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Motivated by micro air vehicle applications, a fluid-structure coupling procedure between a Navier-
Stokes solver and a three-dimensional FEM beam solver is presented along with selected results 
highlighting some of the aerodynamics implications. The fluid model includes laminar, the k ε−  
turbulence closure, and a filter-based k ε−  closure. The structural model is based on an asymptotic 
approximation to the equations of elasticity. Using the slenderness as the small parameter, the 
equations are decomposed into two independent variational problems, corresponding to (i) cross-
sectional, small-deformation and (ii) longitudinal, large deformation analyses. A model example 
problem corresponding to a NACA0012 wing of aspect ratio 3 in pure heave motion is presented and 
the results compared against available experiment data. Quantitative comparisons with experiment 
are done for the rigid wing and the implications of wing flexibility on aerodynamics are presented in 
a qualitative sense. It was observed that phase lag of the wing tip displacement relative to the 
flapping motion becomes more pronounced as the fluid density increases.  

Nomenclature 
aroot                  Plunge amplitude 
Acs                    Area of a typical cross-section of the beam structure 
b                      Semi chord  
c          Chord length 
CT           Horizontal force coefficient  
Cy           Vertical force coefficient  
E                      Young’s modulus 
fB                     3x1 matrix of external (aerodynamic) forces at a point on the beam reference line expressed 

in B frame 
Fx          Horizontal force acting on the airfoil  
Fy          Vertical force acting on the airfoil  

hr           Non-dimensional plunge amplitude = 
c

aroot  
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I22                      Area moment of inertia of a wing structure about axis x2 

 k            Reduced frequency = 
U

bω  

L                        Structural wing span 
m                       Mass per unit length of the structure 
p            Static pressure 

Re            Reynolds number = 
µ
ρUc  

St                      Strouhal number /fc U=  
T             Period of a plunge cycle 
t             Time  
u,v,w             Cartesian velocity components 
uB3                               Vertical displacement at a point on the beam reference line in the deformed frame 
U             Free stream velocity 
VB                     3x1 matrix of inertial translational velocities at a point on the beam reference line expressed 

in B frame 
x,y,z             Cartesian coordinates 
x1                                   Axis along the structural wing span 
( ), ,s tX X X             Local 3-D displacements 

µ            Coefficient of viscosity 
fρ                      Fluid density  (kg/m3) 

sρ                      Density of structure (kg/m3) 
ν              Kinematic viscosity 
ω                      Frequency of plunge (rad / s) = fπ2  

BΩ                     3x1 matrix of inertial angular velocities at a point on the beam reference line expressed in B 
frame 

 
Superscript 
-  non-dimensional quantities 
 

I. Introduction 

 
n recent years, with rising interests in micro air vehicles and in smaller nano air vehicles, numerous 
experimental and computational studies in the area of aerodynamic force generation by flapping flight 

have been reported, e.g., [1-7]. Most of the previous work focused on the lift generation mechanisms: clap-
and-fling mechanism1, delayed stall phenomenon associated with leading-edge vortices2, fast pitch-up3, and 
wake-capturing3. Van den Berg and Ellington4 and Ellington et al2 found the leading-edge vortex and the 
spanwise flow above a hawkmoth’s wing. Liu and Kawachi5 as well as Shyy and Liu6 conducted unsteady 
Navier-Stokes simulations to highlight the aerodynamics and fluid physics associated with the leading-edge 
vortex and the spanwise flow. Dickinson et al.3 identified the force peaks generated during fast pitch-up of 
a flapping wing at the end of a stroke and the wake-capture mechanism in the experiments. These 
phenomena were studied in the numerical simulations conducted by Sun and Tang7 and Ramamurti and 
Sandberg8. Sun and Tang7 provided a different perspective for the understanding of these phenomena from 
that of Dickinson et al3.  Viieru et al.9 and Tang et al.10 investigated the lift generation mechanism by 
simulating two flapping modes (normal hovering 11 and water treading mode 12 ) of an airfoil section. 

