
December 8, 2006 13:28 WSPC/173-IJITDM 00217

International Journal of Information Technology & Decision Making
Vol. 5, No. 4 (2006) 659–670
c© World Scientific Publishing Company

DETECTION AND CLASSIFICATION OF CHANGES
IN EVOLVING DATA STREAMS

MOHAMED MEDHAT GABER

School of Information Technologies, University of Sydney
NSW 2006, Australia

mgaber@cs.usyd.edu.au

PHILIP S. YU

IBM Thomas J. Watson Research Center
19, Skyline Drive, Hawthorne, NY 10532

psyu@us.ibm.com

Data stream mining has attracted considerable attention over the past few years owing to
the significance of its applications. Streaming data is often evolving over time. Capturing
changes could be used for detecting an event or a phenomenon in various applications.
Weather conditions, economical changes, astronomical, and scientific phenomena are
among a wide range of applications. Because of the high volume and speed of data
streams, it is computationally hard to capture these changes from raw data in real-time.
In this paper, we propose a novel algorithm that we term as STREAM-DETECT to
capture these changes in data stream distribution and/or domain using clustering result
deviation. STREAM-DETECT is followed by a process of offline classification CHANGE-
CLASS. This classification is concerned with the association of the history of change
characteristics with the observed event or phenomenon. Experimental results show the
efficiency of the proposed framework in both detecting the changes and classification

accuracy.

Keywords: Data streams; change detection; classification and clustering.

1. Introduction

A data stream from the processing point of view is an infinite flow of highly
rapid generated records that challenge our computing systems to store, process
and transmit.1 Examples of data streams include: Web clickstreams, sensor data,
ATM transactions, stock market data, phone calls, computer network traffic, and
astronomical/scientific reading devices.2

Querying and mining data streams have gained considerable attention over
the past few years.3 Different strategies in conventional querying and data min-
ing techniques have been adapted to be able to cope with the continuous high-
speed nature of data streams. Although traditional data mining algorithms have
mainly focused on clustering, classification and frequent pattern analysis techniques,

659

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578650?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

December 8, 2006 13:28 WSPC/173-IJITDM 00217

660 M. M. Gaber & P. S. Yu

data stream mining has added change detection as one of the data analysis strate-
gies. Detecting changes in data streams is considered as an essential data mining
process due to the evolving nature of streaming information in a wide range of
applications.

A wide range of data streams follows a stable data distribution within a domain
in the normal situation. A change in the distribution and/or domain represents
an event or a phenomenon that has already occurred or will occur. For exam-
ple: IP addresses passing though a router follow a data distribution within the
domain of IP addresses that often access this router. The change in the data
distribution or the domain can represent a possible attack. Other examples in
environmental monitoring, quality control and theoretical significance of change
detection in data stream mining have been discussed in Ref. 4. It is worth mention-
ing that data streams are generated in high volumes that challenge the detection
of such changes.

In this paper, we propose a novel approach termed as STREAM-DETECT
to identify changes in data streams. The proposed algorithm is concerned with
detecting changes in data streams by measuring online clustering result deviation
over time.

Previous work in change detection in data streams has used different statistical
techniques, however, these methods have not addressed the change in both domain
and data distribution. Furthermore, the use of online clustering to detect changes
can provide us with a range of information about the encountered change. This
information includes the degree of change in domain or distribution (the change
could be partial that represents a small change or total that represents a big change),
and ability to store the change for further offline analysis and classification. This
gives our approach its strength over the previous attempts in change detection.
STREAM-DETECT is followed by an offline classification CHANGE-CLASS pro-
cess that associates the change pattern with an observed event or phenomenon.
Thus our approach is a combination of online clustering and offline classification
of streaming data. Experimental results have shown the efficiency of the proposed
approach.

One of the major potential applications of our proposed framework is in mon-
itoring sensor networks. Sensor networks generate huge amounts of data streams
continuously and in a very high data rates. Analysis of data generated from sen-
sor networks has its potential in scientific discovery acceleration and various secu-
rity applications. Sensing devices are featured by being resource-constrained ones.5

A local data analysis process onboard a sensor is required due to battery consump-
tion problem while transmitting large amounts of data to a central server.6 The
lightweight feature of our proposed approach for change detection makes our sys-
tem a strong candidate for sensor network applications. Once a change has been
detected onboard a sensor using our CHANGE-DETECT technique, a classification
of this change could be done offline at a control station to take an action regarding
the event or phenomenon detected.

