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Abstract

Event detection is a critical task in many important ap-
plications of wireless sensor networks, especially for envi-
ronmental monitoring. Traditional solutions to event de-
tection are based on analyzing one shot data points, which
might incur a high false alarm rate because sensor data is
inherently unreliable and noisy. To address this issue, we
propose a novel Distributed Single-pass Incremental Clus-
tering (DSIC) technique to cluster time series obtained at
sensor nodes based on their underlying trends. In order
to achieve scalability and energy-efficiency, our DSIC tech-
nique uses a hierarchical structure of sensor networks as
the underlying infrastructure. The algorithm first compress
the time series produced at sensor nodes into a compact
representation using Haar wavelet transform, and then in-
crementally groups the approximate time series into data
clusters based on dynamic time warping distances. Ex-
perimental results on both real data and synthetic data
have demonstrated that our DSIC algorithm is accurate,
energy-efficient and robust with respect to network topology
changes.

1 Introduction

The advent of wireless sensor networks has fostered
growing interest in many important applications for envi-
ronmental monitoring. Sensor networks facilitate the pro-
cess to monitor the physical environments and make real-
time decisions about events in the environment. In such
monitoring applications, automatic event detection is an es-
sential task, which aims at identifying emergent physical
phenomena of particular concern to the users. When ab-
normal events are detected, the system will sound an alarm
for immediate attention. Traditional solutions to event de-
tection can be classified into threshold-based approaches [1]
and pattern-based approaches [12, 22, 25]. Threshold-based
approaches consider an event to occur when sensor read-
ings exceed a pre-defined threshold value. Pattern-based

approaches, on the other hand, represent events as spatio-
temporal patterns in sensor readings and detect events using
efficient pattern matching techniques. These approaches fo-
cus on analyzing one shot data points to detect emergent
events. However, they may suffer from a high false alarm
rate because sensor data is inherently unreliable and noisy.

In this work, we address the problem of clustering dis-
tributed time series in sensor networks. We aim at identi-
fying homogeneous regions of sensor readings based on the
underlying trends of time series obtained at sensor nodes.
Each homogeneous region corresponds to a cluster of sen-
sor nodes generating time series of similar trends. Obtain-
ing these clusters can help to have a good understanding
of sensor group behaviour in many environmental monitor-
ing applications. For instance, in a coal mine surveillance
application, when a gas leakage event occurs, the gas den-
sity readings measured at the sensor nodes near the source
would follow a gradual decreasing trend. Therefore, identi-
fication of such an area in real time would help rescuers to
evacuate workers in the mine safely.

Clustering distributed time series in sensor networks is
inherently more complex than traditional clustering tasks
[17]. First, sensor networks typically consist of small,
battery-powered nodes with limited communication and
computational capability. We therefore need to design an
energy-efficient technique to cluster the time series obtained
at sensor nodes. Second, sensor networks are usually de-
ployed in a wide area, the clustering algorithm must be de-
signed to operate in a distributed setting. Third, the com-
munication links among sensor nodes are highly unreliable
subject to constrained energy, making the network topology
change over time. This requires our clustering technique to
be robust to the changes of network topology. Therefore, it
is highly desirable to design anenergy-efficient, distributed
andaccurateapproach to clustering distributed time series.

In this paper, we propose a novel Distributed Single-
pass Incremental Clustering (DSIC) technique to deal with
these problems. In order to achieve scalability and energy-
efficiency, our DSIC technique uses a hierarchical structure
of sensor networks as the underlying infrastructure, where
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the sensor nodes are self-organized intophysical clusters
with one node selected as a cluster head for each physi-
cal cluster, and the cluster heads form a routing tree back
to the gateway. Our DSIC technique works in two phases.
In the first phase, the time series produced at sensor nodes
are first transformed to a compact representation using Haar
wavelet transform [13] and the selected wavelet coefficients
are sent to a cluster head. Upon receiving new data from
its children, a cluster head first reconstructs the time series
and then incrementally construct a local clustering model
based on Dynamic Time Warping (DTW) distances. In the
second phase, the data clusters are merged across different
physical clusters along the routing tree until the gateway
obtains a global clustering model. To offset the effect of
the data ordering on incremental clustering, we also devise
a new heuristic strategy to ensure the quality of the clus-
tering model. Experimental results on both real data and
synthetic data have demonstrated that our DSIC algorithm
is accurate, energy-efficient and robust with respect to net-
work topology changes.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews previous work related to our problem. Sec-
tion 3 discusses the sensor network infrastructure used in
our algorithm. Section 4 describes our proposed DSIC al-
gorithm in detail. Section 5 presents the results of experi-
ments using simulation data. Section 6 concludes the paper
and discusses directions for future work.

