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Abstract. Data streams are produced continuously at a high speed.
Most data stream mining techniques address this challenge by using
adaptation and approximation techniques. Adapting to available resources
has been addressed recently. Although these techniques ensure the conti-
nuity of the data mining process under resource limitation, the quality of
the output is still an open issue. In this paper, we propose a generic model
that guarantees the quality of the output while maintaining efficient re-
source consumption. The model works on estimating the quality of the
output given the available resources. Only a subset of these resources
will be used that guarantees the minimum quality loss. The model is
generalized for any data stream mining technique.

1 Introduction

In the past years, data streams emerged as a new kind of data source. Analyzing
data streams thus becomes more and more important as new areas of application
are identified. Applications like click stream analysis and the analysis of records
from networking and telephone services are among the most popular examples for
data stream mining, i.e., the discovery of patterns and rules in the data. Another
important area of application is the stream processing in sensor networks, where
continuously generated data is processed as far as possible onboard the sensor
node in order to preserve the limited bandwidth and energy.

Due to the unique characteristics of data streams, like their potentially infi-
nite nature and the vast amount of data they are carrying, data stream mining
requires a different processing than mining on databases and data warehouses.
Efficient resource consumption is one of the major objectives when designing
stream mining algorithms. Rather than storing the incoming data and process-
ing it offline like in traditional data mining, data stream mining is much more
constraint in terms of available resources.

Most data stream algorithms provide approximate results, often by using a
summarization of the stream (called a synopsis) and determining precise error
bounds. Thus, a notion of output quality is immediately associated with this
process. Which information from the data stream is stored is crucial for the
quality of the data mining results. Note that we explicitly refer to the output
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quality of the mining technique, in contrast to aspects of the input quality, which
is a related but still different field of research.

Well-known state-of-the-art of stream mining algorithms reveal that while
many of the algorithms strive for minimizing the resources they need, most of
them are not designed with regard to adaptation to resource availability. Specif-
ically, they fail to provide well-defined routines for situations where the avail-
able resources are exhausted. Most algorithms are designed to work in a static
manner, without taking into account that the algorithm’s resource requirements
might exceed the amount of resources provided. In such a case the algorithm’s
behavior depends in its implementation, and thus might be undefined. Recent
approaches (e.g., [1]) identified this issue, but still lack a clear consideration of
correlations between resource-adaptation and output quality.

When dealing with complex stream mining systems, where usually a set of
queries runs continuously and resources are shared among them, we additionally
have to consider the interactions between different mining operators. In such
systems, algorithmic output quality is usually referred to as Quality-of-Service
(QoS) [2]. Note that, when combining resource and quality aspects of multi-
ple, possibly dependent, mining operators, we start closing the mentioned gap
between input quality and output quality of mining techniques.

In this work, we consider all of the aforementioned aspects and integrate
them into one single framework. We propose a generic three layer model for
quality guaranteed resource-aware (QGRA) data mining on data streams. The
model is designed to be applicable to a wide variety of stream mining techniques.
Our model assesses the output quality and the current status of resources and
adapts the algorithm’s resource consumption accordingly. This way, we are able
to maintain resource efficiency and we may use lesser resources to achieve the
same level of accuracy in the output. At any time, we will be having the max-
imum achievable quality according to the resources. Most static data stream
mining algorithms leave excess resources unused. With our framework, available
resources are utilized in an optimal way at any point in time.

The model utilizes a set of functions that is provided by the applied algo-
rithm to control the adaptation. One function is used to determine the algorith-
mic parameters from the assessed resources. Then, a second function is used to
determine the output quality based on the chosen algorithmic parameters. Other
functions are used to compute lower bounds for the algorithmic parameters in or-
der to maintain the quality of the output. Using this strategy, our model bridges
the gap between quality-aware mining and general resource-adaptivity in data
stream mining by monitoring the resource consumption.

The remainder of this paper is organized as follows. In Section 2 we provide
some background about data mining quality and resource-aware data stream
processing. Our formal model is introduced in Section 3. There, we give a brief
description of the functionalities and a formalization of all elements. Finally,
Section 4 concludes this paper and outlines areas for future work.



2 Background

2.1 Data Mining Quality
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Fig. 1. Different quality measures

Most data mining algorithms have control parameters to determine how well
their output approximates the actual result. These control parameters differ for
each technique and data mining goal, but they can be arranged into classes of
related parameters. Typical examples include the number of microclusters main-
tained during clustering, or the maximum frequency error in frequent itemset
mining. The values of these parameters have a strong influence on the workload
of the algorithm as well as on the size of the synopsis it maintains. In general,
the better the approximation of the output should be, the more resources the
algorithm consumes. Due to this close correlation between these parameters and
the output quality of an algorithm, we will refer to this set of parameters as
adaptation factors. After identifying the adaptation factors of an algorithm, we
are able to adapt its resource requirements and output quality.

