
A Framework for Resource-aware Knowledge Discovery
in Data Streams: A Holistic Approach with Its Application

to Clustering
Mohamed Medhat Gaber

Caulfield School of Information Technology
900 Dandenong Road, VIC 3145

Melbourne, Australia
+61399031402

mohamed.medhat.gaber@infotech.monash
.edu.au

Philip S. Yu
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

+19147847141

psyu@us.ibm.com

ABSTRACT
Mining data streams is a field of increase interest due to the
importance of its applications and dissemination of data stream
generators. Most of the streaming techniques developed so far
have not addressed the need of resource-aware computing in
data stream analysis. The fact that streaming information is
often generated or received onboard resource-constrained
computational devices such as sensors and mobile devices
motivates the need for resource-awareness in data stream
processing systems. In this paper, we propose a generic
framework that enables resource-awareness in streaming
computation using algorithm granularity settings in order to
change the resource consumption patterns periodically. This
generic framework is applied to a novel threshold-based micro-
clustering algorithm to test its validity and feasibility. We have
termed this algorithm as RA-Cluster. RA-Custer is the first
stream clustering algorithm that can adapt to the changing
availability of different resources. The experimental results
showed the applicability of the framework and the algorithm in
terms of resource-awareness and accuracy.
Keywords
Resource-aware Computing, Clustering, and Data Streams.

1. INTRODUCTION
The advances in data acquisition hardware and the emergence of
applications that process continuous flow of data records have
led to the data stream phenomenon. With applications varied
from business to scientific to industrial ones, data stream
querying and analysis have attracted researchers from different
disciplines over the past few years. Systems, techniques, and
strategies [6] have been proposed and implemented for data
stream processing.

Data streams are mostly generated or sent to resource-
constrained computing environments. Data generated on-board
astronomical spacecrafts are one of the important examples. The
sensing equipments on-board these crafts generate huge

amounts of streams with very high data rates. Transferring this
amount of data to the ground stations to be analyzed is
infeasible due to bandwidth limitation of the wireless
communication [3], [8], [9]. The intuitive solution is to analyze
and filter the data on-board and then transfer the generated
knowledge to ground stations for further processing and analysis
by human experts. Another motivating application is analyzing
data generated in sensor networks. The same analogy is applied
with the additional constraint that sensor nodes consume their
energy rapidly with data transmission [2]. Analyzing data on-
board sensors is a valid and possible solution to preserve energy
consumption resulted from data transmission over wireless
communication links.

The last two cases represent the need for on-board data analysis.
Data received in resource-constrained environment represents a
different category of applications. With the dissemination of
Personal Digital Assistants PDAs, users might request sheer
amounts of data of interest to be streamed to their mobile
devices. Storing and retrieving these huge amounts of data are
also infeasible in such an environment. Filtering and analyzing
this data would be of a high interest to the user.

The above cases and others stimulate the need for data stream
mining in resource-constrained environments. Most of the
techniques developed so far have addressed the research issue of
resource constraints with regard to the current status of the data
rates through load shedding. There is an urgent need for
techniques that can adapt to resource availability with regard to
different factors that can preserve the scarce resources.

In this paper, we propose a generic framework to resource-
aware data stream mining. The idea is to periodically change
algorithm settings from the input, output, and/or processing end
points. We term the input settings as Algorithm Input
Granularity AIG. AIG is represented in sampling, load shedding,
and creating data synopsis techniques. Algorithm Output
Granularity AOG represents the output settings. Strategies for
AOG include number of knowledge structures created or level
of output granularity. Algorithm Processing Granularity APG is
concerned with changing the processing settings of the
algorithm itself to consume smaller amount of resources, e.g.,
changing the error rate of approximation algorithms. Changing
the above settings is done according to the resource
consumption pattern measurements over the last time frame and
a measure of resource criticality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’06, April 23–27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