December 8, 2006 13:28 WSPC/173-IJITDM 00217

Detection and Classification of Changes in Evolving Data Streams 661

The rest of paper is organized as follows. Section 2 reviews related work in
the area of stream change and concept drift. Our STREAM-DETECT algorithm
is presented and discussed in Sec. 3. Section 4 shows the classification process
using our CHANGE-CLASS algorithm. Tuning the algorithm parameters for best
performance is discussed in Sec. 5. Experimental results are presented in Sec. 6 to
show the efficiency and robustness of the proposed framework. Finally, we conclude
the paper and present possible future research directions in Sec. 7.

2. Related Work

Data stream clustering, classification, frequent pattern and change detection mining
algorithms have been studied thoroughly in the literature in the last few years.1,3

The change detection represents a relatively new category of mining strategies that
has emerged due to the evolving nature of streaming information. Different algo-
rithms have been proposed to detect such changes as follows.

Aggarwal7,8 has proposed the use of differential kernel density estimation over
time windows to detect the rate of change in data densities. Changing the window
size provides the user by the ability to detect both long- and short-term changes.
Graphical representations of these changes have been also studied in this work.
Ben-David et al.4 have studied distribution change detection in data streams using
statistical tests that are sensitive to distribution changes. The techniques used are
non-parametric and can distinguish between statistically significant change and
noise.

Other related work includes detecting changes in data mining models. Nasraoui
et al.9 have proposed an algorithm to detect clustering results in noisy data streams.
Wang et al. have proposed a technique to detect changes between old and new
classification models using correspondence tracing of the generated rules from the
old model with the new one.

Concept drifting based mining techniques have also been studied to give the
capability to make the model representative to the current condition of data rather
than computing a model that represents both old and new data which can be a
misleading model due to the concept drift. Algorithms under this category have
been studied in Refs. 10–15.

Having briefly presented the related work, the following section proposes our
STREAM-DETECT algorithm for revealing the change in data stream distribution
and/or domain using online clustering result deviation, followed by the classification
approach.

3. STREAM-DETECT Algorithm

The algorithm starts with an online clustering algorithm that has only one pass
over the stream. It uses a distance threshold technique for assigning new points
to existing clusters. This process is terminated after a time frame. Measurements

December 8, 2006 13:28 WSPC/173-IJITDM 00217

662 M. M. Gaber & P. S. Yu

about the characteristics of the clustering results are saved. This process is fol-
lowed by another run of the clustering algorithm and these measurements are also
saved. The deviation between the old and new measurements is calculated. This
deviation is stored in one of two cases: The deviation has exceeded a pre-specified
threshold, or an event or phenomenon has been encountered. If the deviation has
not met any of these criteria, only data characteristics are stored. In case of exceed-
ing a pre-specified threshold, the sequence of change could be analyzed for the first
encountered event. In case, the event has occurred, the recent calculated change is
stored. This indicates when the event occurs. This iterative process of clustering
results and deviation calculations continues over time.

There are two categories of structures in this algorithm: Clustering
characteristics and change deviation. Clustering characteristics include:

• mean of cluster centers,
• standard deviation of cluster centers,
• mean size of clusters, and
• maximum and minimum cluster centers.

Clustering deviation calculates the deviation among two cluster characteristics
using the absolute value of the difference between each two consecutive runs nor-
malized by the older one. However for the domain detection, we calculate it by
discovering the change of the maximum and minimum centers normalized by the dis-
tance between the old maximum and minimum centers. Figure 1 depicts STREAM-
DETECT algorithm.

The calculation of result deviation is done in a way to detect the change in
both data distribution and/or domain. The change in data distribution is detected
through the change in cluster means, standard deviation and/or average cluster size.
The domain change is detected through the change in the maximum and minimum
values of attributes for cluster centers. The higher the threshold value, the higher
the change is detected and vice versa given that choosing a low threshold value
would result in small changes that may not represent any real change.

STREAM-DETECT Algorithm
Call online clustering
Measure clustering characteristics
Do

Call online clustering
Measure clustering characteristics
Measure clustering deviation
If deviation > threshold deviation
 Or an event has occurred

 Store clustering deviation
Until (END-OF-STREAM)

Fig. 1. STREAM-DETECT algorithm.