In analogy to a classification of adaption factors, affected quality measures
can be classified, too. We distinguish several different classes of quality measures,
which are categorized in Figure 1. This classification is comprehensive, yet ex-
tensible without restricting the proposed framework. All QT∗ are identical for
different mining problems and symbolize concrete quality measures, while QM∗
represent classes of measures that are always specific to the investigated prob-
lem and the applied algorithm(s). For example, in the context of clustering these
measures involve the clustering quality, e.g., SSQ, diameter and other standards
to evaluate the final result of a clustering. One traditional measure for the prob-
lem of frequent itemset mining is the error rate ε, which defines the maximal
deviation of the observed frequency to the actual frequency of an itemset. For
several specific mining applications, special interestingness measures (QMi) have
been proposed in the literature (e.g., [3]). In the context of frequent itemsets the
support is one such interestingness measure.

As many existing algorithms take time sensitiveness into account, we define
time as another important quality measure. QTr describes how far we can look
back into the history of the processed data stream and QTg how exact we can do
this, which means which time granularity we can provide.QTc corresponds to one
of the main challenges of stream mining: the actual time necessary to register
changes in the stream. As might be expected, adaptation factors sometimes



influence more than one of these quality measures, making them dependent from
each other. For more details on the different quality classes we refer to [4]. For
the remainder of this paper, if we refer to all quality measures as a whole, we
will use the symbol of the superclass Q and the general term ‘quality’.

2.2 Resource and Quality Awareness

Most data stream mining algorithms are designed to use as little resources as
possible. However, they are often not aware of the actual amount of resources
available and thus may either fail to utilize them completely or may not be able
to work properly with the given resource constraints. We therefore distinguish
algorithms that are aware of the available resources and are able to adapt their
requirements accordingly. When talking about resources, we do not only consider
memory consumption, despite this being the main factor in most streaming
applications. In addition, since data streams are often generated at a rapid rate,
algorithms must need only minimal time to process the data in order to keep up
with the pace of the stream. In the example of sensor networks, bandwidth and
battery power are additional constraint resources.

Apart from the adaptation factors, properties of the data stream also have
a strong impact on an algorithm’s resource requirements. One of the most im-
portant properties is the streaming rate. Another one are characteristics of the
individual elements in the data stream, like the range and distribution of their
values, and their size. This correlates to adaptation methods like sampling and
load shedding [5], which can be used on the input level of mining techniques to re-
duce the workload, and thus the resource requirements, by decreasing the volume
of the incoming stream. Due to their generic nature, they are applicable to all
mining algorithms, since they do not require any changes to the algorithm itself.
As a consequence, however, applying these methods results in the loss of guar-
anteed error bounds which the original algorithm may have provided. Instead,
only probabilistic error bounds can be established. This may be a non-desirable
tradeoff for some applications. Moreover, determining these probabilistic bounds
should be expected to be very complicated and, due to the evolving character of
streams, potentially erroneous.

Other levels of resource-adaptation throughout the whole process of stream
mining have been identified and discussed in recent works. Methods that can
be applied to most data stream mining algorithms have been proposed for ex-
ample in [6]. Most other approaches either do not formalize their approaches
accordingly or focus on single, rather limited, levels of adaption. Moreover, to
the best of our knowledge, all of them lack the combination of resource and qual-
ity awareness. That means, although they deal with resource adaptation, they
do not take quality aspects and guarantees into consideration.



3 QGRA Model

3.1 Model Description

Gaber et al. [6] have proposed and developed a generic model to adapt data
stream mining algorithms to the current availability of computational resources.
The model aims at prolonging the life-time of the running technique in critical
situations of low availability of computational resources. It has been coined as
Algorithm Granularity (AG). AG can adapt the consumption of computational
resources according to measured patterns of consumption over a pre-set time
window.

AG has been classified into three classes according to the adaptation end-
points. Algorithm Input Granularity (AIG) adapts the input streaming data
to the mining algorithm. On the other hand, Algorithm Output Granularity
(AOG) changes the output size of the algorithm. Finally, Algorithm Processing
Granularity (APG) can adapt the algorithm parameters to consume less CPU
cycles. The changes in AG affect the accuracy of the output. Therefore, the model
sets bounds on the AG settings in order to keep the accuracy loss bounded. These
AG settings have been used to develop an online clustering algorithm termed as
Resource-Aware Cluster (RA-Cluster).