I 



 3

Different force patterns between the two hovering modes were reported in their work. A wake-capturing 
mechanism is identified by small lift peaks at the beginning of the stroke after the stroke reversal in the 
normal hovering mode. Also, for the normal hovering mode as the Reynolds number increases, a distinct 
asymmetrical force pattern between forward and backward strokes is noticed at small flapping amplitudes.. 
In the case of the water treading mode, the lift force variation shows a symmetric pattern between forward 
and backward strokes. Shyy et al13 have offered a detailed review of the current state of the knowledge in 
all of these aspects. 
With the synergy generated between the long standing interest on this subject in the biological research 
community and the efforts being made in the aerospace engineering and science community, substantial 
progress has taken place on numerous fronts related to flapping wing aerodynamics, propulsion, and fluid-
structure interactions, and control issues. In this study, we report our ongoing efforts in developing fluid-
structural interaction simulation capabilities. Insect, bat and bird wings have varied morphology; 
furthermore, their composite structural components result in substantial degrees of anisotropy in the wing’s 
overall mechanical properties. Combes and Daniel14 conducted a study on the structure of the insect wings. 
Based on their measurements, the spanwise stiffness of the insect wings they studied is about 1-2 orders 
larger than that of the chord-wise. Wootton et al15   numerically modeled insect-wings by the finite element 
method. Heathcote et al.16,1718 experimentally investigated the effects of stiffness on thrust generation of an 
airfoil undergoing a plunging motion under various free stream velocities. Direct force measurements 
showed that the thrust/input-power ratio was found to be greater for the flexible airfoils than a rigid airfoil. 
They also observed that at high plunging frequencies, the medium flexible airfoil generates the largest 
thrust, while the most flexible airfoil generates the most thrust at low frequencies. To study the effect of the 
spanwise stiffness on the thrust, lift and propulsive efficiency of a plunging wing, a water tunnel study was 
conducted by them on a NACA0012 uniform wing of aspect ratio 3. They observed that for Strouhal 
numbers greater than 0.2, a degree of spanwise flexibility was found to be beneficial..  
 
In a previous effort, Tang et al19 conducted a two dimensional fluid-structure coupled simulation to study a 
flexible airfoil plunging in forward flight. A 2D finite element formulation using beam elements was 
utilized to couple with an incompressible flow solver via an implicit method. They proposed that passive 
pitching which is the deformation caused by the fluid pressure on the airfoil changes the effective angle of 
attack, causing noticeable differences to lift and thrust generated. Furthermore, as evidenced in the case 
study of the prescribed shape change to the airfoil, even at Re=100, in the plunging motion, the force acting 
on airfoil was dominated by pressure and the viscous force was of little impact to the overall aerodynamic 
outcome. Detailed airfoil shape is secondary compared to the equivalent angle of attack.  

In this paper, a high-fidelity computational framework for fluid-structure interactions of flapping wing 
MAVs is presented. Preliminary results are obtained on 3D rigid and flexible wings in pure plunge motion 
and compared against the experimental results of Heathcote et al18.  The main objectives of this paper are: 
(i) to explain the development of a computational framework for fluid-structure interactions of flapping 
wing MAVs (ii) to assess the aerodynamics implications of rigid and flexible wings based on the 
experimental results of Heathcote et al18 and (iii) to probe into the effect of turbulence closures on the fluid 
dynamics of a rigid wing in plunge. 
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II. Numerical methodology  

A. Flow solver (STREAM) 
The fluid solution is obtained from the incompressible Navier-Stokes equations and the continuity equation  
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where fρ  is the fluid density, ui is the velocity vector, t is the time, xi is the position vector, p is the 
pressure, ν  is the kinematic viscosity and tν  is the turbulence viscosity. 
Based on the definition of the motion19 for forward flight, if the free stream velocity (U), the chord length 
(c) and the inverse plunging/pitching (1/f) frequency are used as the velocity, length and time scales 
respectively, the Reynolds and Strouhal numbers appear as Re /Uc= ν , Re /t tUc= ν and /St fc U= . With 

these choices of the scaling parameters, the non-dimensional form of the Navier-Stokes equations become: 
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It should be noted that the relation between Strouhal number and reduced frequency is Sth
U

bk r==
ω

. 