December 8, 2006 13:28 WSPC/173-IJITDM 00217

Detection and Classification of Changes in Evolving Data Streams 663

Table 1. Change detect notation.

Symbol Meaning

Centerit Vector of cluster center i at time t for (A1
it, A

2
it, . . . , A

k
it) where k is the

number of attributes

Domchange The relative change in the data stream domain with regard to the last
domain

Meanchange The relative change in the mean value of the stream with regard to the
last mean value

Cstdchange The relative standard deviation change in the mean of cluster centers
with regard to the last standard deviation

Meansizechange The relative change in the average number of points in each cluster with

regard to the last average

domaxxt The maximum value of attribute x for all the cluster centers at time t

dominxt The minimum value of attribute x for all the cluster centers at time t

meanccxt The mean of cluster centers at time t for the attribute x

cstdxt The standard deviation of cluster centers at time t for the attribute x

meansizet The mean number of records in each cluster at time t

Using the symbols shown in Table 1, the following equations show the calculation
of the change in clustering features in order to determine if a change has occurred.

Domchange =
∑k

x=1| domaxxt − domaxxt−1| +
∑k

x=1| dominxt − dominxt−1|∑k
x=1 |domaxxt−1 − dominxt−1|

,

(1)

Meanchange =
k∑

x=1

|meanccxt − meanccxt−1|
meanccxt−1

, (2)

Cstdchange =
k∑

x=1

|cstdxt − cstdxt−1|
cstdxt−1

, (3)

Meansizechange =
|meansizet − meansizet−1|

meansizet−1
. (4)

The change detection algorithm is followed by a classification process that can
associate the change or a sequence of these changes to an event or phenomenon.
The following section is devoted for description of this classification process using
CHANGE-CLASS algorithm.

4. CHANGE-CLASS Algorithm

The algorithm uses the data produced from STREAM-DETECT to run a voting-
based classification algorithm over the change attributes (as shown in Fig. 2).
The data stored contains change measurements and the associated event that is
used as the class label. CHANGE-CLASS technique is used to classify any detected
changes discovered by STREAM-DETECT. This is done through the voting of

December 8, 2006 13:28 WSPC/173-IJITDM 00217

664 M. M. Gaber & P. S. Yu

CHANGE-CLASS Algorithm
Detect-Change
Vote over the change attributes
Find the highest vote
Assign the result as the detected event

Fig. 2. CHANGE-CLASS algorithm.

Fig. 3. Clustering and classification of changes.

the nearest neighbor of each change attribute. The classification result will be the
event that got the highest vote. That is the event that has attracted the majority
of change attributes.

The model of using STREAM-DETECT and CHANGE-CLASS in the problem
of identifying and classifying changes in data streams is depicted in Fig. 3. The
online training is done using STREAM-DETECT that associates each change with
its correspondent event. All the data are stored for a process of offline classification
using CHANGE-CLASS technique.

5. Tuning System Parameters

Setting the parameters is an essential pre-processing step for the success of run-
ning the proposed framework. Time frame duration (TF) and threshold value (Th)
should be set according to the application requirements. Since these requirements
are known in advance, the system should be able to tune its parameters in order to
get the required output. Setting the time frame basically refers to the time of the
change to be occurred. In some applications, the change is too rapid and in this
case, the time frame duration should be set as short as possible. In some other appli-
cations, the change occurs smoothly and in this case the time frame should be long
enough to catch the change. On the other hand, setting the threshold represents
how big the change is.

In order to set the parameters, we propose a pre-processing heuristic technique
to fine tune the time frame duration and the threshold value. The technique starts

December 8, 2006 13:28 WSPC/173-IJITDM 00217

Detection and Classification of Changes in Evolving Data Streams 665

Parameter-Tune Algorithm
Repeat

Set Initial Values for TF, Th
 Call Change-Detect

Measure the performance

Set TF = TF + ∆f

Or Set Th = Th + ∆t
Until Performance degrading occurred

Fig. 4. Parameter-tune algorithm.

with a time frame duration value of a multiple of the data rate and increases it
by a user define stepping parameter (∆f) till the detection performance gets to
the highest possible value. Similarly the tuning of the threshold value is done by
choosing a threshold value that can detect small changes and increases the threshold
by (∆t) to the level of change that needs to be detected.