Although the AG model has proven its applicability to change the resource
consumption, the model is still facing the following issues:

– The bounds over the AG settings have no guarantee over the quality of the
output. Because the quality relies on many other interleaving factors such
as data distribution and the running mining technique.

– The changes in the AG settings are not quality-aware. That means the algo-
rithm changes according only to the availability of computational resources.
This may lead to accuracy loss and/or extra use of computational resources,
because in some cases, we can gain the same accuracy using less resources.

– The AG settings do not take into consideration the interaction among the
different settings. Addressing this issue can optimize the use of resources.

In this paper, we propose a new model QGRA that extends AG in order to
address the above issues. The model is able to adapt in real-time according to
resource consumption patterns as well as the quality of output. Franke et al. [4]
have proposed a quality-aware data stream mining model. This model will be
extended to assess the quality of the output in real-time. This assessment will
be used to choose the best combination of AG settings that minimize resource
consumption, and maximize the quality of output.

The model has three layers. The first one is the resource monitoring that
works over dynamic time intervals. Unlike the AG model, the time window is
dynamic and changes according to the criticality of the available computational
resources. The second component is the real-time quality assessment. This will
be able to provide information about the quality of the output given the avail-
ability of resources. It will also be able to provide the system with information
about preserving computational resources while maintaining the same quality



Fig. 2. Three layer model

level. The output of the second component will be passed to the AG settings
(AGS) component. This third component feeds the mining algorithms with in-
put, output and processing settings.

3.2 Formalization

The QGRA model relies on the notion of variables v ∈ V , which comprises all
dynamic components the internal formulas and mechanisms are built on. We
define a partitioning V̆ over V , where each v belongs to a certain class Ĉ of
variables, described as follows. As V̆ is a partitioning,

∀Ĉ1, Ĉ2 ∈ V̆ , Ĉ1 6= Ĉ2 : Ĉ1 ∩ Ĉ2 = ∅

holds. That is, each variable v belongs to exactly one class Ĉ of variables.
On the one side of the adaptation framework, we assume a set of resources

R̂ ∈ V̆ ,

R̂ := {r|r is a limited resource consumed by the algorithm}.

Main representatives of R̂ are the consumed memory and the number of CPU
cycles needed. This corresponds to the kinds of resources already considered in
previous works like [6, 4, 1].

The basis of the framework is enriched by quality awareness, defined in terms
of quality measures Q̂ ∈ V̆ ,

Q̂ := {q|q is a quality measure of interest}.

There is a wide variety of quality measures that might be integrated into Q̂. We
present a brief classification in Section 2.1, which is based on the more detailed
work in [4].

On the contrary side of the framework, we expect any stream mining algo-
rithm to define a set of parameters P̂ ∈ V̆ ,

P̂ := {p|p influences resource requirements and/or
output quality of the algorithm}.



These parameters can be seen as the “tuning knobs” of the particular method.
This includes representatives of adaptation factors corresponding to the afore
mentioned classes AIG, APG and AOG, e.g., sampling rate, internally used
thresholds or number of output objects (like the number of output clusters). In
addition, we also include parameters that cannot be adjusted but the method
exhibits some dependence on, in either resource requirements, output quality, or
both. Examples of this kind of parameters are distribution models the stream
data follows or the fraction of noise. More on the specific requirements an algo-
rithm has to meet can be found in Section 3.3.

In [6] the sets R̂ and P̂ were used in order to implement a one-way resource
adaptation. This means, predictions for relevant r ∈ R̂ are used to adapt p ∈ P̂
accordingly, while the prediction of future resources is based on the observed
recent resource consumption. Now, we introduce how to combine this idea with
the quality-awareness proposed in [4].

We define an instance F (Ĉ) as a materialization of all variables from class
Ĉ ∈ V̆ which are actually involved in the adaptation process, i.e.,:

F : V̆ → V ×<
F (Ĉ) := {v, f(v)|v ∈ Ĉ∧ 6 ∃w 6= v : w ∈ Ĉ

∧f(v) is the current value of v}.

As v only defines which variable is concerned, f(v) represents an actual value of
that variable. To improve readability, we use C short for F (Ĉ). In other words,
C represents all variables from class Ĉ together with the corresponding values.
For instance, we use R to represent all limited resources and their actual amount
currently consumed by a specific algorithm.

