic components. Different heuristics may share different basic components in
their structure. However, during the decomposition process, information on how these
components were connected with one another is lost. To avoid this problem, this infor-
mation is captured by a grammar. So, in order to provide the hyper-heuristic systems
with enough information on how to use components to create valid heuristics, one must
first construct an appropriate grammar. Hence, in the hyper-heuristics in HH-Class 2,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

both the grammar and the heuristics components are given to the hyper-heuristic sys-
tems. The system then uses a suitable evolutionary algorithm to evolve new heuristics.
For example, in recent work [3] genetic programming [13, 14] was successfully used to
evolve new heuristics in HH-Class 3 for one-dimensional online bin packing problems.
Very positive results with evolving offline bin-packing heuristics have recently been ob-
tained in [16] where GP was used to evolve strategies to guide a fixed solver. In general,
we can say that the HH-Class 2 approach has more freedom to create new heuristics for
a given problem than HH-Class 1. However, HH-Class 1 is easier to implement since it
does not require the decomposition of heuristics nor the use of a grammar.

The long term goal in our research is investigating the use of GP as a hyper-heuristic
framework for evolving instance-dependent heuristics. That is, the aim is not to obtain
general heuristics, but effectively “disposable” heuristics which are evolved and used
for a specific instance of a problem. Here, we will make a first step in this direction,
by exploring the evolution of heuristics which are specialised to solve specific subsets
of instances of a problem. In particular we evolve heuristics specialised to solve SAT
problems with a fixed number of variables. We do this with a grammar based strongly-
typed GP hyper-heuristic system, which we call GP-HH.

2 SAT problem

The target in the satisfiability problem (SAT) is to determine whether it is possible to set
the variables of a given Boolean expression in such a way to make the expression true.
The expression is said to be satisfiable if such an assignment exists. If the expression
is satisfiable, we often want to know the assignment that satisfies it. The expression
is typically represented in Conjunctive Normal Form (CNF), i.e., as a conjunction of
clauses, where each clause is a disjunction of variables or negated variables.

There are many algorithms for solving SAT. Incomplete algorithms attempt to guess
an assignment that satisfies a formula. So, if they fail, one cannot know whether that’s
because the formula is unsatisfiable or simply because the algorithm did not run for long
enough. Complete algorithms, instead, effectively prove whether a formula is satisfiable
or not. So, their response is conclusive. They are in most cases based on backtracking.
That is, they select a variable, assign a value to it, simplify the formula based on this
value, then recursively check if the simplified formula is satisfiable. If this is the case,
the original formula is satisfiable and the problem is solved. Otherwise, the same recur-
sive check is done using the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the Davis Putnam Logemann
Loveland procedure [8]. Incomplete algorithms are often based on local search heuris-
tics (see Section 2.1). These algorithms can be extremely fast, but success cannot be
guaranteed. On the contrary, complete algorithms guarantee success, but they computa-
tional load can be considerable, and, so, they cannot be used for large SAT instances.

2.1 Stochastic local-search heuristics

Stochastic local-search heuristics have been widely used since in the early 90s for solv-
ing the SAT problem following the successes of GSAT [21]. The main idea behind these

Algorithm 1 General algorithm for SAT stochastic local search heuristics

L = initialise the list of variables randomly
for i = 0 to MaxFlips do

if L satisfies formula F then
return L

end if
select variable V using some selection heuristic
flip V in L

end for
return no assignement satisfying F found

heuristics is to try to get an educated guess as to which variable will most likely, when
flipped, give us a solution or to move us one step closer to a solution. Normally the
heuristic starts by randomly initialising all the variables in the CNF formula. It then
flips one variable at a time, until either a solution is reached or the maximum number
of flips allowed has been exceeded. Algorithm 1 shows the general structure of a typ-
ical local-search heuristic for the SAT problem. The algorithm is normally repeatedly
restarted for a certain number of times if it is not successful.

