
ar
X

iv
:1

00
9.

51
85

v1
  [

as
tr

o-
ph

.C
O

] 
 2

7 
Se

p 
20

10

Mon. Not. R. Astron. Soc. 000, 1–11 (xxxx) Printed 28 September 2010 (MN LATEX style file v2.2)

The inner structure of very massive elliptical galaxies:

implications for the inside-out formation mechanism of

z ∼ 2 galaxies

O. Tiret1, P. Salucci1, M. Bernardi2, C. Maraston3, J. Pforr3
1 SISSA, via Bonomea, 265, 34136 Trieste, Italy
2 Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Str., Philadelphia, PA 19104, USA
3 Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX, UK

Accepted xxxx. Received xxxx; in original form xxxx

ABSTRACT

We analyze a sample of 23 supermassive elliptical galaxies (central velocity dispersion
larger than 330 km s−1), drawn from the SDSS. For each object, we estimate the
dynamical mass from the light profile and central velocity dispersion, and compare
it with the stellar mass derived from stellar population models. We show that these
galaxies are dominated by luminous matter within the radius for which the velocity
dispersion is measured. We find that the sizes and stellar masses are tightly correlated,
with Re ∝ M1.1

∗
, making the mean density within the de Vaucouleurs radius a steeply

declining function of M∗: ρe ∝ M−2.2

∗
. These scalings are easily derived from the

virial theorem if one recalls that this sample has essentially fixed (but large) σ0. In
contrast, the mean density within 1 kpc is almost independent of M∗, at a value that
is in good agreement with recent studies of z ∼ 2 galaxies. The fact that the mass
within 1 kpc has remained approximately unchanged suggests assembly histories that
were dominated by minor mergers – but we discuss why this is not the unique way to
achieve this. Moreover, the total stellar mass of the objects in our sample is typically
a factor of ∼ 5 larger than that in the high redshift (z ∼ 2) sample, an amount which
seems difficult to achieve. If our galaxies are the evolved objects of the recent high
redshift studies, then we suggest that major mergers were required at z

∼
> 1.5, and

that minor mergers become the dominant growth mechanism for massive galaxies at
z
∼
< 1.5.

Key words: galaxies: formation – galaxies: evolution – galaxies: elliptical and lentic-
ular, cD – galaxies: high-redshift.

1 INTRODUCTION

The study of luminous and dark matter in elliptical galaxies
is crucial to understanding the formation of massive galax-
ies in our Universe. In hierarchical models, ellipticals are
the result of interactions and mergers of spiral galaxies (e.g.
Blumenthal et al. 1984). This is in contrast to a scenario
in which they form from a monolithic collapse (e.g. Eggen
et al. 1962; Granato et al. 2004). The most massive ellipti-
cal galaxies, with baryonic masses M > 1011M⊙, are chal-
lenging because they should have formed in the very early
universe and at the same time undergone a large deal of
merging.

There is now growing evidence that massive galaxies
(M∗ ∼ 1011 M⊙) did exist at z ∼ 2. Some work suggests that
they were much smaller and denser than their local coun-
terparts of the same stellar mass (e.g. Trujillo et al. 2006;

van Dokkum et al. 2008; Cimatti et al. 2008; Saracco et al.
2009) and that similar compact galaxies to those observed
at high-redshift do not exist in the local universe (e.g. Tru-
jillo et al. 2009). These results raised the question of what
process or processes have acted to increase the sizes of these
objects to make them consistent with the larger sizes we see
at late times (e.g. van Dokkum et al. 2008; Fan et al. 2008).

Bezanson et al. (2009) showed that the stellar density
within the central 1 kpc of ellipticals at z ∼ 2.3 is similar
to that for nearby ellipticals (they differ by only a factor
of ∼ 2, compared to a difference of a factor of ∼ 100 if
the comparison is done within the half-light radius). This
suggests an inside-out, hierarchical growth scenario domi-
nated by dry minor mergers which add mass primarily to
the outer regions (e.g. Loeb & Peebles 2003; Bournaud et
al. 2007; Naab et al. 2007; Hopkins et al. 2009).

