
Efficient Time Triggered Query Processing in
Wireless Sensor Networks

Bernhard Scholz1, Mohamed Medhat Gaber2

Tim Dawborn1, Raymes Khoury1, and Edmund Tse1

1 The University of Sydney
Sydney, NSW, Australia

2 CSIRO
Hobart, TAS, Australia

Abstract. In this paper we introduce a novel system that comprises
techniques advancing the query processing in wireless sensor networks.
Our system facilitates time triggered queries that are scheduled in a
distributed fashion among sensor nodes. Thus, time synchronisation is
of paramount importance. Since accurate time synchronisation requires
more energy, our system allows a trade off between precision of time
and energy according to the user requirements. To minimize the commu-
nication overhead for query processing, our system employs new query
execution mechanisms.

We have implemented our query processing system on SunTM Small
Programmable Object Technology (SPOT) sensor network platform. The
system was entirely programmed in Java enabling an object oriented
design and implementation. It provides a friendly graphical user interface
for query management and visualisation of results.

Keywords: Wireless communications and ad hoc networks, distributed
query processing, communication and energy optimisations, time trig-
gered protocols.

1 Introduction

With the advent of smart sensor devices, wireless sensor networks are an emerg-
ing research field [1,2]. Wireless sensor nodes form a wireless ad-hoc network
with a large number of nodes which operate without direct human interaction.
The applications of wireless sensor networks are diverse and include environment
and habitat monitoring [3], traffic control [4], health monitoring [5], supply-chain
management [6], security and surveillance systems, and smart homes.

In this work we are concerned with distributed query processing [1,7] in sen-
sor networks. Users are typically interested in continuous streams of sensed data
from the physical world. Query processing systems [8,9,10] provide a high-level
user interface to collect, process, and display continuous data streams from sen-
sor networks. These systems are high-level tools that allow rapid-prototyping
of wireless sensor network applications. In contrast, writing wireless sensor net-
work applications in a systems language such as C is tedious and error-prone.

Y.-H. Lee et al. (Eds.): ICESS 2007, LNCS 4523, pp. 665–676, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

666 B. Scholz et al.

A query processing system abstracts from tasks such as sensing, forming an
ad-hoc network, multi-hop data transmission, and data merging and aggrega-
tion. A state-of-the-art distributed query system for wireless sensor networks is
TinyDB [8] that employs a subset of SQL as an underlying language for queries.
In this system the user specifies declarative queries that perform the sensing
tasks. For example the query select avg(temp) from nodes reports the aver-
age temperature of the area covered by the sensor network.

TinyDB forms a routing tree with all sensors in the network. The root of
the routing tree is the base station (aka. gateway) that is connected to a PC.
Every other node in the wireless sensor network maintains a parent node that is
one step closer to the base station. Queries are flooded throughout the network
and the query answers are collected and propagated through the routing tree.
The query processing consists of three phases: (1) the query preparation phase
inputs, parses, and optimises a query at the user’s PC, (2) the broad-casting
phase injects the sensing and collecting task into the sensor network, and (3)
the data collecting phase makes results flowing up and out of the network to the
PC where the results are displayed and stored in a disk-based DBMS for later
access.

This paper describes a new query processing system for a new wireless sensor
network platform Sun SPOT [11,12], that has been developed at Sun Research
Labs. This new platform has a 32bit ARM Risc processor, an 11 channel 2.4GHz
radio, and approx. 100 times more memory than a state-of-the-art platform such
as Berkley Motes [13]. The platform is programmed in JavaTMand features a sen-
sor board for I/O and an 802.15.4 radio for wireless communication. The Sun
SPOT system runs “Squawk VM” that is a lightweight J2METM virtual ma-
chine (VM). The VM executes wireless sensor network applications “on the bare
metal”, i.e., directly on the CPU without any underlying OS, saving overhead
and improving performance. With more memory and a faster CPU alternative
design decision can be made to minimise energy-costly communication by ap-
plying new time-triggered protocols for aggregation.

We have designed and implemented a time-triggered query engine for wireless
sensor networks, called SSDQP, which is a distributed query processor that runs
on each Sun SPOT. The new platform is programmed in Java. Hence, a clean
object-oriented design of the engine was possible.

The contribution of our work is as follows:

– a new design of an acquisitional distributed query (ACQP) system that is
time-triggered,

– a time synchronisation mechanism of the nodes that allows a trade-off be-
tween cost and accuracy,

– a new communication model for ACQP.

The paper is organised as follows: In Section 2 we survey the related work. In
Section 3 we give an overview of our ACQP system. In Section 4 we discuss the
trade-off between power consumption and time accuracy of the time synchroni-
sation. In Section 5 we show the advantages of merging results at node level. In
Section 6 we draw our conclusion.