2.2 Evolutionary algorithms and SAT problem

Different evolutionary techniques have been applied to the SAT problem. There are two
main research directions: direct evolution and evolution of heuristics.

An example of methods in the first direction – direct evolution – is FlipGA which
was introduced by Marchiori and Rossi in [15]. There a genetic algorithm was used
to generate offspring solutions to SAT using the standard genetic operators. However,
offspring were then improved by means of local search methods. The same authors later
proposed, ASAP, a variant of FlipGA [17]. A good overview of other algorithms of this
type is provided in [12].

The second direction, which we also adopt in this paper, is to use evolutionary
techniques to automatically evolve local search heuristics. A successful example of this
is the CLASS system developed by Fukunaga [9, 10]. The process of evolving new
heuristics in the CLASS system is based on five conditional branching cases (if-then-
else rules) for combining heuristics. Effectively CLASS can be considered as a very
special type of the genetic programming system where these rules are used instead of the
standard GP operators (crossover and mutation). The results of the evolved heuristics
were competitive with a number of human-designed heuristics. However, the evolved
heuristics were relatively slow. This is because the conditional branching operations
used evaluate two heuristics first and they then select the output of one to decide which
variable to flip. Also, restricting evolution to use only conditional branching did not give
the CLASS system enough freedom to evolve heuristics radically different from the
human-designed heuristics (effectively, the evolved heuristic are made up by a number
of nested heuristics). Another example of system that evolves SAT heuristics is the
STAGE system introduced by Boyan and Moore in [2]. STAGE tries to improve the

local search performance by learning (online) a function that predicts the output of the
heuristic based on some characteristics seen during the search.

3 GP-HH for SAT

To construct a grammar suitable to guide GP-HH in the solution of SAT problems, we
used a number of the well-know local-search heuristics. We decomposed these heuris-
tics into their basic components. The heuristics considered are the following:

– GSAT: [21] which, at each iteration, flips the variable with the highest gain score,
where the gain of the variable is the difference between the total number of satisfied
clauses after flipping the variable and the current number of satisfied clauses. The
gain is negative if flipping the variable reduces the total number of satisfied clauses.

– HSAT: [11] In GSAT more than one variable may present the maximum gain. GSAT
chooses among such variables randomly. HSAT, instead, uses a more sophisticated
strategy. Its selects the variable with the maximum age, where the age of the vari-
able is the number of flips since it is was last flipped. So, the most recently flipped
variable has an age of zero.

– GWSAT: [19] with probability p selects a variable occurring in some unsatisfied
clauses while with probability (1 − p) flips the variable with maximum gain as in
GSAT.

– WalkSat: [20] starts by selecting one of the unsatisfied clauses C. Then it flips ran-
domly one of the variables that have a gain score of 0 (leading to a “zero-damage”
flip). If none of the variables in C has a “zero-damage” characteristic, it selects
with probability p the variable with the maximum score gain, and with probability
(1 − p) a random variable in C.

We have designed a simple but flexible grammar, which gives GP-HH enough free-
dom to evolve really new heuristics. By analysing the previous heuristics, we classified
the main components of these heuristics into two main groups. The first group of com-
ponents, Group 1, returns a variable from an input list of variables (e.g., the selection of
a random variable from the list or of the variable with highest gain score). The second
group, Group 2, returns a list of variables from the CNF formula (e.g., the selection of
a random unsatisfied clause which, effectively, returns a list of variables).

After trying different grammar representations we decided to design the grammar
in such a way to produce nested functions to avoid using variables for passing data
from a function to another. The aim was to reduce the constraints on the crossover and
mutation operators, and to make the GP tree representing each individual simpler. The
grammar we used and its components are shown in Figure 1.