However, the evidence for small sizes at high-redshift
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and the lack of such objects at low-redshift is not uncon-
tested. For example, Mancini et al. (2010) have argued that
neglect of low surface brightness features will bias re to small
values. Their analysis shows that some of the objects at
z ∼ 1.5 are not small for their M∗ compared to z = 0 ob-
jects. A similar result was recently presented by Onodera
et al. (2010) who found a z = 1.82 analog of local ultra-
massive elliptical galaxies. Recently, Saracco et al. (2010)
found from a complete sample of 34 early-type galaxies at
0.9 < z < 1.92 that 21 of these are similar to the local ones
even though they are co-eval with more compact early-type
galaxies. In addition, Valentinuzzi et al. (2010) found that
about 25% of the objects with M∗ > 3 × 1010 M⊙ in lo-
cal clusters are superdense (i.e. they have sizes like those
observed out to z ∼ 2). However, they found that there is
strong evidence for a large evolution in radius for the most
massive galaxies, i.e. BCGs (M∗ > 4× 1011 M⊙).

Indeed, evolution in the properties of local BCGs was
detected by Bernardi (2009), who showed that the sizes
and velocity dispersions of BCGs (and of massive early-type
galaxies) in the local Universe (z < 0.3) are still evolving.
This work suggests that minor dry mergers dominate the as-
sembling of BCGs at lower redshifts since the observed size
evolution is more rapid than expected by major dry merg-
ers once one accounts for the small changes in the observed
luminosity/mass functions (∼ 50% since z < 1; e.g. Wake
et al. 2006; Brown et al. 2007; Cool et al. 2008). Minor dry
mergers are better able to reconcile the observations of size
evolution with little mass evolution. In addition, Bernardi
(2009) also claims that minor mergers can also help to rec-
oncile the substantial growth (∼ a factor of 2) predicted for
the dark matter halos since z ∼ 1 (e.g. Sheth & Tormen
1999) with the little stellar mass evolution in the central
galaxies (i.e. ∼ 50%): indeed, the fractional mass growth of
BCGs need not be the same as that of their host clusters –
some of the added stellar mass must make the intercluster
light.

However, while an inside-out, hierarchical growth sce-
nario dominated by minor dry mergers can describe the as-
sembling of BCGs at low redshift, the recent analysis of
Bernardi et al. (2010b) suggests that some of the features
observed in the scaling relations of massive early-type galax-
ies at M∗ > 2 × 1011M⊙ (e.g. the upwards curvature in
the color−M∗ relation, the decrease in the mean axis ratio
and color gradients and the fact that most scaling relations
with σ are well-described by a single power law) can only be
explained by an assembly history dominated by major dry
mergers above this mass.

The main goal of this paper is to use both visible stellar
masses and dynamical stellar masses, for 23 supermassive
elliptical galaxies identified by Bernardi et al. (2006, 2008),
to investigate these issues in the light of previous work.

The paper is organized as follows. We describe the ob-
servables in Section 2, our procedure for estimating the total
dynamical masses, and the fraction which is in stars, in Sec-
tion 3, a comparison of these dynamical mass estimates with
those from stellar population models in Section 4, and scal-
ing relations between size and mass in Section 5. A final
section discusses our findings: we argue that it is not clear
that minor mergers since z ∼ 2 can have been the dominant
formation mechanism of these massive galaxies.

When necessary, we assume a flat background cosmol-

Table 1. Properties of the 23 supermassive elliptical galaxies of
our sample. Galaxies are identified using the same index, col-
umn(1), as in Hyde et al. (2008). Column (2) gives the velocity
dispersion within the 3 arcsec SDSS fiber; Column (3) the pro-
jected half-light radius from fitting to a de Vaucouleurs profile
in the i-band; Column (4-5) the projected half-light radius and
Sersic index from fitting to a Sersic profile in the i-band; and Col-
umn (6), the physical scale on which the velocity dispersion was
measured (corresponding to 3 arcsec).