2 Related Work

There is extensive literature on data clustering in the data
mining community [9]. In general, clustering algorithms
can be classified into two major categories:partitional al-
gorithmsandhierarchical algorithms. k-means and its vari-
ants represent the category of partitional clustering algo-
rithms that create a flat, non-hierarchical structure ofk clus-
ters. Hierarchical clustering is subdivided intoagglomera-
tive methods, which proceed by a series of merging opera-
tions that group the data into clusters, anddivisive methods,
which start to put all the data in one cluster and separate the
cluster successively into small pieces. In the following, we
discuss two data clustering techniques that are closely re-
lated to our problem: data stream clustering and distributed
clustering.

2.0.1 Data Stream Clustering

Data stream clustering has attracted much attention in the
past decade. Traditional algorithms cannot be directly ap-
plied to cluster data streams, because typically the data
has an infinite volume and arrives at a high speed. There-
fore, the ability to process the data in a single pass, while
using little memory, is crucial for data stream clustering

[14]. Dai et al. [5, 6] proposed a Clustering on Demand
(COD) framework to dynamically cluster multiple evolving
data streams. The COD framework produces a summary
hierarchy of data statistics in the online phase, whereas
the clustering is performed in the offline phase. Beringer
and Hullermeier [2] proposed an online algorithm for clus-
tering parallel data streams, which summarizes the data
streams using the Discrete Fourier Transform (DFT) tech-
nique, and applies ak-means algorithm to cluster summa-
rized data streams based on a weighted Euclidean distance
measure. Likewise, Rodrigues et al. [18] proposed an On-
line Divisive-Agglomerative Clustering (ODAC) algorithm
to incrementally construct a tree-like hierarchy of clusters
using a top-down strategy. Data stream clustering tech-
niques focus on summarizing the data by computing suf-
ficient statistics in an incremental way, and then partition-
ing the summarized data into clusters. However, these tech-
niques usually assume that all the data streams are gath-
ered at a centralized site before they are processed. These
centralized approaches cannot scale up in large sensor net-
works because data transmission typically consumes a lot
of energy.

Recently, a distributed algorithm called Elink has been
proposed to perform spatial clustering in sensor networks
[16]. Elink uses Auto-Regression (AR) to model the time
series obtained at individual nodes, and then, based on a
communication graph, local clustering starts from a set of
nominated root nodes and expands to include other nodes
if the Euclidean distances between their model coefficients
are less than a pre-defined threshold. However, the perfor-
mance of Elink is limited because each cluster is coarsely
represented by the feature of cluster root. Our proposed al-
gorithm can outperform Elink to achieve a higher clustering
accuracy as shown in the experiments.

2.0.2 Distributed Clustering

Distributed clustering assumes that the data to be clustered
resides on different sites. Previous work on distributed clus-
tering are usually based on the populark-means algorithms.
Instead of transmitting all the data to a central site, the clus-
tering is performed on two different levels, i.e., the local
level and the global level. At the local level, all sites carry
out a local clustering independently from each other. At
the global level, the central site is responsible for building a
global clustering model based on the local models.

For example, Forman and Zhang [7] proposed ak-
Harmonic Means algorithm to cluster homogeneously dis-
tributed data. During each iteration, each site computes
and update the currentk centroids based on its own data
and broadcast their centroids to other sites. Once a site
has received all the centroids from other sites, it can form
its global centroids by taking a weighted average over the
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entire data set. Kargupta et al. [10] developed a collec-
tive principal components analysis (PCA)-based clustering
technique for heterogeneously distributed data. Each local
site performs PCA, projects the local data along the princi-
pal components and applies a standard clustering algorithm.
Having obtained the local clusters, each site sends a small
set of representative data points to a central site. The central
site then carries out PCA on the collected data and send the
global principal components back to each local site.

However, most of the distributed clustering techniques
mainly focus on one shot mining with respect to individ-
ual data points. Thus, they are not suitable for continuously
clustering distributed data streams in wireless sensor net-
works, where the network topology is dynamic and the sen-
sor nodes have limited communication range.