Figure 4 shows the procedure for adjusting the parameter according to the
application needs. The number of steps for setting the parameters varies from the
time frame duration to the threshold value. Thus, the tuning is done separately for
each of these two parameters.

6. Experimental Results

The proposed framework has been implemented using Matlab 7.0.4.365. We run
the experiments on a workstation with Pentium 4 with 3.00GHz CPU and 504MB
of RAM. The data used in the experiments have been generated from both uniform
and normal distributions with changing domain and/or distribution parameters
to represent a change in the streaming data. We have generated three different
categories of datasets. We change from one category to another to simulate the
change in the streaming data. Since we have three categories, six different changes
(events or class labels) could be generated as shown in Fig. 5.

Fig. 5. Events generation using changes in datasets.

December 8, 2006 13:28 WSPC/173-IJITDM 00217

666 M. M. Gaber & P. S. Yu

The time frame used in the experiment was one second. That means the gener-
ated clustering model is re-created every one second. It is important to point out
that choosing the time frame depends on two factors that are application dependent:

• The time needed for the change to occur.
• The time for clustering stability.

Fig. 6. Time frame duration effect on the detection performance.

Fig. 7. Threshold value effect on the detection performance.

December 8, 2006 13:28 WSPC/173-IJITDM 00217

Detection and Classification of Changes in Evolving Data Streams 667

Once we generated the data using the different distributions and/or domains,
the datasets are merged to represent the whole stream of changing data. LWC16

runs every time frame and the clustering features are reported. The deviation of
clustering results is measured. If this change exceeds the threshold determined by
the user as one of the application settings, a change is reported and the associated
features of the change are stored along with the corresponding event as shown in
Fig. 4. This represents the model construction phase of our framework.

The results of detecting the changes in the streams have reached 100% accuracy
in most of the runs. Once the right time frame and threshed value have been set,
the accuracy obtained from the experiments is very outstanding. Figure 6 shows the
effect of the time frame duration on the accuracy of the CHANGE DETECTION
technique. Similarly, Fig. 7 shows how the threshold value can affect the detection
performance.

It is important to point out several points for the efficiency of using the model:
• Detecting small changes requires low threshold value.
• Detecting dramatic changes requires high threshold value.
• Detecting frequently occurring changes requires short time frame.
• Detecting less frequent events requires long time frames.

Fig. 8. A screenshot of the running CHANGE-DETECT algorithm.

December 8, 2006 13:28 WSPC/173-IJITDM 00217

668 M. M. Gaber & P. S. Yu

Table 2. Classification robustness.

Change Factors Classification Performance (%)

Domain Change, Centroid Change, Standard
Deviation Change, and Cluster Size Change

64.75

Centroid Change, Standard Deviation Change,
and Cluster Size Change

65.98

Domain Change, Standard Deviation Change, and
Cluster Size Change

60.29

Domain Change, Centroid Change, and Cluster Size
Change

56.96

Domain Change, Centroid Change, and Standard
Deviation Change

60.17

Standard Deviation Change and Cluster Size Change 57.80

Centroid Change and Cluster Size Change 60.05

Centroid Change and Standard Deviation Change 55.59

Cluster Size Change and Domain Change 47.08

Domain Change and Standard Deviation Change 53.46

Domain Change and Centroid Change 63.63

Domain Change 49.73

Centroid Change 46.00

Standard Deviation Change 66.53

Cluster Size Change 41.80

• Detecting changes in unstable datasets requires high threshold value.
• Detecting changes in stable datasets requires low threshold value.

The CHANGE-DETECT technique runs 50 times. Figure 8 shows a screenshot
of the running algorithm. The generated results are stored in a matrix. Each row is a
vector that stores the four features of changes along with the associated event. This
represents the model usage phase. Similar datasets are generated from the same
categories used in the model construction phase and then the classifier attempts
to predict the event. This process has been repeated 50 times for each different
combination of change features. This is done to seek the best possible combination
of features that can classify the events. Table 2 shows the results. Each classification
performance represents the average of the 50 different runs. It has to be pointed out
that in some cases we have reported 100% accuracy for the highlighted combinations
in the table.