# σ0 rDeV
e rSe nS rap

(km s−1) (kpc) (kpc) (kpc)

1 339 8.5 19.031 5.698 7.5

2 346 6.1 18.775 7.326 6.2
3 353 12.8 10.923 3.690 5.2
4 352 20.2 21.228 4.107 10.2
5 356 16.9 13.907 3.366 8.7
6 350 6.5 8.295 4.491 6.7
7 361 26.1 16.345 2.921 8.2
8 356 11.9 10.228 3.628 7.7
9 355 7.7 9.999 4.675 6.4

10 351 3.9 4.053 4.234 7.1
11 356 5.3 6.360 4.401 5.0
12 346 2.2 4.562 6.591 4.8
13 368 16.2 17.004 4.136 8.2
14 364 10.9 16.622 5.194 7.2
15 356 5.1 7.723 4.986 6.8
16 364 7.4 18.976 5.988 8.9
17 362 2.2 5.579 6.573 4.0
18 382 12.9 18.487 4.825 8.4
19 369 1.8 4.143 7.349 3.6
20 370 2.6 4.882 5.491 5.0
21 390 11.2 29.410 6.422 9.3
22 392 2.8 8.089 6.738 4.2
23 412 29.4 15.150 2.756 7.8

ogy that is dominated by a cosmological constant at the
present time: Ω0 = 0.3, Λ0 = 1 − Ω0, and we set Hubble’s
constant to H0 = 70 km s−1Mpc−1.

2 OBSERVATIONAL PROPERTIES OF GIANT

ELLIPTICALS

We use the sample of 23, z < 0.3, supermassive elliptical
galaxies, selected by Bernardi et al. (2006, 2008) from the
SDSS database on the basis of their large velocity disper-
sions: σ >330 km s−1. Surface brightness fits and analyses
of the SDSS and HST-based light profiles are presented in
Hyde et al. (2008). An overview of the galaxy properties
that we need for this study is gathered in Table 1.

For all the objects in our sample, the observed surface
brightness distribution was fit to de Vaucouleurs (DeV) and
Sersic (S) profiles:

IDeV (R) = IDeV
0 exp

[

−7.67 [(R/rDeV
e )0.25 − 1]

]

, (1)

IS(R) = IS0 exp
[

bn [(R/rSe )
1

n − 1]
]

, (2)

where I0 and re are the central surface brightness and the
projected half-light radius (re is given Table 1). (We use the
parameters provided by Hyde et al. 2008, rather than those
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output from the SDSS database. Hyde et al. also provide fits
to Bulge/Disk decompositions, which we do not use here.)
We use γ to denote the mass-to-light ratio, and we define the
surface mass density Σ(R) ≡ γ I(R), then the deprojected
density, computed by inverting the Abel equation, is

ρ⋆(r) = − 1

π

∫ ∞

r

dΣ(R)

dR

dR√
R2 − r2

. (3)

The mass within (a sphere of radius) r is

M∗(< r) = 4π

∫ r

0

dxx2 ρ⋆(x). (4)

Note that we could have defined the analogous quantities
for the light, then ρ∗(r) = γρL(r) and M∗(< r) = γ L(<
r). The quantity of most interest in this paper is the total
stellar mass: M∗ ≡ M∗(∞) ≡ γ L(∞). We describe how we
estimate it in the next section.

The other observed quantity is the average velocity dis-
persion σ0 within the SDSS fiber, which has a diameter
(2rap) of 3 arcsec, that corresponds to about 5-10 kpc ac-
cording to the distance of our galaxies. (Note that here we do
not use σ aperture corrected to re/8 reported by Bernardi
et al. 2006, 2008.) The value of σ0 is related to the line-
of-sight velocity dispersion of the object, weighted by the
surface-brightness profile:

σ2
0 =

2π

L(rap)

∫ rap

0

σ2
los(R) I(R)RdR (5)

where L(rap) = 2π
∫ rap

0
I(R)RdR and σ2

los(R) is the veloc-
ity dispersion at projected distance R from the center.

The quantity σ0 is related to the gravitational potential,
and hence to the total mass of the system, as follows.

3 JEANS’ EQUATION ANALYSIS

In what follows, we provide an estimate of the total mass,
and the fraction of this which is in stars, for the objects in
our sample. Our analysis assumes that the objects – both
the stellar and the dark matter components – are spherical,
with constant stellar mass-to-light ratios, and no anisotropic
velocities. This is extremely idealized: Bernardi et al. (2008)
have argued that many of these objects are likely to be pro-
late objects viewed along the long axis. We discuss this more
complex case in an Appendix, but since none of our conclu-
sions are sensitive to this, we have kept the simpler (spheri-
cal, isotropic) model in the main body of the text. Bernardi
et al. also argue that some of these objects may be rotating
– an effect we do not include in our analysis. We have not
removed such objects from our analysis, since it is interest-
ing that they appear to show similar scalings as the objects
which are not rotating.