Efficient Time Triggered Query Processing in Wireless Sensor Networks 667

2 Related Work

Distributed query processing in wireless sensor networks has been an active
research area over the last few years. TinyDB [8] and Cougar [14] represent
the first generation of query processing systems in wireless sensor networks.
The main objective in these systems has been to preserve the limited power by
attempting to reduce the communication overhead. This in turn prolongs the
network lifetime.

TinyDB and Cougar [15] provide an SQL-like query language. Sensor data is
viewed as a single virtual table. The data is appended at time intervals specified
in the query termed as epochs. Results from every sensor find their way to
the root node (the node that connects directly to the base station) through
a routing protocol. Query lifetime has been introduced for the first time in
query processing systems to serve the sensor network applications. The user can
specify how long the query should be processed. Pushing computation is used
in two forms: partial aggregation and packet merging. In partial aggregation,
distributive query operators are used in-network. Intermediate results are then
passed to the root to integrate the results. On the other hand, packet merging
is used to reduce the communication overhead produced from sending multiple
packet headers. Query optimisation is done locally at the central site. Once the
query is optimised, the network is flooded through the routing tree to ensure
every child node has heard the query. Multiple trees could be formed to allow
simultaneous query processing. However, overlay among routing trees can lead
to performance decay.

Open issues that have not been addressed in TinyDB and Cougar [15] in-
clude multi-query optimisation, storage placement and heterogeneous networks.
In multi-query optimisation, the resource utilisation is an open research issue.
Storage placement is how to choose nodes that are representative of in-network
data and what fault tolerance techniques are required if the storage node fails.
TinyDB and Cougar consider only homogeneous networks in which all nodes
have the same power. Heterogeneous networks provide new research challenges
to the community.

3 Sun SPOT Distributed Query Processing (SSDQP)

The Sun SPOT Distributed Query Processing system consists of two programs:
(1) the query engine that is executed on the Sun SPOTs and (2) the control
system on the user’s PC that is connected to the base station.

The query engine is implemented as a set of time-triggered tasks. The task
scheduler of the query engine executes a task if the start time of the task has
been reached. The task scheduler maintains the active tasks in a time queue.
Furthermore, tasks can be periodically executed with a fixed time period and
the number of repetitions is parameterisable. Tasks can be added and removed
from the time queue of the task scheduler. The start time of a task is “global”
throughout the network such that sensing and communication can be done in

668 B. Scholz et al.

Fig. 1. Screenshots of SSDQP

a synchronised fashion. The query engine has a time synchronisation task that
keeps the clocks of the Sun SPOTs in the network in sync.

Query tasks are composed of relational algebra operations that operate on
relational tables. Since all sensor readings of the Sun SPOTs are integer values,
the system does only support integer attributes in the relational tables. The
query engine supports all the fundamental query operators including selection,
projection, join and aggregation. In addition to these basic functionalities, there
are

– the sense operation that reads the values of the sensors and creates a result
table with the sensor readings,

– the forward operation that takes the input table and forwards the table to
the parent node in the routing tree,

– the merge operation that receives result tables from the children in the rout-
ing tree, merges the tables, and gives as a result the merged tables.

The query operations are represented as expression trees in the query engine.
A string representation of the expression tree is used for its contruction, which
is sent from the control system to a Sun SPOT node. To minimise the size of

Efficient Time Triggered Query Processing in Wireless Sensor Networks 669

2 3 4 5
100

110

120

130

140

150

160

Levels

P
ow

er
 U

se
d

(%
 o

f P
ow

er
 U

se
d

by
 T

al
le

st
 T

re
e)

2 2.5 3 3.5 4 4.5 5
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

−8

Levels

P
ow

er
 U

se
d

(J
)

(a) Tree levels vs. power consumption (b) Tree levels vs. power consumption

2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Levels

D
el

ta
 (

s)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
2

2.5

3

3.5

4

4.5
x 10

−8

Delta (s)

P
ow

er
 U

se
d

(J
)

(c) Tree levels vs. accuracy (d) Accuracy vs. power consumption

Fig. 2. Power Consumption

messages (and therefore energy), a basic data compression method is used. The
data compression achieves compression rates of about 62% in practice.

The control system runs on the user’s PC that is connected to the base station.
It is also written in Java. The control system

– inputs and parses SQL queries, optimises the queries, and translates them
into distributed relational query operations, which are deployed in the net-
work,

– collects the data from deployed queries,
– manages deployed queries, (i.e., status of deployed queries, termination of

deployed queries, etc.),
– provides the global time to all nodes in the network,
– displays and depicts results of queries.