649

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The strategy has been applied to a micro-clustering algorithm
we have termed as Resource-Aware Clustering, RA-Cluster.
RA-Cluster is the first threshold-based micro-clustering
algorithm designed to adapt to resource availability using
algorithm granularity settings. Clustering streams of data is
considered as a means to compress and summarize the data for
further analysis that could be done offline [1]. Online stream
clustering has been termed by Aggarwal et al. as micro-
clustering. Evaluation of the proposed technique has been done
in two directions. Resource awareness using adaptation has been
evaluated for memory, battery, and CPU utilization. The effect
of using the adaptation techniques over the output accuracy has
been measured. The algorithm and the framework show
scalability with the high rates of the streams under scarce
resources. Our experimental studies showed that this scalability
has only a very low impact on the result accuracy. This provides
us a robust and adaptable algorithm that is aware of the current
conditions of resources and performs accordingly.

The paper is organized as follows. Section 2 reviews the related
work in stream mining. A background about concepts and
terminologies used within our frameworks is provided in section
3. Section 4 discusses the system architecture with a brief
description of the functionalities of each component. Section 5
presents RA-Cluster algorithm that incorporates the resource-
awareness framework. Experimental results are presented and
discussed in section 6. Finally we conclude the paper and
present the possible future research directions in section 7.

2. RELATED WORK
Data stream mining techniques have attracted the attention of
data mining community over the past few years. Gaber et al.
have reviewed these techniques thoroughly in their survey paper
in [6]. Threshold-based clustering algorithms have been
introduced in BIRCH algorithm [11]. Recently CluStream [1]
and LWC [5] use a variation of BIRCH with different structures
to be adapted to streaming environments.

Resource-awareness in data streams has been studied in the
literature in both mining and querying of data streams. Input
adaptation using load shedding and data synopsis creation using
wavelets have been proposed in [4], [10] respectively. However
these techniques have not proposed a generic framework that
combines all the possible adaptation strategies in a holistic
framework that is capable to adapt to variability of different
resource availability over time. Onboard analysis of data
streams has been studied in [3], [8]. It has been pointed out in
these studies that data generation would exceed the bandwidth
to transfer these streams of data to ground stations for analysis.
They necessitate the need for onboard analysis of data streams.

3. BACKGROUND
Computational resources that are affected by stream mining
settings are memory, processing cycles, communication
bandwidth and battery. As previously discussed, in a streaming
environment we face with the challenges of resource constraints
of devices that emit or receive data streams. Stream mining
algorithms are typically linear or sub-linear algorithms that are
characterized by being space efficient. Current state-of-the-art
of these algorithms reveals that they are not designed with
regard to adaptation to resource availability. For example, if we

run a clustering algorithm on stock market data streams and the
computational device is running out of memory, the user would
prefer to continue the analysis process with less but acceptable
accuracy due to the infeasibility of the high accuracy. This is
because of resource constraints. We can conclude that resource
monitoring is the ideal solution to this problem. Resource
availability measurements could be done periodically and
accordingly change the algorithm settings. This process
introduces two main components: resource consumption
patterns and algorithm settings.