3.1 Spherical symmetry and isotropic velocities

The 1-D Jeans equation in spherical symmetry (Binney &
Tremaine 1987) relates the radial velocity dispersion σr(r)
to the mass distribution:

d[ρ⋆(r)σ
2
r(r)]

dr
+ 2β(r)

ρ⋆(r)σ
2
r(r)

r
= −ρ⋆(r)

GM(< r)

r2
, (6)

where ρ⋆ is the density of the stellar component at r,M(< r)
is the total mass (M⋆ + MDM ) within r and β is the
anisotropy profile. Studies of nearby elliptical galaxies in-
dicate that the tangential anisotropy within the half-light
radius is negligible (e.g. Matthias & Gerhard 1999; Gerhard
et al. 2001; Koopmans & Treu 2003; Koopmans et al. 2009).
Therefore we set β = 0 in what follows – the Appendix shows
how our results are modified if β 6= 0. Thus, equation (6)
implies

σ2
r(r) =

G

ρ⋆(r)

∫ ∞

r

ρ⋆(r)M(< r)

r2
dr. (7)

An observer only measures the projection along the line of
sight, σlos(r), which is given by

σ2
los(r) =

2

Σ(r)

∫ ∞

r

ρ⋆(R)σ2
r(R)√

R2 − r2
RdR. (8)

Inserting equation (7) in (8), and this in (5) shows how the
total dynamical mass is related to the observed light profile
and σ0.

3.2 Insignificance of dark matter in σ0

In what follows, we estimate the total mass within some
radius r as the sum of the stellar mass (obtained from the
observed light profile with the assumption of constant mass-
to-light ratio) and that of the dark matter, for which we use
the fitting formula of Navarro et al. (1996; hereafter NFW).

For an NFW profile with total mass Mvir, the virial
radius is

rvir
kpc

= 548

(

Mvir

1013M⊙

)0.33

. (9)

The mass within some r < rvir is given by

MDM (< x) = Mvir

log(1 + x)− x
1+x

log(1 + c)− c
1+c

, (10)

where x = r/rs = cr/rvir: rs is a characteristic scale length
for the halo, and the final equality defines the concentration
parameter

c ≡ rvir
rs

≈ 9.3

(

Mvir

1013M⊙

)−0.13

. (11)

Note that massive halos are less concentrated. For small x,

MDM (< x)

Mvir
≈ x2/2

log(1 + c)− c
1+c

; (12)

for c = 9.3, this is x2/2.86.
We model the total mass of each galaxy in our sample as

a superposition of the deprojected de Vaucouleurs or Sersic
profile having total mass M∗ and an NFW halo with a total
massMvir. This represents a compromise: adiabatic contrac-
tion arguments suggest that the dark matter should become
more centrally concentrated than a pure NFW profile, as
the gas which formed the stellar component shrinks towards
the center – we are ignoring this effect (see Padmanabhan
et al. 2004; Schulz et al. 2010; Treu et al. 2010 for recent
analyses of other samples in which this effect is included).
On the other hand, observations suggest that galaxies have
a cored rather than a cuspy halo (e.g. Salucci et al. 2007) –
even an uncontracted NFW profile is too steep.
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Figure 1. Left : Radial velocity dispersion velocity profile for a massive elliptical galaxy having stellar mass M∗ = 1012M⊙ surrounded
by a dark matter halo of mass Mvir = 30M∗. The radial distributions of these two components are described in the main text. The
dotted line (green) represents the dark matter component, the dashed line (red) the stellar component (for a de Vaucouleurs profile),
and the solid line (blue) the total profile. For such objects, the dark matter does not contribute significantly within the first kpc. Right :
Central velocity dispersion measured within a fiber of projected radius 7 kpc (σDM

0 ), for the dark matter component only, as Mvir is
increased.