The control system has also a friendly graphical user interface for query input
and result visualisation as shown in Figure 1. The system is fully written in
Java following true object-oriented software engineering practices. This gives
our system the advantage of simple system maintenance and extension.

670 B. Scholz et al.

4 Accuracy Guaranteed Efficient Time Synchronisation

Wireless senor networks are dynamic. New nodes join the network and others die
frequently. Static time synchronisation is infeasible in such computing environ-
ments. Consequently, time synchronisation techniques run frequently consuming
the network energy and shortening its lifetime. Accurate time synchronisation
leads to accurate query results due to the low time shifts among network nodes.
The performance of time synchronisation techniques degrades with the increase
in the network size. This occurs due to the increase in the number of hops to
reach distant nodes from the base station. This problem could be overcome by
increasing the power level of network nodes. This in turn decreases the number
of hops to reach distant nodes. Thus, accurate time synchronisation is achieved
at the cost of higher energy consumption. We have developed a parameterised
optimiser in our SSDQP system that makes a trade-off between accuracy of
time synchronisation and consumed energy. The user inputs an acceptable level
of time shift (Δ) between the system time at the base station and the system
time at a node in the network. Depending on the application the time shift Δ
varies. Our optimiser chooses a network tree topology that minimises the con-
sumed energy (E) and achieves a level of time shift Δ′ ≤ Δ. Let us assume
that the number of hops of node u to the base station is denoted as hu and
the energy that is consumed for a single hop is e. The total energy E for time
synchronisation is given by

E =
∑

u∈T

e · hu (1)

where T is the topological tree used for time synchronisation. The achieved time
accuracy Δ′ depends on the maximum hu in the network, i.e., Δ′ = μ maxu∈T hu

where μ is the time shift introduced by a single hop. We seek for a topology such
that E becomes minimal and Δ′ < Δ.

4.1 Experimental Study

The aim of our experimental study is to provide simulation-based evidence of the
significance of our efficient time synchronisation approach described earlier. The
experimental setup is described in the following: Considering a full binary tree
of height (number of levels)= 5. The radio power setting(I) to reach a parent

– 1 level above is I = p = p
– 2 levels above is I = p + p

3 = 4p
3

– 3 levels above is I = p + 2p
3 = 5p

3
– 4 levels above is I = p + p = 2p

where p is the power setting required to reach a parent one level above. The delta
between levels is calculated with a normal distribution, μ = 0.4s. The goal of our
first experiment is to show the trade-off between accuracy of time synchronisation
and the energy consumed. By varying the number of levels in the routing tree, de-
pending on the accuracy of time synchronisation required, it can be shown that a

Efficient Time Triggered Query Processing in Wireless Sensor Networks 671

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
7.3

Scenario

D
el

ta
 (

s)

Threshold

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (Query Executed)

D
el

ta
 (

s)

Threshold
Optimised
Unoptimised

(a)Delta Variations (b) Optimisation on the accuracy

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

x 10
−8

Time (Query Executed)

P
ow

er
 U

se
d

(J
)

Optimised
Unoptimised

(c) Power consumption over time

Fig. 3. Accuracy vs. Power Consumption

trade-off between time synchronisation and power consumption of a node can be
achieved.A reduction in the number of levels of the tree is accomplished by increas-
ing the radio power level of a node so that it can transmit data to its grandparents,
great-grandparents, etc. effectively skipping levels. For a tree with 5 levels, trees
with 4, 3 and 2 levels can be constructed from the nodes of the original tree, given
that all nodes are able to transmit to one another with a high enough radio power
level. For a given delta in time synchronisation required by the users query, one
routing tree from these 4 trees can be selected in order to achieve the delta, with
a trade off in power. As shown in Figures 2(a)-(d), a reduction in levels of the tree
increases power consumption (for one time synchronisation of the entire tree) sub-
stantially, however will yield a smaller delta.