In Group 2 we have two more components which are not directly taken from the list
of heuristics above. The first, which we call ALL USC (which stands for all unsatisfied
clauses), returns a list of non-repeated variables found in all the unsatisfied clauses. We
found that this component performed well especially on instances with a relatively small
number of variables, as will be shown later. The second additional component, which
we call RAND USC (which stands for random unsatisfied clause), returns the variables in
a randomly selected clause. The main difference between RAND USC and USC, which

start → FLIP v
v → RANDOM l

| MAX_SCR l | MAX_SCR l, op
| IFV prob, v, v
| MIN_SCR l | MIN_SCR l, op
| MAX_AGE l | MAX_AGE l, op

l → ALL | ALL_USC
| RAND_USC | USC
| IFL prob, l, l
| SCR_Z l | SCR_Z l, op

op → TIE_RAND | TIE_AGE
| TIE_SCR | NOT_ZERO_AGE

prob → 20 | 40 | 50 |
70 | 80 | 90

Fig. 1. The grammar used for evolving heuristics for SAT using GP-HH.

also returns a random unsatisfied clause, is that USC returns the same unsatisfied clause
during the course of the execution of a heuristic, while RAND USC randomly selects a
different clause each time it is invoked.

The primitive SCR Z selects a zero-damage variable (as in WalkSAT). We placed
this component in group 2. It returns the input list if no variable with zero score gain is
found. If, instead, a zero-damage variable is found, it returns a list which includes this
variable only.

Most primitives which accept a list as input are provided in two versions: one with
a single list argument, and one with a list and an object of type op. The non-terminal
symbol op in the grammar specifies how to break ties between variables whenever
multiple variables in a list satisfy a selection criterion. When op is not provided, a
default tie-breaking strategy is used. For example, in MAX SCR – the component that
returns the variable with the highest score gain – if multiple variables have the same
highest score, the first variable is returned by default. However, if the optional parameter
op is provided and it is TIE AGE, the tie will be broken by favouring the variable
which has least recently been flipped. In some cases a specific option may have no
meaning with a particular component. For example, TIE SCR breaks ties by favouring
the variable with highest score. Naturally, when used in conjunction with MAX SCR this
option has no effect.

We also included probabilistic branching components (IFV and IFL) in our heuris-
tics. We classify branching components on the basis of their return type. For example, if
the branch is between selecting a random variable from a list and selecting the variable
with the highest gain score, we consider this probabilistic branching component as in
Group 1 since it returns a variable. The parameter prob represents the probability of
returning the first argument of an IFV or an IFL primitive.

The grammar in Figure 1 could describe any of the heuristics discussed above.
For example, a statement describing the GWSAT heuristic with a noise parameter of
0.5 could be written as FLIP IFV 50, MAX_SCR ALL, TIE_RAND, RANDOM USC,

Fig. 2. GWSAT heuristic represented using the grammar adopted in GP-HH

where ALL returns all the variables in the CNF formula, TIE RAND stands for “break
ties randomly”, MAX SCR selects a variable with highest score and RANDOM selects a
random variable from USC (unsatisfied clause). A tree representation of this individual
is shown in Figure 2.

4 Experimental setup

We have implemented the full genetic programming hyper-heuristic framework for the
SAT problem in C++ compiled with the gcc compiler. The system consists of two main
parts: a grammar based GP engine and a SAT engine for handling SAT formulas.

The GP-HH system was applied to solve benchmark cases taken from the uniform
random 3-SAT library SatLib.1 All the problems in our benchmarks were satisfiable
uniform random 3-SAT problems with 20, 50, 75 and 100 variables. To reiterate, the
objective of the experiments was to evolve a separate heuristic that best performs on
SAT instances of a given size, and not a general heuristics for 3-SAT problem. So, we
are not trying to evolve heuristics that compete with general SAT solvers, although, as
it will become clear later, unexpectedly we obtained solvers with a considerable degree
of generality.