3 Sensor Network Infrastructure

To deal with the scalability and energy-efficiency of our
distributed clustering algorithm, we adopt a hierarchicalor-
ganization of the sensor network as the underlying infras-
tructure. The basic idea is to organize the network into dif-
ferent levels of granularity, ranging from small local areas
at the lowest level to the entire network area at the highest
level. More specifically, the sensor nodes are self-organized
into a set ofphysical clustersbased on available energy re-
sources. Each physical cluster consists of acluster head
(CH) and severalcluster members. The cluster head per-
forms most of the computational tasks in each physical clus-
ter. All the cluster heads form a multi-hop routing tree to the
gateway.

Gateway

Figure 1. Sensor network infrastructure

As shown in Figure 1, at the lowest level of the routing
tree, each cluster member sends its sensor data to the corre-
sponding cluster head. Moving up the hierarchy, the cluster
heads at the higher level are responsible for collecting data
from the cluster heads at the lower level. For example, in
Figure 1, node CH1 represents a cluster head in the second

level of the hierarchy, and it receives the data from nodes
CH2, CH3, CH4, and CH5. After receiving all the informa-
tion from the lower levels, node CH1 sends the data back to
the gateway at the highest node.

To obtain such a hierarchical structure, existing tech-
niques, such as LEACH [23] and HEED [27], can be applied
to select the cluster heads and determine the cluster mem-
bers for each physical cluster. These techniques can ensure
that the role of cluster heads rotates among all the nodes in
the network, and that the self-organization of physical clus-
ters is done in an energy-efficient way.

4 Distributed Incremental Clustering Algo-
rithm

Our proposed clustering algorithm takes a hierarchical
organization of sensor networks described in Section 3 as
the underlying infrastructure. In general, it works in two
phases: In the first phase, the data clusters are constructed
locally within the members of each individual physical clus-
ter. In the second phase, the data clusters are merged across
different physical clusters to produce a global clustering
model. We detail the two phases in the following.

4.1 Phase I: Clustering within a Physical
Cluster

In the first phase, the main task is to construct a local
clustering model for each physical cluster at the lowest level
of the routing tree.

4.1.1 Data Compression Using Wavelets

In order to reduce the data transmission across the network,
we propose to apply Haar Wavelet Transform to compress
the time series obtained at individual sensor nodes. Haar
wavelets have been found to be effective in providing good
approximation of time series [4, 8, 3]. The Haar wavelet
is chosen because it has a multi-resolution representation
of time series and it can be computed quickly and easily,
requiring linear time in the length of the sequence. Haar
wavelet transform can be seen as a series of averaging and
differencing operations on a discrete time function. Below,
we give an example to illustrate the procedure to perform
the Haar transform on a time seriesf(t) = (9, 7, 6, 6).

The full resolution of the time seriesf(t) is 4. In resolu-
tion 2,(8, 6) is obtained by taking the average of(9, 7) and
(6, 6) respectively, at resolution 4.(1, 0) are the differences
of (9, 7) and(6, 6) divided by 2, respectively. This process
is recursively applied until resolution 1 is reached. Finally,
the Haar transform of the original time seriesH(f(t)) =
(7, 1, 1, 0), which are called wavelet coefficients. The time
series can also be reconstructed at different resolutions by
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Table 1. An example of the Haar wavelet
transform

Resolution Averages Differences
4 (9,7,6,6)
2 (8, 6) (1, 0)
1 (7) (1)

adding differences back to or subtract differences from av-
erages. For example,(8, 6) = (7 + 1, 7− 1), where 7 and 1
are the first and second coefficients, respectively. The moti-
vation behind Haar transform is that elements of little varia-
tion in the original data manifest themselves as small or zero
values in the transformed data. Therefore, we can approx-
imate each original time series by selecting thek largest
Haar coefficients so that the optimal amount of energy can
be preserved per time series [24].

4.1.2 Incremental Clustering Process

Let CHi be a sensor node elected as a cluster head of a
physical cluster, and letCMi be a set of cluster members
belonging to the physical cluster. Each cluster member
vj ∈ CMi compresses the time seriesfj,W that it observes
in a sliding window of sizeW using Haar wavelet trans-
form, and transmits the compressed data, including thek
largest coefficients along with their positions, to its corre-
sponding cluster headCHi. Upon receiving the compressed
data, the cluster head reconstructs the time series by apply-
ing an inverse Haar transform to Haar coefficients, and in-
crementally groups the compressed data into a set of data
clusters.