Informally speaking, Ĉ represents the schema level of the variable classifica-
tion, i.e., a description of which variables belong together in a class. Accordingly,
C denotes an instance of Ĉ, that is, it associates each variable v ∈ Ĉ with an
actual value f(v). In the above definition of C, we write 6 ∃w 6= v : w ∈ Ĉ to
denote ∀(v, f(v)) ∈ F (Ĉ) : v ∈ Ĉ ∧ ∀v ∈ Ĉ : (v, f(v)) ∈ F (Ĉ). That is, on the
instance level we have exactly one value f(v) for each v ∈ Ĉ. Note that distin-
guishing between classes Ĉ and instances C is not urgently necessary to make the
model work. However, we believe that this makes the model more flexible, result-
ing in more algorithms and approaches being applicable to it. For instance, the
introduced notion allows for an easy but still mathematically consistent integra-
tion of “schema-based” functions, e.g., which select actually considered quality
measures from the set of all possible ones.

On the notion of the variables and instances we introduce two more kinds of
sets. First, we define RL to represent current resource limits and QL to represent
requested quality guarantees. Whether these limits are met or not is described
by two functions:

Φ(RL, R) :=

{
true if ∀(v, x) ∈ RL : (v, y) ∈ R ∧ x ≥ y

false else



The resource limits RL are met in R, i.e., Φ(RL, R) = true, if for each v ∈ R̂ its
value y in the instance R is less than or equal to its limit x in RL.

Ψ(QL, Q) :=

{
true if ∀(v, x) ∈ QL : (v, y) ∈ Q ∧ x ≤ y

false else

The quality guarantees QL are met in Q, i.e., Ψ(QL, Q) = true, if for each v ∈ Q̂
its value y in the instance Q is greater than or equal to its limit x in QL.

Finally, we define timelined variable instances CT . A set CT corresponds to
an instance C enriched by a timestamp t, which represents the time the according
values were effective. Thus,

CT := {v, x, t|(v, x) ∈ C∧ 6 ∃(w, y) 6= (v, x) : (w, y) ∈ C
∧(v, x) was effective at time t}.

CT associates each pair (v, x) ∈ C with a timestamp t. In the following, if we
refer to an instance of one specific time t we write Ct for short.

On the introduced sets we define the following functions:

ρ : RL ×RT × PT → {−1, 0, 1} (1)
φ : P → R (2)
ψ : P → Q (3)
τ : RL ×RT × PT → P (4)
ω : QL ×QT × PT × P → P (5)

The first formula ρ is used to decide whether future resource consumption should
be increased (underload situation, ρ = 1), decreased (overload situation, ρ = −1)
or nothing is to be done at all (ρ = 0). This decision is based on provided resource
limits, recent resource consumption and recent parameters. There are different
approaches for handling this issue. [6] proposes to calculate the number of time
frames remaining until resources are exhausted, whereas [4] uses a filling factor
describing the percentage of available resources already consumed.

φ and ψ take as input an instance of parameters and map them to the result-
ing instance of resources and quality measures, respectively. τ and ω can each be
seen as a kind of inverse function, mapping an instance of resources, respectively
quality measures, to an instance of parameters. As additional input, both τ and
ω accept recent parameter values and recent resources/quality measures. In or-
der to align the quality-based decision with a preceding resource-based decision,
ω also takes suggested parameters P as an input.

Based on these sets and functions the QGRA model works as illustrated in
Algorithm 1.

As mentioned before, the time intervals in which the QGRA method is ap-
plied are set dynamically. In the beginning, all parameters are set to achieve
highest possible quality. The algorithmic steps from Algorithm 1 are then ap-
plied at any time t. Based on the current resource consumption in time t provided



Algorithm 1 General QGRA algorithm at time t
1: Rt = res-mon(t)
2: if 0 6= ρ(RL,∪t

i=1Ri, Pt) then
3: P = τ(RL,∪t

i=1Ri, Pt)
4: P ′ = ω(QL,∪t

i=1Qi, Pt, P )
5: if Φ(RL, ψ(P ′)) then
6: P = P ′

7: end if
8: if !(Φ(RL, φ(P )) ∧ Ψ(QL, ψ(P ))) then
9: return false

10: end if
11: else
12: P = Pt

13: end if
14: Qt+1 = {q, x, t+ 1|(q, x) ∈ ψ(P )∧ 6 ∃(u, y) 6= (q, x) : (u, y) ∈ ψ(P )}
15: Pt+1 = {p, x, t+ 1|(p, x) ∈ P∧ 6 ∃(o, y) 6= (p, x) : (o, y) ∈ P}
16: set parameters P
17: return true