Resource consumption patterns represent the change in resource
consumption over a period of time which we term as time
frame. The algorithm settings are the input, output, and
processing settings of a mining algorithm that could be changed
over time to cope with the availability of resources and current
data rate. Algorithm settings could be classified as follows:
Algorithm Input Granularity (AIG): It represents the process
to change the data rates that feed the algorithm. The following
are the definitions of techniques under this class:
• Sampling: Sampling is the process of statistically choose
some data records to be processed.
• Load shedding: Here, we use load shedding to represent the
process of dropping a chunk of data records from being
processed. This could be an appropriate technique to stop the
processing to enable some optimization process to be done
during this time. It is considered to be a direct solution if there is
a burst in data streams. We can shed the load and continue the
processing after the burst.
• Creating data synopsis: This is the process of summarizing
or compressing the incoming data on the fly before it is being
processed. Wavelets and simple statistical summarization
techniques represent the typical strategies in this category. It
should be noted that the process of creating this synopsis of data
should be a lightweight process compared to the mining
technique that will use them.
Algorithm Output Granularity (AOG): It is the process of
changing the output size of the algorithm in order to preserve
the limited memory space. In case of data mining, we refer to
this output as number of knowledge structures. For example
number of clusters or rules. The output size could be changed
also using level of output granularity which means the less
detailed output, the higher the granularity and vice versa.
Algorithm Processing Granularity (APG): It is the process of
changing the algorithm parameters in order to consume less
processing power. Randomization and approximation
techniques represent the potential solution strategies in this
category.
It should be noted that there is a collective interaction among the
above three. AIG mainly affects the data rate and it is associated
with bandwidth consumption and battery. On the other hand,
AOG is associated with memory and APG is associated with
processing power. However the change in any of them affects
the other resources. The process of enabling resource awareness
should be very lightweight in order to be feasible in a streaming
environment characterized by its scarcity of resources. Our
technique is concerned with direct interaction between these
techniques and resource consumption patterns. However the
indirect interaction is also implicitly included as it will be
discussed in section 5. The main objective of the direct
interaction is to simplify the adaptation process. The adaptation

650

technique is mainly an iterated process that is repeated over
fixed time frames. Having discussed the basic concepts that
compose our framework, the following section depicts the big
picture of this framework.

4. THE PROPOSED FRAMEWORK
Figure 1 shows a simplified system architecture of our
framework that shows the workflow within the system. The
system is composed from the following components: resource
monitoring, algorithm granularity settings, and the mining
technique. The following is a description of each component.
Resource monitoring: is the component responsible for
computing all the required statistical measurements about
resource consumption over the most recent time frame. This
process is done periodically over fixed time frames. The
resources that are required to be monitored are: memory, CPU,
and battery. The measurement of each of these resources is
given in details in the following sections.
Algorithm granularity settings: is the change in AIG, AOG, or
APG parameters according to the output of the resource
monitoring component. This change is done according to the
pattern of resource consumption and the status of the resource in
terms of degree of availability.
Mining algorithm: is the mining technique that adapts to AG
settings. In our case, we use our resource-aware clustering RA-
Cluster. However any mining algorithm could be adopted to
enable resource-awareness using this
framework.

Figure 1. System Architecture

The big picture of the adaptation framework is presented in this
section. The following sections provide detailed discussions
about each of these components and how it has been
implemented and evaluated.

5. RA-Cluster ALGORITHM
Threshold-based algorithms represent a family of clustering
techniques characterized by being online. The first threshold-
based algorithm was BIRCH [11]. The main objective behind
the technique is to let the results of a very large datasets to fit
into the memory. It uses an initial threshold that can be adapted
if the algorithm runs out of memory. It stores statistical
measures about each cluster that are enough to update the results
that are represented in a tree structure. Recently, BIRCH was
adopted in a new algorithm called CluStream [1] which uses the
same structure with other features added to the cluster
information in order to be adapted to the streaming
environment.

The above algorithms use some threshold as a way to develop a
one-pass algorithm that can be adapted. We propose RA-Cluster
that combines resource-awareness, adaptation and real-time all
in a holistic approach. The process starts with using an initial
threshold to run the algorithm and after a fixed time frame. We
assess the resource consumption patterns of the CPU, memory,
and battery given that we run in a resource constrained
environment. According to the above assessment, the algorithm
settings are changed to cope with the data rate. In the following
subsections, we show the used notation in the algorithm and the
resource-aware framework followed by RA-Cluster algorithm
and strategies of algorithm settings’ adaptation respectively.

5.1 Notation
RA-Cluster is an incremental online micro-clustering algorithm
that has all the required parameters to enable resource-
awareness. The following symbols and their corresponding
definitions are used to define our proposed algorithm and the
framework.