This relation is used to get the plunging frequency from the experiment data. At the Reynolds number of 
3x104 which is of interest in this work, depending on the flapping motions, wing flexibility, and free stream 
conditions, the flow field is likely to exhibit laminar, transition, and turbulent characteristics.  We adopted 
three approaches in our fluid models: (i) strictly laminar flow computations, with no additional models 
other than the Navier-Stokes equations, (ii) the original k-ε two-equation model20, and (iii) a filter-based k-ε 
model, reported by Johanson et al21. The k-ε two-equation model was originally developed for high 
Reynolds number, stationary flows. The filter model allows the computations to use reduced amount of 
eddy viscosity whenever there is an adequate numerical resolution, so that the flow field doesn’t experience 
excessive damping caused by eddy viscosity.  As demonstrated by Johanson et al21, for flows at modest 
Reynolds numbers, the filter model can offer improved  predictive capability than those of the  RANS-
based engineering turbulence closures.  

The equations for the k-ε two-equation model employed in the computations in this work are presented 
below in Eqn 3.  
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(3) 

 
The filter model reported by Johanson et al21 is realized by imposing a filter on the k-ε turbulence model.  
By integrating the Kolmogorov model for the speed and energy spectrum in the sub-filter flow, a viscosity 
model is obtained and is shown in Eqn 4 below. 
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Where, Cµ  is 0.09,  C3 is 1.0 and ∆  is the filter size.  

The numerical solution is based on the extension of the original SIMPLE family of algorithms22, with an 
employment of the cartesian and contravariant velocity variables to facilitate strong conservation law 
formulations and consistent finite volume treatment23. The convection terms are discretized using a second-
order upwind scheme, while the pressure and viscous terms with a second-order central difference scheme. 
For time integration, an implicit second order upwind scheme is employed. A moving grid technique 
employing the master-slave concept24 is used to re-mesh the multi-block structured grid for fluid-structure 
interaction problems. The geometric conservation law (GCL) originally proposed by Thomas and 
Lombard25 was incorporated to consistently compute the cell volume in a moving boundary problem and 
eliminate the artificial mass sources. The specific implementation and implications of the GCL in the 
context of the present solution algorithm have been discussed by Shyy et al26.  
 
B. Structural solver (UM/NLABS) 

The geometrically-nonlinear structural dynamic solution is based on an asymptotic approach to the 
equations governing the dynamics of a general 3-D anisotropic slender solid27, 28. The presence of a small 
parameter (the inverse of the wing aspect ratio) defines a multi-scale solution process, in which the problem 
is decomposed into independent cross-sectional (small-scale) and longitudinal (long-scale) analyses. The 
longitudinal problem solves for average measures of deformation of the reference line under given external 
excitations. The cross-sectional problem solves the local deformation for given values of the long-scale 
variables. Both problems are tightly coupled and together provide an approximation to the displacement 
field in the original 3-D domain, as shown in Fig 1a. 

To derive the three-dimensional dynamic equations of a slender solid, consider a slender solid of 
slowly-varying cross section depicted in Fig 1b. The characteristic lengths involved in its deformation are: 
1) the cross-sectional characteristic dimension, h; 2) the characteristic wave length of the response along 
the longitudinal dimension, L (depending on the longitudinal rate of change of the geometrical and material 
properties, on the typical wave length of the excitation, and on the characteristic length of the initial 
curvature and twist). The assumption of slenderness can be set to 1h / L << . One can then define a 
reference line r along that direction on the undeformed solid, defined by the curvilinear coordinate x1, 
which then transforms into the deformed line R. In addition to this, a local coordinate system b, given by 
the base vectors 1{ ( )}xib , is also defined on each point along the undeformed line, which transforms into a 
deformed frame B,  with base vectors 1{ ( )}xiB , (using a Lagrangian representation of the structural 
deformation). Finally, a global reference frame a, with base vectors 1{ ( )}xia whose motion is always 