Table 2. Results of the modelling. Contribution of the dark mat-
ter component on the total dispersion velocity (column 2). Dy-
namical mass computed by solving the Jeans equation (column
3-4). Photometric stellar mass using the model of Maraston (col-
umn 5-6).

#
σtot
0

−σ⋆
0

σtot
0

Mdyn,DeV
⋆ Mdyn,S

⋆ MSP,DeV
⋆ MSP,S

⋆

(%) (1011M⊙) (1011M⊙) (1011M⊙) (1011M⊙)

1 5 9.5 11.2 5.5 8.5
2 3 7.6 8.3 7.4 13.2
3 5 15.0 14.4 14.5 13.2
4 8 21.7 22.1 11.7 12.3
5 6 19.7 19.6 14.5 12.6
6 2 8.3 9.0 23.4 26.9
7 10 28.7 25.6 24.0 18.2
8 5 14.5 14.1 6.6 6.0
9 4 9.7 10.3 5.2 6.0

10 1 5.2 5.2 7.9 7.9
11 2 6.9 7.3 2.2 2.4
12 1 3.0 3.1 2.6 3.6
13 6 20.4 20.7 10.0 10.2
14 4 14.2 15.0 18.2 22.9
15 3 6.8 7.5 3.4 4.3
16 3 10.1 12.4 6.6 11.0
17 2 3.1 3.6 0.9 1.4
18 5 18.1 19.6 8.1 10.0
19 1 2.7 2.7 2.9 3.6
20 1 4.0 4.6 6.9 9.5
21 3 17.3 19.8 25.7 42.7
22 1 4.7 5.7 7.1 12.3

To proceed further, we assume that :

Mvir = 30M⋆, (13)

following Shankar et al. (2006). This makes

M(< r) = M∗

(

M∗(< r)

M∗

+ 30
MDM (< r)

Mvir

)

. (14)

Notice that big galaxies are likely to have some scatter
around this number (i.e. 30). In fact for smaller values, our
conclusion that the stars dominate the mass will be stronger.
We demonstrate that the mass within rap is dominated

10-1 100

r/re

100

101

�

Figure 2. Constant of proportionality λ between M∗ and rapσ2
0

(equation 16), where M∗ is computed by solving the Jeans equa-
tion (see text).

by the stars, not the dark matter. For Mvir ≈ 1013M⊙,
rs = rvir/c ≈ 60 kpc, and the NFW mass within rap is ap-
proximately 30M∗ (rap/rs)

2/2.86, whereas the stellar mass
within rap is slightly less than M∗/2. Since rap/rs ≪ 1,
the total mass within rap is dominated by the stellar mass.
Consequently, σ0 is also dominated by the stellar mass.

We show this explicitly in Figure 1. The left hand panel
shows σlos(r) , obtained from equation 7, 8, for an elliptical
galaxy with M⋆ = 1012M⊙ and re = 6 kpc. We see that
the contribution from the dark matter component is always
much smaller than that of the stellar component (σDM

los ≪
σ⋆
los).

Then we show that σDM
0 is always negligible compared

to σ0 observed (right hand panel). Since σ2
0 = σ⋆ 2

0 +σDM 2
0 ,

within our assumptions, the measured value of σ0 provides
a good estimate of M∗, without being contaminated by the
dark matter component. The effect of DM is small, we can
evaluate it and correct the estimation of σ⋆

0 by assuming
equation 13. On average the dark matter component con-
tributes to less than 5% to the total velocity dispersion (Ta-
ble 2).

Now we build a new stellar mass estimator that exploits
the quantity σ0. The Jeans equation implies that the quan-
tity rapσ

2
0 should be proportional to a function of rap/re. If

we set

M⋆ = λ (rapσ
2
0), (15)
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Figure 3. Top: Dynamical mass versus luminosity in the i-band.
Bottom: stellar mass-to-light ratio (computed from the dynamical
mass) versus color g-r.

the actual value of λ plotted in Figure 2 can be fitted by:

λ = 4.5
(

rap
re

)−0.9

. (16)

As a check, note that if the power-law above had slope −1,
then M∗ ∝ reσ

2
0 ; this is the scaling that is usually assumed.