DS: a Data stream.
NoFBatt, NoFMem, NoFCPU: estimated number of time frames
to consume the remaining battery, use up the available memory,
and fill up CPU processing with unprocessed data items
accumulated from previous time frames, respectively, under the
current data rate.
RTMem, RTBatt, RTCPU: These are the memory, battery and
CPU consumption thresholds, respectively, representing critical
situation that resource adaptation action needs to be done to the
corresponding component.
Radiushreshold: threshold value on the radius of a micro-
cluster.

Using the above symbols, a full description of our proposed
algorithm and adaptation framework are discussed and
formalized in the following subsections. In addition to these
parameters, each micro-cluster maintains certain summary
statistics on the micro-cluster similar to those in [1].

5.2 Algorithm Description
RA-Cluster is a threshold-based algorithm that adapts the
algorithm settings over fixed time frames according to resources
consumption patterns in the most recent time frame. The time
frame should be determined by the user given that the longer the
time frame, the less the resource-awareness overhead. On the
other hand we might face the problem of dramatic change in
resource consumption and the algorithm runs out of one or more
of these resources. In contrary, the shorter the time frame, the
higher the resource-awareness overhead, but at the benefit of
being more able to handle the dramatic resource consumption
changes. Figure 2 depicts the RA-Cluster algorithm.

To fully understand the proposed algorithm, we need to discuss
the algorithm adaptation settings that represent the main part of
the algorithm. The adaptation of these settings according to
resource consumption patterns and its formalization are given in
the following subsection.

5.3 Algorithm Granularity Settings

Resource Monitoring

Algorithm Granularity Settings

Mining Algorithm

651

The adaptation strategies are concerned with different resources
and their affecting parameters. These parameters have an
interaction in their effects on resources. The procedure of
adaptation starts with resource assessment of memory
consumption, CPU demand and remaining battery charge. The
adaptation starts with memory and according to the pattern of
consumption, the threshold value (Radiusthreshold) on the
micro-cluster radius (i.e., the maximum distance to the cluster
center) of the algorithm is changed to encourage or discourage
the creation of new micro-clusters. Increasing that threshold will
discourage the formation of new micro-clusters. Two main
factors affect the memory consumption: sampling rate and new
clusters created over the last time frame. Outlier detection to
free memory is done before calculating the new threshold in
order to keep the threshold change as low as possible. The
outlier detection is done using a novel approach that depends on
the size of the already created clusters. Given an outlier
selection factor that represents the minimum ratio between the
number of points in the smallest and largest micro-clusters, all
the micro-clusters that are less than that factor and are also
inactive are removed. A micro-cluster is considered to be
inactive if there is no new data points assigned to it in the recent
time period. Also a dormant micro-cluster that does not receive
new data points for a while will be thrown away, even if it
contains many data points. This process of memory adaptation
is followed by CPU demand adaptation.

To assess the CPU demand, we use the ratio of the number of
input records sampled to that of records processed in a given
time period. Here the sampled records mean the records from
the data stream that get received and processed, while the other
records are dropped. The higher that ratio is, the higher the
overloading will be. It has to be noted that this also affects the
memory consumption as pointed out before. The CPU demand
is considered to be balanced if the numbers of sampled records
and processed records over a time frame are equal. The strategy
of adapting the CPU demand is done using a novel approach
that we term Randomized assignment. When making the micro-
cluster assignment for a new data point, only a pre-specified
fraction of the current micro-clusters is examined. The choice of