known with respect to an inertial frame, is also defined. The equations of motion of this slender body are 
given by Hamilton’s principle applied in a time interval 1 2[ ]t ,t  and in the spatial domain Ω, as 
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                                 Fig 1a: Asymptotic solution process for 3-D slender structures 
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                                 Fig 1b: Coordinate frames in the deformation of a slender solid 
 

where δw  is the virtual work density of the external forces, Aδ  includes any virtual action on the 
boundaries of the domain Ω and at the ends of the time interval, and k  and u  are the kinetic and strain 
energy densities, respectively.  Substitution of the kinetic and strain energy densities in the Hamilton’s 
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principle and subsequent integration by parts in both time and space variables results in the intrinsic form of 
the geometrically-nonlinear equations describing the dynamics of a member expressed in the B frame 
(dimensional) which are included in Eqns 6 and 7. 
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In order to identify the fluid-structure scaling parameters, a linear form of the structural governing 
equations may first be obtained for the special case in which the beam reference line is located at the 
centroid. Also, the rotary inertia and all the nonlinear contributions are neglected. With these assumptions 
eqn 7 reduces to eqn 8.  
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Eqn 8 is substituted into eqn 6 and the nonlinear terms are neglected. From the reduced form of the set of 

equations 6, only the equation concerning the case of bending about axis 2B  is included in eqn 9.  
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This is the familiar equation for bending of an Euler-Bernouli beam about an axis ( 2B here) where 

css Am ρ=  and 2222 κEIM B = . Eqn 9 may be non-dimensionalized by dividing it throughout by a 

suitable factor which may be appropriately chosen as 2
f U cρ in this context. The resulting non-dimensional 

form of eqn 9 is included in eqn 10. 
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where the non-dimensional parameters are defined as: 
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Variations of the flow density are considered for the flexible wing computations in this work. That, in 

effect, varies the density ratio parameter 
−

ρ . 

C. CFD-CSD Coupling 

In this work, a closely-coupled methodology29 has been applied to couple the individual CFD and CSD 
components (Fig. 2). A dedicated interface module was developed to enable communication between the 
flow and the structure at the wet surface. In the interface module, both the fluid and the structural modules 
are called alternatively according to the coupling method adopted for the problem. In the case of the 
explicit coupling method, both the solvers are called once per coupled time-step while exchanging data at 
the interface. In the case of the implicit coupling method, several sub-iterations are performed between the 
fluid and the structural solutions within a coupled time-step. Between any two fluid-structure sub-iterations, 
the initial conditions in the solvers are not updated and hence an updated solution is obtained for the same 
time-step. This is unlike between the last fluid-structure sub-iteration of a coupled time-step and the first 
fluid-structure sub-iteration of the subsequent coupled time-step wherein the initial conditions in the solvers 
are updated and hence the solution is time-marched.  

Several interface subroutines have been written to couple UM/NLABS and STREAM including those to 
control the flow of the coupled solution and to perform interpolation of physical quantities from the CFD to 
CSD grids and vice-versa via thin-plate spline29 / bilinear interpolation methods. Since both UM/NLABS 
and STREAM were developed in-house and the source code for both of these solvers is available, a coupled 
code was achieved simply by compiling the object files of both of the individual solvers along with those of 
the interface routines to produce a shared executable. UM/NLABS is written in Fortran 90 and STREAM  
in Fortran 90 / C++. The coupling method chosen for the computations in this work is explicit.  