In order to discover meaningful clusters, we propose to
use Dynamic Time Warping (DTW) [3, 26] to measure the
distance of two time series. The reason for using DTW is
that: First, sensor nodes are loosely synchronized across
the network, and some nodes may suffer from package lost
unexpectedly, the time series are not aligned exactly in the
time axis; Second, there are varying time delays for differ-
ent sensor nodes to detect an environmental event. Figure
2 shows three time series received by sensor nodes in the
same time interval. The sensor network is used to measure
light strength in our office area. The time series were col-
lected when the lighting conditions changed. We can clearly
observe that the three time series are of similar trends, al-
though with different time shifts. Therefore, DTW is a good
measure for similarity matching of sensing time series.

The time warping distance is computed using dy-
namic programming [26]. We consider two time series
x = (x1, . . . , xN ) and y = (y1, . . . , yN ). Let M(i, j)
stores the shortest cumulative time warping distance from
(x1, . . . , xi) to (y1, . . . , yi). M(i, j) is computed as the
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Figure 2. An example of three time series
with different time shifts received by sensor
nodes

Euclidean distanceD(xi, yi) and the minimum of the cu-
mulative distances of adjacent elements:

M(i, j) = D(xi, yi) + min





M(i − 1, j)
M(i, j − 1)
M(i − 1, j − 1)



 . (1)

The general principle of the algorithm is to find the short-
est cumulative distance for each pair of values between time
seriesx andy, starting from the first pair(x0, y0), till the
last pair(xN , yN ). The final result is the shortest cumula-
tive distanceM(xN , yN ). Therefore, the complexity of the
classic algorithm isO(N2) for two time series of lengthN .
This quadratic algorithm is too much for sensor nodes with
limited resources. Therefore, we adopt an accurate approx-
imation algorithm FastDTW [21] to scale up the computa-
tion, which can run in linear time and space.

Based on the distance measure, each physical cluster
head incrementally builds a local clustering model upon
receiving new compressed data from its members. Since
cluster members may send their compressed time series
data to the cluster head in an unsynchronized manner, the
data ordering might largely affect the overall quality of the
distance-based clustering model. To address this issue, we
propose a two-step heuristic strategy to offset the effect of
data ordering on the clustering quality. In our method, each
cluster is represented using four features:

• Cluster centerC: is a vector in which each element
represents the average of all the corresponding ele-
ments of the time series belonging to the clusterC.

• Cluster upper boundCu: is a vector in which each ele-
ment is the maximum value among all the correspond-
ing elements of the time series belonging to the cluster.
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• Cluster lower boundCl: is a vector in which each ele-
ment is the minimum value among all the correspond-
ing elements of the time series belonging to the cluster.

• Cluster size|c|: is defined as the number of time series
belonging to the cluster.

Now we describe the process of incremental clustering
performed for each physical cluster. The cluster headCHi

starts by initializing a data cluster for its own time series
fi,W . As wavelet coefficients are received from its clus-
ter membersCMi, the cluster head incrementally update
the data clusters as follows: The time seriesf̂j is recon-
structed from Haar wavelets coefficients and associated po-
sitions. We calculate the distancesD(f̂j , Ci) between the
reconstructed time series and the cluster centerCi of ex-
isting clustersci. If there is no cluster within the distance
thresholdδ, a new data clusterci+1 is created. If there are
M clusters within the thresholdδ, we further test the can-
didates bysimulating the addition of the new time series
to all of them and calculating the variances between the
old and new cluster center. If all the variances exceed a
pre-defined thresholdζ, that is, the addition of this time se-
ries would change the characteristics of all existing clusters
dramatically, a new data clusterci+1 is therefore created.
By doing this, the time serieŝfj might have other chances
to be merged with other clusters or new time series that
comes later. Otherwise, for the cluster candidates whose
center variances satisfy the thresholdζ, the time serieŝfj

is assigned to the clusterck with the minimum variance of
cluster centers. After determining the data clustercj to be
merged withck, we update the cluster representatives for
the clusterck using the following equations:

Cnew
k =

Ck × |ck| + f̂j,W

|ck| + 1
, (2)

Cnew
u,k = max(f̂j , Cu,k), (3)

Cnew
l,k = min(f̂j , Cl,k), (4)

|ck|
new = |ck| + 1. (5)