micro-clusters to be examined is made randomly based on the
randomization factor. This process is done according to the
change in the demand pattern of the CPU. When the
randomization factor is equal to 1 during low load condition, it
means all micro-clusters will be examined to make the micro-
cluster assignment for the newly arriving data point. As the load
condition increases, the randomization factor will be reduced so
only a fraction of the current micro-clusters will be (randomly)
selected as candidates for the new data point to join. By cutting
down the number of micro-clusters examined during the
assignment process, we reduce the CPU consumption. Certainly,
this may lead to a sub-optimal assignment as the closest micro-
cluster to the data point may not be selected by the
randomization process. The lower the randomization factor, the
more likely the miss is going to occur. Nonetheless, even if the
nearest micro-cluster is not selected, the data point will get
assigned to a reasonably closed micro-cluster. As we shall see in
the experimental section, the effect of suboptimal micro-cluster
assignment on the final clustering results tends to be minimal.
Followed this process, the battery adaptation is performed. The
main factor that affects the battery is the receiving or emitting of
data streams. The adaptation is done by changing the sampling
rate according to the pattern of change of the battery
consumption over the most recent time frame. This procedure
has three main features that bound the accuracy loss of the
adaptation process:

1- For all the adaptation factors, including the algorithm
threshold value on micro-cluster radius, randomized micro-
cluster assignment factor, and sampling rate, we have a lower
and upper bound settings. Among the upper and lower bounds,
one of them is implied: for sampling rate and randomized factor,
1 is the upper bound and for micro-cluster radius, the mean
distance to the center is the lower bound. The other bounds are
referred to as adaptor threshold bounds that need to be set by
the user. When any of the adaptor factors reaches its threshold
bound, it will not go beyond that value. By providing these
bounds, we can limit the accuracy loss due to the adaptation
process.

2- The adaptation process is done only if the resource is
currently started to be in its critical consumption pattern. That
means if the resource would continue in the same consumption
behavior, the application will run out of the resource after a pre-
specified small number of time frames. Once the resource is
characterized by this feature, the adaptation process starts. At
the other hand, once we have freed up some resources, the
process starts to restore the parameters in order to get the
highest possible accuracy.

3- Outlier detection and elimination process is an adaptation
strategy that in addition to its function of freeing up memory, it
contributes to solving the outlier problem in online clustering.

4- The data streams are often evolving over time. Eliminating
inactive micro-clusters is essential to catch the dynamics of data
streams. We use this approach to identify the outliers and adapt
to memory availability. That means we can get better accuracy
using the adaptation process.

Repeat
Repeat
Get next DS record DSRec
Find ShortDist which is the shortest distance between DSRec
and micro-cluster centers
If ShortDist < Radiusthreshold
Assign DS record to that micro-cluster
Update micro-cluster statistics
Else
Create new micro-cluster
End
Until (END-OF-TIME-FRAME)
Calculate NoFMem, NoFCPU, NoFBatt
If NoFMem < RTMem
Reclaim outlier memory
Increase Radiusthreshold (discourage micro-luster creation)
ElseIf if available memory increases
Decrease Radiusthreshold (encourage micro-cluster creation)
End
If NoFCPU < RTCPU
Decrease randomization factor (less processing per unit)
ElseIf unused CPU power increases
Increase randomization factor (more processing per unit)
End
If NoFBatt < RTBatt
Decrease sampling rate (slower consumption pattern)
ElseIf remaining battery life increases
Increase sampling rate (faster consumption pattern)
End
Until (END-OF-STREAM)

Figure 2. RA-Cluster Algorithm

652

6. EXPERIMENTAL RESULTS
The algorithm was developed using Matlab 7.0.4.365, we run
the experiments on a Pentium 4 with 3.00 GHz CPU and 504
MB of RAM. The resources were measured using special
routines to simulate the scarce resource availability of small
devices such as PDAs and sensors. We used both synthetic and
real-datasets to run the experiments. Synthetic datasets are
generated with 10,000 data points, where each data point has 3
features generated randomly with normal or uniform
distributions with different domains of continuous variables
around some randomly selected cluster centers. Each dataset is
mapped onto a data stream with varying data rates, where the
data rate at each time period is determined by a base rate
multiplied by a scale factor 0.5/r which r is a uniformly
distributed random number between 0 and 1. This would
certainly cause some period to be with very high rate regardless
of the average rate. We also used a real astronomical dataset to
validate the idea: shuttle dataset from UCI Machine Learning
Repository [7]. It has 43500 records with 9 continuous
attributes. There are two main objectives for running these
experiments:

a) Assessment of resource-awareness: that is to show that
running the algorithm with adaptability can scale up with scarce
resources which form the typical environment of streaming
systems as discussed earlier. To achieve this objective we run
the experiments over the real dataset and observe the resource
consumption over time.