by the resource monitoring component (line 1) and (dynamically) provided re-
source limits, ρ is used to decide whether resource utilization should be increased,
decreased or maintained (line 2). If any adaptation is necessary, a new set of pa-
rameters is determined using τ on the provided resource limits and on recent
resource consumption as well as parameters (line 3). In the next step, we re-
fine these parameters using ω on the QoS requirements and on recent quality
measures as well as recent parameters (line 4). In order not to work contrary,
ω also takes the set of parameters suggested before by the resource adaptation
as additional input. Only if the parameters modified like this still meet the re-
source limits (line 5), they are accepted (line 6). After all adaptation steps, the
new parameters are checked for resource and QoS requirements again (line 8).
If they are not acceptable, the failed resource and/or quality requirements are
signalized and reaction is left to the system or user. Otherwise, the resulting
qualities and parameters are stored for later access (lines 14 & 15) and finally
set (line 16). Note that, if no adaptation takes place, parameters for time t+ 1
are set to those from time t in order to build the timelined sets (line 12).

It is worth to note that formulas 4 and 5 involve solving a kind of optimization
problem, which is left to the specific mining technique. By this, the interaction
between different kinds of resources, quality measures and adaptation end-points
is regarded. A significantly more complex approach is to include qualities and
resources into one single optimization problem. But we expect any such problem
to be much too complex in order to be solved in practicable time.

Applying the model as proposed, there is only one question unanswered until
now: What quality is provided when querying the mining result of an arbitrary
time interval? As stream mining algorithms should support such queries but
quality measures differ between different time intervals, the answer to this ques-
tion is fundamental to support meaningful quality awareness. Thus, we define a



last function

ξ : QT ×N ×N → Q (6)

which determines an instance Q of quality measures extracted from the gathered
timelined qualities QT with respect to a given interval of time.

3.3 Requirements on Algorithms

Though we try to capture most of the existing data mining algorithms on data
streams, the proposed framework is not applicable to all mining algorithms.
There are some basic requirements that algorithms need to fulfill in order to be
extendable using our model.

Naturally, one of the crucial requirements is that parameters must exist in
the algorithm, so that we can choose adaption factors. Moreover, a strong cor-
relation between the adaption factors and the algorithm’s resource requirements
aids precisely estimating the quality of the output. Also, in order to antici-
pate an algorithm’s resource requirements as well as the quality of its output,
the algorithm must show homogeneous behavior when provided with an input
stream whose properties are maintained homogeneous as well. For example, most
threshold based stream mining algorithms meet these requirements.

Another important property is that there should exist a partitioning into
independent sections in the mining result of an algorithm. That means that
different values of the adaption factors only have “local” effects in the mining
results. This also indicates that it must be possible to query each of these in-
dependent sections separately, since otherwise the lowest quality setting of the
adaption factors in the history of the data stream processing will determine the
quality of the overall mining results. As an example, consider frequent itemset
stream mining using a landmark window model, where the error threshold is
one of the adaption factors. Since we can only query the complete history of the
stream, the lowest value of the error threshold ever used while processing the
stream will determine the overall output quality of this algorithm. Note that
this last aspect is not a strict requirement but rather a helpful property. If an
algorithm does not satisfy this requirement, it will still be applicable for the pro-
posed framework, but it will not be able to “recover” from low quality adaption
factor settings.

Currently, we are adopting the resource- and quality-aware mining techniques
we proposed in former works to the presented framework. Despite some last
formulas, this is almost done, which shows that the introduced formalization is
suitable for application to existing and future proposals.

4 Conclusions and Future Work

Mining data streams stresses our computational resources with regard to pro-
cessing power, memory requirements, energy and communication. In order to



ensure the continuity and consistency of a data stream mining process, adap-
tation to available resources is required. Although adaptation is crucial for the
success of the data mining process, its effect on the quality is of concern. Thus,
in this paper we propose a Quality Guaranteed Resource-Aware (QGRA) data
stream mining approach. The objective of this approach is two-fold. Firstly, the
adaptation is done while maintaining a guaranteed QoS set by the user. Sec-
ondly, utilization of resources is achieved through mapping of required resources
to quality measures. If the same quality could be achieved with less resources,
only the required resources are consumed with appropriate parameter settings.

Our work provides the mathematical foundation to add quality-guaranteed
resource awareness to most stream mining algorithms. Concrete instances of the
formulas given in this paper must be implemented by the respective algorithm.
We are currently working on applying our model to existing algorithms for the
three main data mining tasks, clustering, classification, and frequent itemset
mining.

The paper presents a pioneering work to address the two most important
challenges in data stream mining, namely, resource constraints and quality of
the output model. We believe in the flexibility and suitability of the proposed
framework in order to cover existing and following approaches as well as meeting
the special challenges of stream mining. By this, we built a valuable and essential
basis for future work on quality guaranteed resource-aware stream mining.
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