We summarize the detailed algorithm procedure in Al-
gorithm 1. TheAtClusterMemberprocedure (lines 3–6)
and theAtClusterHeadprocedure (lines 7–28) present the
clustering operations conducted at a cluster member and a
cluster head, respectively. A cluster membervj ∈ CHi is
only responsible for compressing its time series datafj,W

and sending the compressed data to its corresponding clus-
ter headCHi. For each cluster headCHi, theAtCluster-
Head procedure starts by initializing a data cluster for its
own time seriesfi,W and then incrementally construct a lo-
cal clustering model for each physical cluster. The output of
this algorithm is a list of data clusters constructed for each
local physical cluster.

Algorithm 1 DSIC Algorithm: Phase I
1: let CHi be a sensor node elected as the cluster head in

a physical cluster;
2: let vj ∈ CMi be a cluster member belonging to the

same physical cluster;

3: procedureAtClusterMember(vj)
4: compress the time seriesfj,W at each nodevj ;
5: send wavelets coefficients to cluster headCHi;
6: return;

7: procedureAtClusterHead(CHi)
8: create a data clusterc1 for its own time seriesfi,W ;
9: if a new time series is received from nodevj

10: reconstruct time serieŝfj,W ;
11: for each data clusterci do
12: compute the distanceD(f̂j,W , Ci);
13: calculateM = {ci : D(f̂j,W , Ci) ≤ δ};
14: if M = 0
15: create a new data clusterci+1;
16: else
17: simulate addinĝfj,W to ci;
18: compute∆Ci = Cnew

i − Cold
i ;

19: if ∆Ci ≤ ζ
20: assignf̂j,W to ck s.t.∆Ck is minimized;
21: update the clusterck using Eqn. (2)-(5);
22: else
23: create a new clusterci+1;
24: end if
25: end if
26: end for
27: end if
28: return;

4.2 Phase II: Clustering across Different
Physical Clusters

After a local clustering model is constructed for each
physical cluster, the next task is to merge the data clusters
across different physical clusters along the routing tree.At
intermediate levels of the routing tree, each parent cluster
head collects the cluster representatives from the physical
clusters at the lower level and merges their associated data
clusters. The merged data clusters are then communicated
to the parent cluster head in an upper level. This process
continues until the gateway has a global clustering model.

Considering a data clustercj built at a cluster headCHj

at the lower levelLm+1, we calculate its distance to every
data clusterci built at a cluster headCHi at an upper level
Lm. If there is only one data cluster within the distance
thresholdδ, we merge the two data clusters together and
update the cluster representatives. If there are more than
one data clustersci within the thresholdδ, we calculate a
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cluster merge criterion as follows:

link(cj , ck) =
D(Cj , Ck)

d(Cj)d(Ck)
, (6)

where the termsd(Ci) and d(Cj) represent intra-cluster
dissimilarity of clustersci and cj , which can be cal-
culated asd(Ci) = D(Cu,i,Dl,i)/|ci| and d(Cj) =
D(Cu,j ,Dl,j)/|cj |, respectively. The principle is to merge
a pair of clusters that have small self-similarity. In this way,
clusters with a larger similarity are retained and the final
clusters have larger self-similarity which can better repre-
sent actual events of interest. Finally, the data clustercj is
merged with the clusterck such thatlink(cj , ck) is mini-
mized. Accordingly, the cluster representatives for cluster
ck is updated as follows:

Cnew
k =

Ck × |ck| + Cj × |cj |

|ck| + |cj |
, (7)

Cnew
u,k = max(Cu,k, Cu,j), (8)

Cnew
l,k = min(Cl,k, Cl,j), (9)

|ck|
new = |ck| + |cj |, (10)

whereCk andCj are the centers of the two clusters to be
merged, andCu,k, Cu,j andCl,k, Cl,j are the cluster upper
bounds and lower bounds of the two clusters to be merged,
respectively.

We now summarize the algorithm procedure in Algo-
rithm 2. TheMergeClustersprocedure (lines 10–26) merges
the data clustersDataCi built at a cluster headCHi with
the data clustersDataCj built at one of its child cluster
headsCHj . The merged data clusters are maintained using
DataCi at the cluster headCHi. TheMergeAtClusterHead
procedure (lines 4–9) recursively merges the data clusters
DataCi built at the cluster headCHi at the levelLm with
the data clusters from all of its child cluster heads until the
gateway obtains a global clustering model.