III. Results and Discussion 

This section is divided into 4 subsections. In the first subsection, a brief description of the test problem that 
is considered in this work is provided. In the second subsection, details of the fluid and the structural 
computational models are provided.  In the third subsection, computational results on the rigid wing 
configuration are reported and compared against the experimental results of Heathcote et al18. In the fourth 
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sub-section, computational results on the flexible wing configuration are reported at three different flow 
densities (air density (AD), 10xAD, 416xAD). Experimental results at 813xAD are included along with the 
lower density computational results to indicate the trends in the thrust coefficient response.  

 

   

NS 3-D flow
field analysis

 
          Fig 2: Schematic of the computational framework for flexible wing aerodynamics 

A. Problem description 

In an attempt to test the coupled fluid-structure framework discussed previously, preliminary results were 
obtained on a three-dimensional rectangular wing of NACA0012 uniform cross-section oscillating in pure 
heave. Water tunnel studies have been performed by Heathcote et al18 to study the effect of span-wise 
flexibility on the thrust, lift, and propulsive efficiency on this wing configuration. Three wings of 0.3m 
span, 0.1m chord with varying levels of flexibility were constructed in that experiment which are shown in 

Fig 3. A plunge displacement profile )cos( tas root ω= is prescribed to the root of the wing at the leading 

edge.  
 
Overall wing thrust coefficient and the tip displacement response were measured in the experiment amongst 
other things. Only the ‘Rigid’, and ‘Flexible’ versions of the wings highlighted in Fig. 3 were considered in 
this work.  

B. Computational models 

A structural multi-block C-type grid of a NACA0012 wing of aspect ratio 3 was used for the CFD 
simulations (Fig. 4 - left). Grid size is 120, 56, and 60 in the tangential, radial and spanwise directions 
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respectively. Grid sensitivity studies have been performed to identify a grid suitable for the computations in 
this work. 
The structural model for the computations (Fig. 4 – right) is based on a 1-D beam finite-element 
discretization with 39 elements along the semi-span. Chord-wise deformation is reported as negligible in 
the experiment, and hence, a beam model with six elastic degrees of freedom, corresponding to extension, 
twist, and shear and bending in two directions is justified. The beam reference line (cantilevered to a 
plunging frame of reference) is chosen along the leading edge of the wing and cross-sectional properties are 
evaluated with respect to the leading edge point. The properties are uniform throughout the semi-span. 
Since the contribution of the PDMS rubber material to the overall mass and stiffness properties is negligible, 
for the 

 
                          Fig 3: The cross-sections of the ‘Rigid (top)’,  ‘Flexible (center)’, and  

                       ‘Very Flexible (bottom) wings used in the experiments of Heathcote et al18 
 

X

Y

Z

 
Fig 4:   The topology of the grid distribution of the rectangular wing in the CFD computation. (left) 
The interface grid between the CFD and CSD solver. (right) 

 
evaluation of cross-sectional properties, only the stainless steel stiffener is retained. The 3-D structural 
solution is obtained by using 75 recovery nodes on each cross section (defined at a 1-D FE node) and hence 
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a structured grid of 3000 interface points define the solid side of the aeroelastic interface. For the flexible 
wing computations in this work, as mentioned previously, only the ‘Flexible’ wing version of the cross-
sections used in the experiment was considered.   
 
For the rigid wing computations, the Reynolds number (based on chord) was set to 30,000 and the reduced 
frequency (based on semi-chord) to 1.82.  For the flexible wing computations, variations in flow density 
were considered while the Reynolds number and the reduced frequency were kept constant. A summary of 
the mechanical and flow properties are included in Table 1.  
 

Table 1. Wing model parameters and flight conditions 

Semispan 0.3 m Reduced frequency - k        1.82 

Chord (c) 0.1 m Flow velocity (U) 0.3 m/s 

Young’s modulus of steel (E) 210 Gpa Air density (AD) - fρ         1.2 kg/m3

Density of steel - sρ  7800 kg/m3   Wing aspect ratio 3  

Reynolds number (chord)      30,000 Normalized plunge amplitude 
(w.r.t. chord) – hr 

0.175 

 
Results for the flexible wing based at air density AD, 10xAD, and 416xAD are presented later in the paper.  
 