Normally a local-search heuristic starts by randomly initialising all the variables
in the formula to either zero or one. We did this in testing. However, during evolution
we started the evolved heuristics with all variables set to zero. This may have slightly
reduced the total number of solved cases and may even have slightly increased the
mean number of flips required by each heuristics in each run. We used this approach,
however, because it reduces the randomness in the evolutionary process and makes
it easier to compare results. Once again, this was done only during the evolution of
heuristics, while in testing we initialised all the variables randomly, as customary.

The GP system initialises the population by using the grammar and selecting ran-
dom primitives out of the functions and terminals that are consistent with the grammar.
So, all initial heuristics are guaranteed to be syntactically valid SAT heuristic. The pop-
ulation is then manipulated by the following operators:

1 A full set of benchmarks is available from http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

Fig. 3. Operations and interactions in the GP-HH framework.

– We use truncation selection, where only the best 40% of the population is allowed
to reproduce.

– Offspring are created using a specialised form of crossover. A random crossover
point is selected in the first parent, then the grammar is used to select the crossover
point from the second parent. It is randomly selected from all valid crossover points.
If no point is available, the process is repeated again from the beginning until
crossover is successful.

– Single point mutation is applied to 1% of the population. Again the grammar is used
to ensure that all individuals are valid heuristics throughout the course of evolution.

– Individuals that have not been effected by any genetic operator are not evaluated
again to reduce the computation cost of the evolution phase.

Figure 3 shows how the framework works and how the interaction between the two
main engines, GP and SAT, operates.

As we mentioned before, we apply GP-HH to discover high-quality SAT solvers
specialised for SAT instances of a particular size. So, we pass to the system sets of
SAT instances all with the same number of variables. These form a training set of fit-
ness cases on which individuals are tested. The fitness of each individual is based on
three factors: a) how many cases have been solved out of the given fitness cases (SAT
instances), b) the mean number of flips needed in the solved cases, and c) how many
primitives (nodes) are present in an individual. Table 1 summarises the GP parameters
used for each set of benchmarks.

Table 1. GP parameters

SAT set Population size Crossover rate Mutation rate Fitness cases Max Flips
uf20 300 35% 1% 80 1000
uf50 250 40% 1% 100 4000
uf75 300 40% 1% 40 10000
uf100 250 40% 1% 100 12000

During the evaluation of the initial population, we use only a fraction of the training
set. Also, the number of maximum flips allowed is smaller, than during the other gener-
ations. This is done to reduce the computation load involved with the evaluation of the
initial population. Since this is randomly generated, a high percentage of individuals
have very low performance. These time saving techniques help filter them out quickly.

Although the initial population in GP-HH is randomly generated and includes no
handcrafted heuristics, individuals representing GSAT, HSAT and GWSAT were cre-
ated in the initialisation in almost all experiments we did. This is because of their
simple representation with our grammar. This gave evolved heuristic a chance to start
competing with previously known good heuristics from the beginning. In some cases
the standard heuristics dominated the early generations of runs. Nonetheless, GP was
always able to eventually discover new and better heuristics, despite our using in all our
training and testing sets hard SAT instances, where the clause-to-variable ratio is grater
than or equal to 4.3. None of the instance used in testing and comparing the evolved
heuristics have been used in the evolution phase.

5 Results

Evolving heuristics for SAT is hard, with each GP-HH run taking between a few hours
to several days (for the biggest training sets) to complete. So, we cannot provide here a
statistical analysis of GP-HH runs. All we can say is that most of our runs successfully
evolved high-quality heuristics for the SAT instances in their training set. We feel that
this deficiency is acceptable, since this is one of those cases where one is more interested
in the results of a set of runs rather than the runs themselves, since the results of our runs
are actual problem solvers. These we can study in great detail. So, in this section we
present some of the results of the evolved heuristics for each instance set of the 3-SAT
problem. We also compare the performance of these heuristics with that of well-known
local-search SAT heuristics.