5 Experimental Evaluation

In order to evaluate the performance of our proposed al-
gorithm, we performed extensive experiments on both syn-
thetic data and real data. For comparison, three different
clustering approaches were used as the baselines. The first
approach applies group-average hierarchical clustering af-
ter all the raw time series are sent back to the gateway,
which is referred to as Centralized. The second approach is
called AR-Elink [16]. AR-Elink builds an AR model at each
sensor node, and based on a communication graph, cluster-
ing starts from a set of nominated root nodes and expands
to include other nodes if the Euclidean distances between
their model coefficients are less than a pre-defined thresh-
old. AR-Elink only uses the feature of root nodes to repre-
sent each cluster. The third approach differs from our pro-
posed algorithm in that, after the time series is compressed

Algorithm 2 DSIC Algorithm: Phase II
1: let CHi be a physical cluster head at the levelLm;
2: let CHj ∈ Children(CHi) be a child cluster head at

the levelLm+1;
3: let DataCi andDataCj be the set of data clusters built

at the cluster headCHi andCHj ;

4: procedureMergeAtClusterHead(CHi)
5: for each child nodeCHj ∈ Children(CHi) do
6: initiate MergeAtClusterHead(CHj);
7: initiate MergeClusters(CHi, CHj);
8: end for
9: return;

10: procedureMergeClusters(CHi, CHj)
11: receive the data clustersDataCj from CHj ;
12: for each data clustercj ∈ DataCj do
13: calculateD(Ci, Cj) for any clusterci ∈ DataCi;
14: computeM = {ci : D(Ci, Cj) ≤ δ};
15: if M = 0
16: add the clustercj to DataCi;
17: else if M = 1
18: merge the two clustersci andcj ;
19: update the clusterci using Eqn. (7)-(10);
20: else
21: computelink(cj , ck) using Eqn. (6);
22: mergecj with ck s.t. link(cj , ck) is minimized;
23: update the clusterck using Eqn. (7)-(10);
24: end if
25: end for
26: return;

using Haar wavelets, a standard clustering algorithm is ap-
plied for cluster forming and merging, solely based on the
Euclidean distance to cluster centers. We call this approach
Haar-Centre. Our proposed algorithm is referred to as Haar-
DSIC in the experiments.

5.1 Evaluation Criteria

The performance of the clustering algorithms is assessed
using the following two evaluation criteria.

• Clustering quality: The quality of clustering is mea-
sured using the well-known Silhouette score [11, 19].
It is a metric-independent measure designed to de-
scribe the ratio between cluster coherence and separa-
tion. Specifically, for each clusterCk, we first compute
a quality measuresilik for its memberi as

silik =
b(i) − a(i)

max{a(i), b(i)}
, (11)

wherea(i) is the average dissimilarity of memberi to
all other members of its cluster, andb(i) is the aver-
age dissimilarity of memberi to all members of the
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closest cluster. The value ofsilik varies from -1 to
1. The closer to onesilik is, the better the streami is
clustered. Accordingly, a silhouette score for a clus-
ter Ck who ownsm members is defined assilCk

=
1

m

∑

i∈Ck
silik. Finally, the overall silhouette score is

defined as

sil =
1

p

p
∑

j=1

silCk
, (12)

wherep is the total number of detected clusters.

• Communication cost: In order to evaluate the com-
munication cost, we employ a simple energy model in
our experiments, in which the radio dissipatesEelec =
50nJ/bit to run the transmitter or receiver circuitry,
and εamp = 100pJ/bit/m2 for the transmission to
achieve an acceptable value of signal-to-noise ratio.
To build the sensor network infrastructure as described
in Section 3, we implemented the LEACH protocol
[23] to generate physical clusters, in which each sen-
sor node has an equal probability to become a cluster
head at each iteration. After that, we built up a routing
tree based on the distances between the gateway and
cluster heads.

5.2 Experiments on Real Data

Experiments were first carried out on real data collected
from a sensor network. We deployed 30 off-the-shelf motes
(TMote Sky) with the light sensors (Hamamatsu S1087
PAR) to measure the light strength in our office area. All
the motes were programmed to collect two samples of light
strength every minute. The samples were packaged to a sink
at 2405MHz radio frequency and then sent to a computer via
a USB serial port. We chose light as the sensing modality
for our experiments because it is relatively easy to control
the light intensity in an indoor setting, and introduce tem-
poral events by covering light sensors with paper cups. In
our experiments, we set the length of the sliding window to
be 64 for all the algorithms.