C. Rigid wing in pure plunge 
The Reynolds number (based on chord) is set to 30,000. The flow was expected to be turbulent at this 
condition. To study the effect of transition and turbulence to the thrust and flow structure, the k-ε  models 
with/without filter were utilized in the computation to contrast with the results corresponding to laminar 
flow assumption. The grid size used in the computation is 120x56x60 and the time-step size is 5e-3 s. 
Numerical experiments indicated that these parameters are suitable to obtain enough accuracy. The 
turbulence intensity was set to 4% at the inlet in the two turbulence cases. The filter size in the filter model 
was set to 6e-3 m which corresponds to the average cell size. 
 
 Fig. 5 includes the thrust coefficient results of three different computational cases compared with the 
experiment results. It may be observed that computational results have a decent agreement with those of 
experiment. It may also be observed that the inclusion of turbulent models did not have a significant effect 
on the response. The experimental data shows asymmetric thrust in the two strokes of each cycle, while the 
computational results show no distinguished difference between the two strokes. Compared to the 
experimental data, the computational results agree with the experimental data very well at the small force 
peaks, if the asymmetric difference is neglected.  
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Fig 5: Thrust (upper) and Lift (lower) coefficients of experimental and computational results of rigid wing.  
k ε−  model, k ε−  with filter model and laminar flow are employed in the computation. 
(Re=30,000, hr=0.175, k=1.82)   
 
To probe this further, the  pressure distribution and stream lines at the mid-span station at four time instants 
in a cycle for the three different computations are plotted in Fig. 6 (in the body frame). The pressure 
distribution has the same pattern in all the three cases which explains the force histories being so close to 
each other (the viscous forces are of negligible contribution here). It was noticed that in the laminar and 
filter-based  k ε−  cases, the separation bubbles existed on the wing surface; the size and the position of 
separation bubble were slightly different between the two computations. The computation using the original  
k ε− model did not show the separation bubble in each of the four time instants because of the larger eddy 
viscosity. Nevertheless, the impact of the separation bubbles on aerodynamic forces is small. To further 
illustrate the entire flow field, Fig. 7 plots the streamlines along with pressure distribution on the wing 
surface at t=0.5T. The laminar and filter-based models clearly indicate the separation vortices on the upper 
surface, while in the k ε− model computational result, no separation was observed on the whole wing. 
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                              A                                                         B                                                       C 
                         Fig 7: Flow structure and pressure distribution on the wing surface at t=0.5T 
                              ( A. laminar flow, B. filter model with filter size 6e-3 m, C. k ε− model) 
 
D. Flexible wing in pure plunge 
For flexible wing computations, the Navier-Stokes equations with no additional turbulence closure models 
are solved. Wing flexibility was included to qualitatively assess important characteristics like the induced 
phase lag between the responses of the rigid and the flexible wing and the contribution of elastic span-wise 
bending displacements to the overall thrust coefficient response of the wing. Flapping wings, in general, 
produce both aerodynamic/added mass and inertial/elastic forces. While these forces cause the wing to 
deform, the aerodynamic forces provide damping to the structure (in the absence of any structural damping 

 
 
A. 
 
 
 
 
 
 
B. 
 
 
 
 
 
C 
 
 

 
                    t=0T                            t=0.25T                            t=0.5T                         t=0.75T 
               Fig 6:  Flow structure and pressure distribution at mid wing-span station at  

                                                four time instants in one cycle 
              ( A. laminar flow, B. filter model with filter size 6e-3 m, C. k ε−  model)  
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which is the case here).  In order to isolate the effects of aerodynamics on the structural deformation, 
flexible wing computations were done at three different flow densities while all other conditions were kept 
the same. 
  