The zero-point of theM∗ ∝ reσ
2
0 relation, 4.5, is close to that

commonly assumed for a pure de Vaucouleurs profile (e.g.
Bernardi et al. 2010a). It is also close to that derived from
analyses which assume adiabatic contraction (Padmanabhan
et al. 2004).

The top panel of Figure 3 shows the dynamical stellar
mass computed as described above, versus the luminosity
in the i-band. The bottom panel shows the corresponding
mass-to-light ratio versus color (g-r).

4 COMPARISON WITH STELLAR MASS

ESTIMATES FROM PHOTOMETRY

We estimate the stellar masses MSP
∗ , from the stellar popu-

lation (hereafter SP) model of Maraston et al. (2009) (avail-
able at www.maraston.eu). This is a two-component model
made by a major metal-rich population and a low percent-
age (3%) of an old and metal-poor population with the same
age. Moreover, an improvement in the spectra of K-giants
is included through the empirical stellar spectra of Pick-
les (1998). The initial mass function in the Maraston et al.
(2009) paper was a Salpeter (1955) and we did not mod-
ify this assumption here. We use these models because they

trace the color evolution of Luminous Red Galaxies (LRGs)
in SDSS from redshift 0.1 to 0.6 much better than previous
attempts did (see Maraston et al. 2009).

We obtain the stellar masses through Spectral Energy
Distribution (SED) fitting, as in Maraston et al. (2006),
e.g., by using the Maraston et al. 2009 templates in the
Hyper-Z code (Bolzonella et al. 2000)1. We computed the
stellar masses using both de Vaucouleurs and Sersic mag-
nitudes. The first set were obtained by fitting the ugriz de
Vaucouleurs magnitudes available from the SDSS database,
while the second set was computed rescaling the SDSS de
Vaucouleurs magnitudes by the difference between the i-
band Sersic and de Vaucouleurs magnitude observed by
Hyde et al. (2008). This is a good approximation since color
gradients are small.

The panel on the left of Figure 4 shows our Mdyn
∗ esti-

mates versus those from the stellar population model. Note
that Mdyn

⋆ = MSP
⋆ , the stellar masses as obtained with

these composite models are in agreement with the dynamical
masses.

5 STRUCTURAL PROPERTIES OF GIANT

ELLIPTICALS

We now analyze the correlation between size and mass in
our objects. The left hand panel of Figure 5 shows the cor-
relation between re and M∗ using our dynamical estimates
of M∗. The solid line shows the direct fit (i.e. 〈re|M∗〉)

re
kpc

= 7.2

(

M⋆

1012M⊙

)1.07±0.04

. (17)

This relation is significantly steeper than the 〈re|M∗〉 ∝
M0.6

∗ that is usually reported (e.g. Hyde & Bernardi 2009).
However, if we recall that these objects all have large σ, then
the relevant comparison is to the relation at fixed M∗ and σ.
This slope is close to 0.9 (Bernardi et al. 2008). In this case,
it is plausible that our (now only slightly) steeper slope is
due to the fact that our M∗ estimator is less noisy.

In fact, the small scatter in our relation can also
be understood in these terms. Equations (15) and (16)
show that our dynamical estimate of M∗ is proportional
to (re/rap)

0.9 rapσ
2 = (rap/re)

0.1 reσ
2. Figure 2 shows that

there is little scatter around this relation. However, our sam-
ple has essentially fixed σ, and rap/re has only a small scat-
ter, so Figure 5 is almost a plot of re vs re, with the zero-
point being set by the mean σ and rap/re values in the sam-
ple. This is why the slope is close to unity. Of course, if the
stellar distribution were not homologous, or the dark matter
was a significant fraction of the total mass, then rap/re need
not have small scatter.