In our first experiment, we kept the light level constant
in our office and stimulated a temporal event by covering a
group of sensor nodes with colorful paper cups. By doing
this, the time series generated by this group of nodes have
different trends compared with the data obtained at other
nodes. However, the time series obtained at other nodes
might also correspond to several clusters because of differ-
ent lighting conditions and random noises caused by people
moving in our office. We applied the four clustering algo-
rithms to this data set. For AR-Elink, the order of the AR
model is set to be 3 because the best clustering result can
be obtained. For Haar-Center and Haar-DSIC, the number
of wavelet coefficients used to reconstruct the time series
is set be 4. The clustering results are summarized in Table

2. We can see from the table that the clustering accuracy
achieved by Haar-DSIC is very close to the performance of
the Raw-Centralized algorithm. We can also see that both
Haar-DSIC and Haar-Center outperform the AR-Elink algo-
rithm to a large extent. This indicates that, compared with
the AR model, Haar wavelet transform can capture more
significant information contained in the original time se-
ries, which makes subsequent clustering more effective. In
addition, our Haar-DSIC algorithm can achieve higher clus-
tering accuracy that Haar-Center. This shows that, by em-
ploying the DTW-based distance measure, Haar-DSIC can
better capture inherent similarity between time series with
different local trends.

Table 2. Comparison of Clustering Accuracy
Clustering algorithm Silhouette score

Raw-Centralized 0.7410
AR-Elink (n = 3) 0.4719

Haar-Center (k = 4) 0.6176
Haar-DSIC (k = 4) 0.7356

We also performed experiments to investigate the effect
of data ordering on the clustering quality for Haar-Center
and Haar-DSIC. Given a specific set of physical clusters, we
randomly generated 50 different orderings of the data to be
sent from the cluster members to each cluster head. Figure 3
shows the clustering accuracy with respect to different num-
bers of Haar wavelets coefficients. We can see that, when
too few coefficients are used, the restored time series is too
coarse to capture significant information from the original
time series, and thus, the subsequence clustering becomes
inaccurate. On the other hand, when too many wavelet co-
efficients are used, the restored time series has a fine gran-
ularity, which might also retain random noises involved in
the original time series. As a result, the performance of
the clustering algorithms might degrades as well. We can
observe that, Haar-Center and Haar-DSIC can achieve the
highest clustering accuracy when the number of wavelet co-
efficients is four. In the following experiments, we use four
wavelet coefficients for Haar-Center and Haar-DSIC.

In addition, as the number of wavelet coefficients in-
creases, our Haar-DSIC algorithm can be seen to consis-
tently outperform Haar-Centre, with small variances in clus-
tering accuracy. This is because, for Haar-Centre, the data
clusters are formed solely depending on the Euclidean dis-
tance to the cluster centers, which makes the clustering ac-
curacy quite sensitive to the data ordering. In contrast,
Haar-DSIC improves the performance of Haar-Centres by
considering the evolution of cluster centers in the cluster
forming process.

Figure 4 shows the clustering result obtained by the
Haar-DSIC algorithm. In total, Haar-DSIC generates three
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Figure 3. Clustering quality vs. Number of
Haar Wavelet Coefficients

clusters, as marked in the figure. Among them, “Cluster 1”
corresponds to the temporal event simulated in our exper-
iment, and the other two clusters reflect different lighting
conditions in our office.

 5  9  1  415 7171610 31924292328  620142226272130  213 811121825
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Figure 4. The clustering result obtained by
the Haar-DSIC algorithm

Figure 5 compares the amount of energy consumed by
the four clustering algorithms. We can see from the fig-
ure, AR-Elink, Haar-Center and Haar-DSIC can remarkably
improves the energy-efficiency of Raw-Centralized by per-
forming in-network clustering. The three algorithms per-
form local clustering and only cluster representatives are
needed to be sent across the network. In contrast, Raw-
Centralized needs to transmit the raw time series data back
to the gateway and perform global clustering. We can also
see that, Haar-DSIC consumes slightly more energy than
AR-Elink because more data statistics are kept for each
cluster as the cluster representatives, however, Haar-DSIC
can achieve much better clustering quality than AR-Elink.
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Figure 5. Comparison of energy consumption