b) Loss of accuracy: that is to assess the accuracy loss due to
the adaptation process and show that it provides us with similar
results compared to applying the kmeans over the dataset
directly in batch mode. Furthermore, we compare RA-Cluster
with load shedding and static micro-clustering algorithm. We
also show the effect of relaxing the threshold bounds of the
algorithm settings over the result accuracy.

6.1 Resource-awareness Assessment
The assessment of memory, battery, and CPU is given in details
based on the real dataset. As mentioned before, the data rates
are changed randomly up and down at the beginning of each
time frame. High data rates affect the memory in two ways:
increase the number of micro-clusters or the need to store the
data that could not be processed by the algorithm during the
time frame. Data rates affect the battery in a direct way. The
more data the device receives the higher the consumption of the
battery will be. High data rate increases the CPU utilization and
can result in some of the data items not being able to be
processed in time. The adaptation strategies discussed in the
previous section have been applied to cope with the variability
of the data rates. Figure 3 shows the memory consumption.
When disabling our memory adaptation module, memory runs
out quickly. However, when we apply the proposed strategy, it
shows the effect of adaptability on the memory consumption
pattern. Similarly, Figures 4 shows the battery consumption
without and with adaptation. The proposed strategy is able to
better maintain the battery life. Figure 5 shows the
randomization factor over time in order to keep the CPU as
highly utilized as possible while keeping up with the sampling
rate under varying data rates. It shows that only during critical
time the randomization factor dropped under average.

0 50 100 150 200 250 300
-20

0

20

40

60

80

100

Time

R
e
m
a
i
n
i
n
g

m
e
m
o
r
y

RA-Cluster

Without Adaptation

Figures 3. Remaining Memory over Time

0 200 400 600 800 1000 1200 1400 1600 1800
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

R
e
m
a
i
n
i
n
g

b
a
t
t
e
r
y

RA-Cluster

Without Adaptation

Figures 4. Remaining Battery over Time

0 100 200 300 400 500 600 700 800 900
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time

R
a
n
d
o
m
i
z
a
t
i
o
n

F
a
c
t
o
r

Figure 5. Randomization Factor over Time

The above results provide evidence of adaptation over time. The
tradeoff of the adaptation process and output accuracy is an
important issue that needs to be assessed to prove the validity of
the approach.

6.2 Accuracy Assessment
Creating online micro-clusters is mainly used to summarize the
incoming data followed by further analysis over these created
compressed structures [1]. We run kmeans clustering over the
output of the online micro-clustering results and compare it with
the case using kmeans over the whole dataset directly. The latter

653

one provides the true answer corresponding to the case without
resource constraints and the need for resource adaptation. Figure
6 shows the running of this experiment over synthetic datasets.
We picked one of the attributes and showed the attribute values
of the 10 clusters under kmeans for the RA-Cluster and that over
the whole dataset directly. Similar results are observed for other
attributes. The x-axis is the cluster index, where the clusters are
indexed according to increasing attribute values of their cluster
centers, while the y-axis is the attribute value of the cluster
center, where the centers are equally spread. Figure 6 clearly
shows that the clustering results to create 10 clusters using
kmeans over our approach leads to very similar results with the
traditional kmeans over the whole dataset directly. This
indicates that our adaptation strategies can provide similar
results to the case when re-clustered offline with no resource
constraints. We have also measured the quality using result
deviation with a gradual relax of the threshold bounds of the
adaptation factors. Relaxing these bounds will provide greater
adaptability to resource constraints, but can also reduces
accuracy. During the relaxation process, for the sampling rate
and randomized factor, we reduce their bounds from 0.9 to 0.5,
while for the radius threshold, the increase will be from 2 to 4
times of the initial value. For each case, we run the experiments
20 times with the same adaptation thresholds. Each time the
experiment is run on a different synthetic dataset. We then relax
these threshold bound parameters gradually and run the
experiment for the same number of times. The generated micro-
clusters were passed to the kmeans algorithm and the average
result deviation over the different clusters was computed. For
each cluster, the result deviation was calculated as the sum of
the normalized deviation along each dimension averaged over
the number of dimensions, where the normalized deviation
along a dimension is obtained by dividing the difference of the
cluster center values (between the one using kmeans over micro-
clustering and the true one calculated by kmeans over the whole
dataset) by the spread of the true cluster along that dimension.
The results are shown in Figure 7. It shows that the result
deviation is increasing with relaxing the threshold bounds;
however the result deviation is still low.