From Table 2, we can observe that the standard deviation represents the best
performance. However, the standard deviation has been used in both cases for
detecting the changes as well as the classification process. In the phase of change
detection, the performance was considerably low. The best performance reported
for both phases of the model was for the combination of all the different features
with outstanding performance in detecting the changes and an average of 64.75%
in classification accuracy. It has to be noted that the classification accuracy for six

December 8, 2006 13:28 WSPC/173-IJITDM 00217

Detection and Classification of Changes in Evolving Data Streams 669

different classes is in average 64.75% that represents an accurate classifier for a wide
range of applications that can benefit from using our proposed framework.

7. Conclusion

We have proposed STREAM-DETECT algorithm for identifying change in data
stream distribution and/or domain values using a special clustering algorithm.
The technique has its potential due to the importance of the applications that
require online change detection that can be a representative of an important
event or phenomenon in scientific, astronomical, and commercial applications.
STREAM-DETECT is followed by a voting-based classification technique termed
as CHANGE-CLASS that associates the current change with a previously encoun-
tered event. Experimental results are promising for real-life applications to use this
lightweight technique especially in wireless sensor networks.

References

1. S. Muthukrishnan, Data streams: Algorithms and applications, in Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2003).

2. H. Wang, J. Pei and P. S. Yu, Online mining of data Streams: Problems, applications
and progress (tutorial), in 21st Int. Conf. Data Engineering (ICDE) (Tokyo, Japan,
April 2005).

3. M. M. Gaber, A. Zaslavsky and S. Krishnaswamy, Mining data streams: A review,
ACM SIGMOD Record, Vol. 34, No. 1 (June 2005), ISSN: 0163–5808.

4. S. Ben-David, J. Gehrke and D. Kifer, Detecting change in data streams, in Proceed-
ings of VLDB, Toronto, Canada (2004).

5. M. Tubaishat and S. Madria, Sensor networks: An Overview, IEEE Potentials 22(2),
(2003) 20–23.

6. R. Bhargava, H. Kargupta and M. Powers, Energy consumption in data analysis for
on-board and distributed applications, in Proceedings of the ICML’03 Workshop on
Machine Learning Technologies for Autonomous Space Applications, Washington, DC,
USA (2003).

7. C. Aggarwal, An intuitive framework for understanding changes in evolving data
streams, in Proceedings of the ICDE Conference, San Jose, CA, USA (2002).

8. C. Aggarwal, A framework for diagnosing changes in evolving data streams, in Pro-
ceedings of the ACM SIGMOD Conference, San Diego, CA, USA (2003).

9. O. Nasraoui, C. Cardona, C. Rojas and F. González, TECNO-STREAMS: Tracking
evolving clusters in noisy data streams with a scalable immune system learning model,
in Proc. Third IEEE Int. Conf. Data Mining (ICDM’03) (Melbourne, FL, November
2003), pp. 235–242.

10. W. Fan, StreamMiner: A Classifier Ensemble-based Engine to Mine Concept Drifting
Data Streams, VLDB’2004, Toronto, Canada.

11. W. Fan, Systematic data selection to mine concept-drifting data streams, KDD (2004),
pp. 128–137.

12. W. Fan, Y. Huang and P. S. Yu, Decision tree evolution using limited number of
labeled data items from drifting data streams, ICDM (2004), pp. 379–382.

13. G. Hulten, L. Spencer and P. Domingos, Mining time-changing data streams, in Pro-
ceedings of ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA (2001).

December 8, 2006 13:28 WSPC/173-IJITDM 00217

670 M. M. Gaber & P. S. Yu

14. R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting.
In Intelligent Data Analysis (IDA), Special Issue on Incremental Learning Systems
Capable of Dealing with Concept Drift 8(3) (2004) 281–300.

15. H. Wang, W. Fan, P. Yu and J. Han, Mining Concept-Drifting Data Streams using
Ensemble Classifiers, in 9th ACM Int. Conf. Knowledge Discovery and Data Mining
(SIGKDD) (Washington DC, USA, 2003).

16. M. M. Gaber, S. Krishnaswamy and A. Zaslavsky, On-board mining of data streams
in sensor networks, in Advanced Methods of Knowledge Discovery from Complex Data,
eds. S. Badhyopadhyay, U. Maulik, L. Holder and D. Cook (Springer Verlag, 2005).