Experiments were also carried out to compare the robust-
ness of the three distributed algorithms (AR-Elink, Haar-
Centre and Haar-DSIC) with respect to network topology
changes. Specifically, we used the LEACH protocol to ran-
domly generate 20 different sets of physical clusters by ini-
tializing the number of physical clusters to be five. The
three algorithms were then applied on the same data set.
Table 3 shows the mean and the standard deviation of Sil-
houette score. We can see from the table that, based on dif-
ferent configurations of physical clusters, Haar-DSIC can
achieve better clustering accuracy with less variance than
Haar-Centre and AR-Elink. This indicates that Haar-DSIC
is more robust than Haar-Centre with respect to network
topology changes over time.

Table 3. Clustering quality vs. Network topol-
ogy changes

Clustering algorithm Silhouette score (variance)

AR-Elink 0.4319 (0.0658)
Haar-Center 0.6014 (0.0581)
Haar-DSIC 0.6896 (0.0346)

5.3 Experiments on Synthetic data

To study the scalability of our proposed algorithm, we
simulated a sensor network at a square field of100 × 100
meters. The default number of sensor nodes was set at 100,
and the locations of sensor nodes were randomly generated
in the field. We simulated the measurements generated by
individual sensor nodes based on the Cylinder-bell-funnel
data set. The generation of this data set was proposed in
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[15, 20]. The data set contains three distinct classes and
the time series data has similar local trends in each class.
For each class, we generated 500 time series at a length of
128. The data generated by an individual sensor node was
randomly selected from the total of 1500 time series.

We first performed experiments to compare the cluster-
ing quality of the four algorithms. The clustering results are
summarized in Table 4. Each value of Silhouette score is
the average of 20 trials. In this experiment, for AR-Elink,
the order of the AR model is set to be three, and the num-
ber of wavelet coefficients is set to be eight for Haar-Center
and Haar-DSIC. Again, we can see that, Haar-DSIC outper-
forms the other two distributed algorithms (AR-Elink and
Haar-Center) to a large margin, and its accuracy is quite
close to that of Raw-Centralized.

Table 4. Comparison of Clustering Accuracy
Clustering algorithm Silhouette score

Raw-Centralized 0.7937
AR-Elink (n = 3) 0.1827

Haar-Center (k = 8) 0.3203
Haar-DSIC (k = 8) 0.7657

We then carried out experiments to compare the com-
munication cost of the four algorithms. We varied the
density of sensor nodes from 0.01sensors/sq.m to 0.1
sensors/sq.m to study the scalability of the algorithms
with respect to energy consumption. For this setting, we
kept the number of physical clusters as eight. Figure 6
shows the amount of energy consumed by the four algo-
rithms with respect to different values for the density of sen-
sor nodes. We can see from the figure that, as the network
density increases, AR-Elink, Haar-DSIC and Haar-Centre
become more energy-efficient than Raw-Centralized. This
is because, the three algorithms perform local clustering
within the network, and thereafter only the cluster repre-
sentatives are needed to be transmitted across the network.
In contrast, Raw-Centralized need to transmit the raw time
series data to the gateway before global clustering can be
performed. Therefore, the three algorithms remarkably im-
prove the energy-efficiency, especially for large-scale sen-
sor networks. Although Haar-Centre and Haar-DSIC con-
sumes more energy than AR-Elink to preserve more data
statistics for each cluster, they can be seen to scale well with
the increase in the density of sensor nodes.

6 Conclusions and Future Work

In this paper, we proposed a novel DSIC algorithm to
cluster distributed time series in sensor networks. our DSIC
technique uses a hierarchical structure of sensor networks
as the underlying infrastructure, and incrementally con-
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Figure 6. Energy consumption vs. Density of
sensor nodes

struct a global clustering model along the routing hierar-
chy. Experimental results on both real data and synthetic
data have demonstrated that our DSIC algorithm is accurate,
energy-efficient and robust with respect to network topol-
ogy changes.

Our work can be extended in several directions. First, we
will implement our DSIC technique in a real event driven
sensor network for monitoring soil moisture and evaluate
its effectiveness in detecting the wetting front to minimize
the use of irrigation water. Second, we will explore how to
discover the boundaries of homogeneous regions based on
our clustering results. Third, we will extend our technique
to track the movements of homogeneous regions when the
sensor readings change over time.
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