1 2 3 4 5 6 7 8 9 10
-50

0

50

100

150

Index of clusters

C
l
u
s
t
e
r

c
e
n
t
e
r

v
a
l
u
e

RA-Cluster

Traditional K-means

Figure 6. Result Deviation as Compared with Kmeans

1 2 3 4 5 6 7 8 9 10
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Relaxing in threshold bounds

R
e
s
u
l
t

d
e
v
i
a
t
i
o
n

Figure 7. Result Deviation with Relaxing of the Threshold
Bounds

We run an additional set of experiments to compare RA-Cluster
with the load shedding approach which could be viewed as an
intuitive solution in the streaming environment [4]. We use the
synthetic data, but with an additional change to stress test the
robustness of the different algorithms. Here during the bursty
time periods with high data rates, a small fraction (10%) of the
data is replaced with data generated from some new cluster
center not appearing during the other non-bursty periods. This
corresponds to the typical situation in data streams, where the
data during bursty periods may show different characteristics.
An example will be in a flow of IP addresses for an intrusion
detection application, where the burst represents a possible
intrusion, thus with different characteristics. We have run the
experiment for 10 cases with the same settings of algorithm
adaptor threshold bounds for each case and calculated the
average result deviation over the identified clusters. This
experiment has been repeated over a gradual relaxing of the
threshold bounds as in the previous example. Each point in the
curve represents a case with 20 runs under 20 different synthetic
datasets with the same threshold bound settings. Figure 8 shows
the results where the upper curve represents the load shedding
performance and the lower curve represents RA-Cluster over the
same datasets. It shows that RA-Cluster outperforms load
shedding by a wide margin under different settings of adaptor
threshold bound.

1 2 3 4 5 6 7 8 9 10
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Index of different runs

R
e
s
u
l
t

d
e
v
i
a
t
i
o
n

RA-Cluster

Load Shedding

Figure 8. RA-Cluster and Load Shedding Accuracy over
Time

654

To study the effect of data rates over the algorithm accuracy,
Figure 9 shows that the robustness of the RA-Cluster, where the
upper curve represents the average normalized data rates and the
lower one represents the deviation measure over time. Not
unless the data rate is extremely high, there is little impact to the
accuracy. The higher the data rate, the lesser the accuracy will
be, however not with the same pace.

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18

Time

R
e
s
u
l
t

d
e
v
i
a
t
i
o
n

&

d
a
t
a

r
a
t
e

Result Deviation

Normalized Rate

Figure 9. The Effect of Data rates over RA-Cluster accuracy

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

R
e
s
u
l
t

d
e
v
i
a
t
i
o
n

 RA-Cluster

Static Microclustering

 Figure 10. RA-Cluster over Evolving Data Stream

Another set of experiments has been performed to show how
RA-Cluster responds to the evolving nature of the stream. We
created a composite stream dataset which is a concatenation of 9
different synthetic datasets with different imbedded clusters.
Each time period is covered by a different dataset. Hence the
micro-clusters will change drastically when moving from one
time period to another. For comparison, we run the experiments
with all the adaptation strategy disabled and measure the
accuracy of the results using the above accuracy measure over
time. This is referred to as the static micro-clustering, where no
time based micro-cluster elimination is performed as in RA-
Cluster. We also run the experiments over the same stream
using RA-Cluster. We then run kmeans over each of these result
datasets. At each time, we compare the results between the RA-
Cluster and static micro-clustering. Figure 10 shows that RA-
Cluster outperforms the static micro-clustering substantially,