We start by showing a typical example of the heuristics evolved using the GP-HH
framework. Figure 4 shows one of the best performing heuristics evolved for the 50-
variables instance set (brackets were introduced to increase readability). As one can see
evolved heuristics are significantly more complicated than the standard heuristics we
started from (e.g., GWSAT). So, a manual analysis of how the component steps of an
evolved heuristic contribute to its overall performance is very difficult.

However, it is possible to characterise the performance of SAT local search heuris-
tics using certain numerical measures [18]. Depth and mobility are, perhaps, the two
most important ones. Depth measures how many clauses remain unsatisfied during the

Table 2. Comparison of evolved and known SAT solvers on the uf100-953 instance set.

Solver Mean depth Mean mobility Mean flips
GSAT() 2.13 5.7 99,006
WSAT(0.5) 5.65 15.7 9,421
Novelty(0.5) 4.76 18.9 4,122
GPHH100a 5.23 35,2 6,864
GPHH50a 8.17 42.9 11,154

execution of a heuristic. Mobility is a measure of how rapidly the heuristic moves in
the search space. In general it is desirable to have algorithms with large mobility values
which indicate that the heuristic is moving rapidly in the search space. Instead, it is
better to have small values of depth, indicating that the average number of unsatisfied
clauses is small during the course of execution of the heuristic.

Table 2 compares the depth and mobility of the GP-HH evolved heuristics against
depth and mobility of reference human-designed heuristics. The comparison is done on
the uf100-0953 SATLib benchmark, which consists of SAT instances with 100 variables
and 430 clauses. The results for GSAT, HSAT and WSAT are taken form [18]. In this
table we show two of the local search heuristics evolved using GP-HH, GPHH100a,
which was evolved using 100-variable instances, and GPHH50a, which was evolved
on 50-variable instances. In both cases SAT training instances were taken from the
SATLib benchmark library. The results show that GPHH100a performs better than
GSAT, HSAT and WSAT in terms of mobility and the average the number for flips used.
However, GSAT and HSAT have lower (better) values of depth. This is because they use
a very large number of flips, which cause these algorithms to have a smaller average
number of unsatisfied clauses. GPHH100a did not outperform the Novelty heuristic,
but the results are very close. We think this is a good result because Novelty is an
extremely high performing heuristics and it wasn’t one of the heuristics decomposed
to construct our GP-HH grammar. So, we hope that by including components from
Novelty in future research we may be able to further improve GP-HH. Table 2 also
shows the performance of GPHH50a, that was trained on 50-variable instances. Despite
this, it appears to perform rather well also on instances with 100 variable, showing some
generalisation capability.

Some benchmark suites consisting of a number of SAT instances with between 30
and 100 variables were used in [12], where comparative results between a number of
heuristics, some of which evolutionary, were presented. These suites have been used
in a number of other studies. So, we chose the same suites to perform a wider range
of tests on our evolved heuristics. In particular, we used Suite A, which encompasses
instance with 30, 40, 50 and 100 variables, and Suite B, which includes instances with
50, 75 and 100 variables. More details can be found in [12].

In Tables 3 and 4 we provide comparative results of the GP-HH heuristics against
other state-of-the-art evolutionary heuristics and human-designed heuristics on Suites A
and B. The results of the GP-HH evolved heuristics are averages of 5 runs on the bench-
mark sets. In Tables 3 and 4 the results of the FlipGA and WSAT are taken from [12],
while in Table 4 the results for Novelty+ and C2-D3 are taken from [10]. The num-

FLIP(IFV(90, IFV(40, MAX SCR(ALL,
TIE RAND), IFV(70, RANDOM(USC)), IFV(
80, MAX SCR(RAN USC, NOT ZERO AGE), IFV(
20, MAX SCR(ALL, TIE RAND), MAX SCR(
RAND USC, TIE AGE))))), IFV(80, IFV(
50, MAX SCR(ALL, TIE AGE), MAX SCR(

RAND USC, TIE RAND)), MAX SCR(IFL(70,
ALL USC, USC) NOT ZERO AGE))))

Fig. 4. SAT heuristics evolved by GP-HH. Training set taken from the uf50 benchmark set.

ber of runs of these heuristics on the suites varied from 4 to 10. Note that we are testing
evolved heuristics on all the instances in the suites. So, for example, heuristics evolved
for 50 variable instances are also tested on the 75 and 100 variables instances. This
gives us an indication of how general the heuristics are, though a thorough analysis of
this issue is beyond the scope of this study.