In the first experiment we provide evidence that with no optimisation of the
routing tree, the accuracy of time synchronisation achieved can exceed the accu-
racy pre-specified by the user. Assuming a system operating with a fixed routing
tree which has been designed to achieve maximum power efficiency, the tree
which is being operated on has 5 levels and various subtrees may be synchro-
nised depending on the query scenario executed. Suppose that the user requires
a maximum delta in time synchronisation of 2s. As shown in 3(a), although for

672 B. Scholz et al.

Sensing & Processing Transmitting Receiving Idle

Level 1

Level 2

Level 3

Level 4

Level 5

Begin of
Interval

End of
Interval

Begin of
Interval

End of
Interval

t t

(a) TAG/TinyDB (b) SSDQP

Fig. 4. Communication Model

some small subtrees the accuracy of the synchronisation is achieved, for queries
executed over larger subtrees, the delta exceeds the desired threshold delta.
This is done at the cost of unnecessary power consumption, which, in time, can
substantially reduce the lifetime of the network. Take again a system with a
fixed routing tree however this time it has been designed to achieve maximum
accuracy in time synchronisation. Assuming that the user requires a maximum
delta of 4s, as shown in 3(b), the unoptimised system always achieves a delta
substantially below the threshold in all scenarios. Our system, which selects a
tree based on the delta, also achieves a delta below the threshold however it is
much closer to the threshold. 3(c) shows the power consumption over time of
the network as a whole with each system, as various queries are executed. As
shown, there is a significant difference in power consumption, particularly when
large subtrees are being operated on (queries 7 and 8).

5 Communication Model

In the design of SSDQP we had the choice to either adopt the communication
model ofTinyDB [8] (and TAG [16] respectively) or to create a new communication
model. Since the Sun SPOTs have more memory and more computational power
than Berkley Motes; we designed a new communication model. This new commu-
nication model is optimised for repetitive queries and has following properties:

– timeliness of sensing, i.e., all nodes in the network sense at the same time,
and

– minimised communication overhead achieved by a synchronised merge of
results. Therefore, the new communication model uses less energy.

The communication model of TinyDB and TAG [16] is illustrated in Fig. 4(a).
The partial information of a query flows up the network toward the root node.

Efficient Time Triggered Query Processing in Wireless Sensor Networks 673

Query
Id

Message
Header

Table
Data

(Child 1)

Query
Id

Message
Header

Table
Data

(Child k)

Query
Id

Message
Header

Table
Data

(Parent)

Table
Data

(Child 1)
. . . .

Table
Data

(Child k)

Table
Data

(Parent)

Merge
Operator

....

Fig. 5. Merge Operator

In a sensing interval (aka. epoch) a sensor node has four different states: a
sensing and processing state, a sending state, a receiving/listening state, and an
idle state. If the node is an inner node in the tree, the sequence of states is as
follows: (1) receiving state where all the information of the children is gathered,
(2) sensing and processing state, (3) sending state in which the information is
forwarded to the parent node in the tree network and (4) followed by the idle
state. If the node is a leaf node, then the receiving state is omitted because there
are no children attached to the sensor node.

The disadvantage of the TinyDB/TAG model is that the point in time when
the sensing and processing is performed depends on the tree level in the net-
work. Note that for queries that do not have aggregation (e.g. AVG, SUM, etc)
the sensed data is directly forwarded to the root node without aggregation. The
information is “bubbled up” the network tree. In contrast, the SSDQP communi-
cation model de-couples sensing from the aggregation as illustrated in Fig. 4(b).
The task scheduler of a sensor node performs two tasks for a single query: the
first task performs sensing, and the second task performs the aggregation and
the forwarding to the parent node. Both tasks are time-triggered. The second-
task needs to be scheduled such that there is enough time for the children to
provide their aggregated information. Therefore, the point in time of the sec-
ond task depends on the child that needs the longest time span to provide the
information, i.e. the child whose sub-tree has greatest depth. Even for simple
queries without aggregation the partial information of query is merged at all
levels before forwarded to the parents in the network tree.

Partial information collected by several sensor nodes is sent in a packet struc-
ture consisting of three parts: message header, a query identification, and the
actual partial result of a query. The packet structure imposes communication
overhead stemming from the message overhead of the Sun SPOT network as well
as book-keeping information for the query system. We seek for a communication
model that minimises the total number of packets to reduce the communication

674 B. Scholz et al.

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000
Total Bytes Sent

Tree

N
um

be
r

of
 s

en
t d

at
a

TinyDB
SSDQP

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
Total Packets Transmitted

Tree

N
um

be
r

of
 P

ac
ke

ts

TinyDB
SSDQP

(a) Number of Bytes (b) Number of Packets

1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

12000

14000
Total Time of Transmission

Tree

T
im

e
T

ak
en

 (
m

s)

TinyDB
SSDQP

(c) Latency

Fig. 6. Comparison with TinyDB communication model

overhead. We achieve this in our model by a synchronised merge operation. This
means that a node merges the information of its own data and the data of its
children before forwarding it to its parent node. If there are n nodes in the net-
work, we need for one epoch exactly n messages whereas TinyDB/TAG forwards
the information without merging the partial information or an on the fly merging
in the network layer is used. The consequence is that in the worst case TinyDB
has O(n2) messages for a single query.