Fig. 8 includes the elastic tip deformation response (in the body frame) of the flexible wing in pure plunge 
at 3 different flow densities (air density, 10xair density, and 416xair density) compared to the case with no 
aerodynamic forcing. The body frame is defined as the one with prescribed plunge motion. It may be 
observed that as the flow density increases, the high frequency components of bending are damped out. 
This could be attributed to the increased aerodynamic damping at higher flow densities.  
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                 Fig 8: Tip displacements of the flexible wing at three different flow densities (body frame) 

 
The tip displacement response of this wing with respect to the inertial frame is included in fig. 9 and 
compared with experimental response of a heavier fluid. As seen from the plot, the phase lag of the tip 
displacements relative to the flapping motion kept increasing with flow density.  Although qualitative, it 
may also be inferred from the computational responses at lower flow densities that they all capture the trend 
in the experimental response in both amplitude and phase. This was further corroborated by doing a linear 
extrapolation of the displacement responses at lower densities to estimate the computational response at 
833xair density which appears as 833xair density (extrapolated) in fig. 9. The extrapolated computational 
and experimental responses are seen to have a decent agreement in both phase and amplitude. 
 
Fig. 10 includes the thrust coefficient response of the flexible wing at 3 different flow densities (air density, 
10xair density, and 416xair density) compared to the computational and experimentally determined 
responses of the rigid wing at the same Reynolds number. Once again, the effect of induced phase lag is 
seen here. Incremental changes to the thrust coefficient are clearly seen with increasing flow density. Also, 
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it may be noted that spanwise flexibility has proven to be beneficial to the thrust coefficient just as seen in 
the experiment. 
 
Fig. 10 also includes the experimental response of the flexible wing for the heavier fluid case. Similar 
inferences as in the case of the displacement response may be drawn even in this case.  
 
As sample results, the pressure and stream lines at mid-span station at four different time instants are shown 
in Fig 11 and Fig 12 respectively for the 413xAD case. It may be noted that there is a non-zero flow 
velocity on the wing surface in this case by virtue of elastic deformation and hence the streamline contours 
are different than those observed in the rigid wing case (Figs 6 and 7).  
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                      Fig 9: Tip displacement response of the flexible wing at three different flow densities (inertial frame)   
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                             Fig 10: Thrust coefficient response of the flexible wing at three different flow densities    

 
 

          
                         Fig 11: 2D flow structure and pressure distribution at mid wing-span station  
     at four time instants (A: t=0.0T, B: t=0.25T, C: t=0.5T, D: t=0.75T) in one cycle (413xAD case) 
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                                    Fig 12: 3D flow structure and pressure distribution on the wing surface  
                        at time instants (A: t=0.0T, B: t=0.25T, C: t=0.5T, D: t=0.75T)  (413xAD case) 
 

IV. Summary and Conclusion 

 
A computational fluid-structure framework for flapping wing MAV problems is presented. The fluid model 
includes laminar, the k-ε turbulence closure, and a filter-based k-ε closure. The structural model is based on 
an asymptotic approximation to the equations of elasticity. Using the slenderness as the small parameter, 
the equations are decomposed into two independent variational problems, corresponding to (i) cross-
sectional, small-deformation and (ii) longitudinal, large deformation analyses. The CFD and CSD solvers 
are coupled via an interface treatment enabling transmission of the aerodynamic loading from CFD to CSD, 
and of the shape deformation from CSD to CFD.  
 
Based on Heathcote et al.’s experiment18, numerical simulations were conducted on a rectangular 
NACA0012 wing oscillating in pure heave. Quantitatively reasonable agreement with the experimental 
results was obtained for the thrust coefficient results on the rigid wing while the results on the flexible wing 
agree only qualitatively. Phase lag in the tip displacement was observed between the rigid and the flexible 
wing response in tune with the experiment. The amplitudes of elastic tip displacements and the induced 
phase lag increased with increasing flow density. 

  Root 
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