In Table 3 and 4 two measures of the heuristics performance are shown: the success
rate (SR) on the set and the average number of flips (AF) used by each heuristic. The
results show that the heuristics evolved by GP-HH performed well compared to most
local-search heuristics, outperforming some. The tables also show that the heuristics
evolved by GP-HH outperformed FlipGA in terms of both the success rate and average
number of flips.

From the results it can also be noticed that in some cases heuristics evolved for a
instances with a larger number of variables have a considerable degree of generality,
performing well also on problems with a smaller number variables.

6 Conclusion

In this paper we presented GP-HH, a framework for evolving “disposable” heuristics for
the SAT problem, i.e., heuristics that are relatively fast to evolve and are specialised to
solve specific sets of instances of the problem. We presented a comparison between GP-
HH and other well-known evolutionary and local-search heuristics. The results show
that the heuristics produced by GP-HH are competitive with these.

GP-HH produced heuristics that are on par with some of the best-known SAT
solvers. We consider this a success. However, the heuristics evolved using CLASS2
are slightly better than the ones evolved by GP-HH. As mentioned in [10], these heuris-
tics are slower than ours. This is because of the use of conditional branching as a GP
primitive. As mentioned in Section 2.2 in most cases this requires to run two heuris-
tics. We don’t use this form of conditional branching (our branching instructions are
probabilistic branches). So, GP-HH heuristics are faster than CLASS2 ones. Also the
CLASS2 system used a large training sets and much longer evolutionary runs compared
to GP-HH. It remains to be explored if by including more components in the grammar
(e.g., those from Novelty), performing longer runs and feeding the GP-HH with a
set of the well performing heuristics in the initial population, GP-HH could outperform
CLASS2. This will be the target of our future research.

Table 3. Results for benchmark suite A. SR=success rate, AF=average number of flips (out of a
maximum of 300,000). Results for FlipGA and WSAT are taken from [12].

n = 30 n = 50 n = 100

SR AF SR AF SR AF
FlipGA 1.0 25,490 1.0 127,300 0.87 116,653
WSAT 1.0 1,631 1.0 15,384 0.8 19,680
GPHH100a 1.0 1,864 1.0 12,872 0.92 54,257
GPHH50a 1.0 2,035 1.0 16,273 0.84 24,549
GPHH20a 1.0 1,457 0.95 18,384 0.66 32,781

Table 4. Results for benchmark suite B.

n = 50 n = 75 n = 100

SR AF SR AF SR AF
FlipGA 1.0 103,800 0.82 29,818 0.57 20,675
WSAT 0.95 16,603 0.84 33,722 0.6 23,853
Novelty+ N/A N/A 0.966 17,018 0.716 34,849
C2-D3 N/A N/A 0.972 19,646 0.786 40,085
GPHH100a 0.96 12,527 0.93 27,975 0.74 41,284
GPHH75a 1.0 18,936 0.95 26,571 0.59 29,495
GPHH50a 0.97 11,751 0.81 36,215 0.46 22,648

Furthermore, in future work we intend to test and evolve heuristics for a wider
range of SAT problems. We also want to study the behaviour of GP-HH in more detail.
In addition, we aim to further speed up evolution. Like most other GP systems, GP-
HH populations include a large numbers of repeated individuals. So, a natural speed-up
technique is to avoid the evaluation of repeated individuals. Additional savings could
be obtained by avoiding the evaluation of repeated subtrees. We will also apply GP-HH
to different combinatorial optimisation problems, e.g., job shop scheduling.