The merge operation of a node is depicted in Figure 5. The disadvantage of
the merge operation is that more memory is needed in a sensor node and that
the latency of a query increases because a time slack for merge operations is to
be taking into account for.

A simulation of both communication models was conducted on 8 network
trees of various depth and density. For the simulation we used the query select
* from sensors. The comparison of both communication models is shown in
Fig. 6. The first bar-chart in Fig. 6(a) shows the total amount of bytes sent
for a single epoch. The information sent in the SSDQP communication model is

Efficient Time Triggered Query Processing in Wireless Sensor Networks 675

significant less because there are significant less packets sent in total (cf. Fig. 6(b)).
The total number of sent bytes is proportional to the energy used for the trans-
mitter of the radio and has a great impact on the longevity of the nodes in
the network. Especially for trees with larger depth the SSDQP communication
model is superior to the communication model of TinyDB because the commu-
nication overhead for a single message packet is large in comparison to the data
length of a sensor reading.

However, establishing well defined merge points for an inner node increases
the latency (cf. 6(c)), i.e. the time span between the begin of an epoch and the
point in time when the base station receives the result of a query. Because the
information is immediately streamed from the nodes, the TinyDB model is more
responsive.

6 Conclusion

In this paper, we have presented our novel distributed query processing sys-
tem (SSDQP). The system is built on the new Sun SPOT platform from Sun
Microsystems. Special considerations in the system design have been paid to pre-
serve energy by minimising the required communication overhead. This paper
has proven experimentally that our time synchronisation optimiser can achieve
the required accuracy while minimising the required energy. An experimental
comparison between our system and TinyDB has shown that our system out-
performs TinyDB in terms of communication overhead.

References

1. Zhao, F., Guibas, L.: Wireless Sensor Networks – An Information Processing
Approach. Elsevier / Morgan-Kaufman, Amsterdam (2004)

2. Culler, D.E., Hong, W.: Introduction. Commun. ACM 47(6) (2004) 30–33
3. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin,

D.: Habitat monitoring with sensor networks. Commun. ACM 47(6) (2004) 34–40
4. Chen, L., Chen, Z., Tu, S.: A realtime dynamic traffic control system based on

wireless sensor network. In: ICPPW ’05: Proceedings of the 2005 International
Conference on Parallel Processing Workshops (ICPPW’05), Washington, DC, USA,
IEEE Computer Society (2005) 258–264

5. Lu, K.C., Wang, Y., Lynch, J.P., Lin, P.Y., Loh, C.H., Law, K.H.: Application of
wireless sensors for structural health monitoring and control. In: Proceedings of
KKCNN Symposium on Civil Engineering, Taiwan (2005)

6. Liu, W., Zhang, Y., Lou, W., Fang, Y.: Managing wireless sensor networks
with supply chain strategy. In: QSHINE ’04: Proceedings of the First Interna-
tional Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
(QSHINE’04), Washington, DC, USA, IEEE Computer Society (2004) 59–66

7. Woo, A., Madden, S., Govindan, R.: Networking support for query processing in
sensor networks. Commun. ACM 47(6) (2004) 47–52

8. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional
query processing system for sensor networks. ACM Trans. Database Syst. 30(1)
(2005) 122–173

676 B. Scholz et al.

9. Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed
diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 11(1) (2003)
2–16

10. Demers, A., Gehrke, J., Rajaraman, R., Trigoni, N., Yao, Y.: The cougar project:
A work in progress report (2003)

11. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the bare metal of
wireless sensor devices: the squawk java virtual machine. In: VEE ’06: Proceedings
of the 2nd international conference on Virtual execution environments, New York,
NY, USA, ACM Press (2006) 78–88

12. Microsystems, S.: (Sun spot world) http://www.sunspotworld.com/.
13. Hill, J., Horton, M., Kling, R., Krishnamurthy, L.: The platforms enabling wireless

sensor networks. Commun. ACM 47(6) (2004) 41–46
14. Yao, Y., Gehrke, J.: The cougar approach to in-network query processing in sensor

networks. SIGMOD Rec. 31(3) (2002) 9–18
15. Gehrke, J., Madden, S.: Query processing in sensor networks. IEEE Pervasive

Computing 03(1) (2004) 46–55
16. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggregation

service for ad-hoc sensor networks. In: OSDI ’02: Proceedings of the 5th symposium
on Operating systems design and implementation, New York, NY, USA, ACM
Press (2002) 131–146

	Introduction
	Related Work
	Sun SPOT Distributed Query Processing (SSDQP)
	Accuracy Guaranteed Efficient Time Synchronisation
	Experimental Study

	Communication Model
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