where the upper curve represents the deviation from the static
micro-cluster algorithm and the lower one represents RA-
Cluster algorithm. That is because the memory adaptation can
recognize the outliers and inactive micro-clusters and release
them from memory. The most recent results are therefore
always represented in the micro-clusters maintained by RA-
Cluster. However the static micro-clustering does not take care
about the history of the stream and the outdated micro-clusters.

The above experiments prove that adaptability to resource
availability is achievable with highly acceptable performance
results. These results open a new view to the area of adaptation.
Algorithms in the streaming environment should be designed
with sensibility to availability of resources in order to scale and
perform efficiently in such a resource constrained environment.

7. CONCLUSION
In this paper, we have proposed a generic framework to enable
resource-awareness in data stream mining. This feature is
essential due to two facts: (a) the unpredictability of the data
stream rate; (b) the resource constraints of streaming
environments. The proposed approach tracks relationship
between the resource consumption patterns and algorithm
granularity settings that include input, output, and processing
settings. The settings are bounded to limit the accuracy loss due
to the adaptation process. Adaptation strategies used include:
algorithm threshold on micro-cluster radius, outlier removal,
randomized assignment, and sampling rates. The framework
has been implemented using RA-Cluster algorithm. The
experimental results show the feasibility and validity of the
approach.

8. REFERENCES
[1] C. Aggarwal, J. Han, J. Wang, P. S. Yu, A Framework for

Clustering Evolving Data Streams, Proc. of VLDB 2003.
[2] R. Bhargava, H. Kargupta, and M. Powers, Energy

Consumption in Data Analysis for On-board and
Distributed Applications, Proc. of the ICML 2003
workshop on Machine Learning Technologies for
Autonomous Space Applications.

[3] B. Castano, M. Judd, R. C. Anderson, and T. Estlin,
Machine Learning Challenges in Mars Rover Traverse
Science, Proc. of the ICML 2003 workshop on Machine
Learning Technologies for Autonomous Space
Applications.

[4] Y. Chi, P. S. Yu, H. Wang, R. R. Muntz, Loadstar: A Load
Shedding Scheme for Classifying Data Streams, Proc. of
SIAM SDM 2005.

[5] Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S., A
Cost-Efficient Model for Ubiquitous Data Stream Mining,
Proc. of IPMU 2004.

 [6] Gaber, M, M., Zaslavsky, A., and Krishnaswamy, S.,
Mining Data Streams: A Review, ACM SIGMOD Record,
Vol. 34(2), June 2005.

[7] Hettich, S., Blake, C.L., Merz, C.J. UCI Repository of
machine learning databases, 1998

[8] A. Srivastava and J. Stroeve, Onboard Detection of Snow,
Ice, Clouds and Other Geophysical Processes Using Kernel
Methods, Proceedings of the ICML’03 workshop on
Machine Learning Technologies for Autonomous Space
Applications

655

[9] S. Tanner, M. Alshayeb, E. Criswell, M. Iyer, A. McDowell,
M. McEniry, K. Regner, EVE: On-Board Process Planning
and Execution, Earth Science Technology Conference,
Pasadena, 2002

[10] W. Teng, M. Chen, and P. S. Yu, Resource-Aware Mining
with Variable Granularities in Data Streams, Proc. of
SIAM SDM 2004.

[11] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: an
efficient data clustering method for very large databases.
SIGMOD Record, vol. 25(2), June 1996.

656

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