Acknowledgements

The authors acknowledge financial support from EPSRC (grants EP/C523377/1 and
EP/C523385/1).

References

1. H. A. Abbass. MBO: Marriage in honey bees optimization - A haplometrosis polygynous
swarming approach. In Proceedings of the 2001 Congress on Evolutionary Computation
CEC2001, pages 207–214, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu,
Seoul, Korea, 27-30 2001. IEEE Press.

2. J. Boyan and A. Moore. Learning evaluation functions to improve optimization by local
search. Journal of Machine Learning Research, 1:77–112, 2000.

3. E. K. Burke, M. R. Hyde, and G. Kendall. Evolving bin packing heuristics with genetic
programming. In Parallel Problem Solving from Nature - PPSN IX, volume 4193 of LNCS,
pages 860–869, Reykjavik, Iceland, 9-13 Sept. 2006. Springer-Verlag.

4. E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics:
an emerging direction in modern search technology. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, pages 457–474. Kluwer Academic Publishers, 2003.

5. E. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyperheuristic for timetabling and
rostering. Journal of Heuristics, 9(6):451–470, 2003.

6. E. K. Burke, S. Petrovic, and R. Qu. Case-based heuristic selection for timetabling problems.
Journal of Scheduling, 9(2):115–132, 2006.

7. P. Cowling, G. Kendall, and L. Han. An investigation of a hyperheuristic genetic algo-
rithm applied to a trainer scheduling problem. In D. B. Fogel, M. A. El-Sharkawi, X. Yao,
G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings of the 2002
Congress on Evolutionary Computation CEC2002, pages 1185–1190. IEEE Press, 2002.

8. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394–397, 1962.

9. A. Fukunaga. Automated discovery of composite SAT variable selection heuristics. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 641–648, 2002.

10. A. Fukunaga. Evolving local search heuristics for SAT using genetic programming. In
Genetic and Evolutionary Computation – GECCO-2004, Part II, volume 3103, pages 483–
494, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

11. I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for sat. In
Proc. of AAAI-93, pages 28–33, Washington, DC, 1993.

12. J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for the satisfiability prob-
lem. Evol. Comput., 10(1):35–50, 2002.

13. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

14. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag, 2002.
15. E. Marchiori and C. Rossi. A flipping genetic algorithm for hard 3-SAT problems. In

W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 1,
pages 393–400, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann.

16. R. Poli, J. Woodward, and E. Burke. A histogram-matching approach to the evolution of
bin-packing strategies. In Proceedings of the IEEE Congress on Evolutionary Computation,
Singapore, 2007. accepted.

17. C. Rossi, E. Marchiori, and J. N. Kok. An adaptive evolutionary algorithm for the satisfia-
bility problem. In SAC (1), pages 463–469, 2000.

18. D. Schuurmans and F. Southey. Local search characteristics of incomplete SAT procedures.
Artificial Intelligence, 132(2):121–150, 2001.

19. B. Selman and H. Kautz. Domain-independent extensions to GSAT: solving large structured
satisfiability problems. In Proceedings of theInternational Joint Conference on Artificial
Intelligence(IJCAI-93), Chambry, France, 1993.

20. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94), pages
337–343, Seattle, 1994.

21. B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In P. Rosenbloom and P. Szolovits, editors, Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 440–446, Menlo Park, California, 1992. AAAI
Press.

22. D. L. Silva, R. O’Brien, and E. Soubeiga. An ant algorithm hyperheuristic for the project
presentation scheduling problem. In D. B. Fogel, M. A. El-Sharkawi, X. Yao, G. Greenwood,
H. Iba, P. Marrow, and M. Shackleton, editors, Proceedings of the 2005 IEEE Congress on
Evolutionary Computation, pages 92–99, 2005.