The diamonds, squares, triangles show these same re-
lations, but now obtained from a sample of z ∼ 2.3 objects
by Bezanson et al. (2009), Damjanov et al. (2009), Mancini
et al. (2010) and Longhetti et al. (2007), respectively. A

1 We checked that had we fitted a composite model with identical
characteristics, but obtained with the Maraston (2005) SP mod-
els, i.e. the standard models based on the Kurucz (1979) model
atmospheres, we would have obtained the same results.
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Figure 4. Left : Dynamical masses from the Jeans equation versus stellar masses from the composite stellar population models by
Maraston et al. (2009). Dashed line shows Mdyn

⋆ = MSP
⋆ . Right : Ratio of Mdyn

⋆ /MSP
⋆ as a function of Mdyn.
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Figure 5. Left : Correlation between the characteristic radius, re, and the stellar mass M∗. The black circles correspond to our sample
(where the mass is estimated from the Jeans equation analysis). Open and filled symbols show the objects modelled using a Sersic or de
Vaucouleurs profile, respectively. The dotted line shows the relation for the full sample of early-types from Hyde & Bernardi (2009) and
the dashed line is from Shen et al (2003). Right : Correlation between the mean stellar density within re and M∗.

number of studies have noted that the z ∼ 2 objects are sig-
nificantly smaller than z ∼ 0 objects of the same M∗ (dotted
or dashed curves). Note that Bezanson et al., Mancini et al.,
Longhetti et al. and Damjanov et al. computed their stel-
lar masses with different IMF (Kroupa, Chabrier, Salpeter
and Baldry & Glazebrook) and different stellar population
models (Bruzual & Charlot 2003 and Maraston 2005). The
fit from Hyde & Bernardi (2009) and Shen et al. (2003)
were computed using a Chabrier IMF. In order to com-
pare these different samples we recalibrated the masses to a
Salpeter IMF (as used in Maraston et al. 2009) using these
scale-factors: MSalpeter

⋆ = 1.6MKroupa
⋆ = 1.78MChabrier

⋆ =

2MB&G
⋆ . In addition, to account for differences in stellar

population models we rescaled the Bezanson et al. data mul-
tiplying their stellar masses by 0.7 (as e.g. in Mancini et al.
2010, see also Muzzin et al. 2009) and by 0.5 for the Dam-
janov et al. stellar masses.

The evidence for small sizes at z ∼ 2 is not uncon-
tested. Mancini et al. (2010) have argued that neglect of
low surface brightness features will bias re to small values
(while the bias in M∗ is small – C. Mancini private commu-
nication). Accounting for this effect in a sample at z ∼ 1.5
yields the open squares in Figure 5. Evidently, these objects
are not small for their M∗ compared to z = 0 objects. If
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Figure 6. Left : Stellar mass density within re versus the stellar mass density within 1 kpc. Right : Correlation between stellar mass
density within 1 kpc and the total stellar mass. In both panels, open symbols are from a Sersic profile, while filled symbols are from a
de Vaucouleurs profile.

both Mancini et al. and Bezanson et al. are correct, and
both probe the massive end of the population at their re-
spective mean redshifts, then there must have been signifi-
cant evolution in size and stellar mass between z = 2.3 and
z = 1.5.

In view of this discussion, it is remarkable that the
z = 2.3 compact galaxies appear to trace the small size
and M∗ end of the relation we find at z ∼ 0, for fixed σ
(solid line). The z ∼ 1.5 sample of Mancini et al. (2010)
is confined to a narrower range of M∗, making it difficult
to define a relation. However, at this M∗, the difference be-
tween the solid line (σ ∼ 400 km s−1) and the others (bulk
of early-type population) is a factor of two or less. It will be
interesting if future measurements show the z = 2.3 objects
to have σ ∼ 400 km s−1, and even more so if this is also
true for the most compact of the objects in the Mancini et
al. sample.

We now turn to a slightly different version of the corre-
lation between size and mass, namely that between average
density and mass. For this purpose, it is useful to define

ρ̄r =
3

r3

∫ r

0

ρ⋆(r) r
2 dr, (18)

the average density within r. In what follows, we will pay
special attention to ρ̄e and ρ̄1: the mean density within the
de Vaucouleurs radius re, and within 1 kpc, respectively.
Whereas ρ̄e can be thought of as a characteristic density, ρ̄1
is more like the central density (recall that, for this sample,
re ≈ 10 kpc).

The right-hand panel of Figure 6 shows the correlation
between ρ̄e and M∗, using the same format as for the panel
on the left. Fitting to the relation defined by our dynamically
estimated M∗ yields

ρ̄e

M⊙ kpc−3
= 2.3 × 108

(

1012M⊙

M⋆

)2.22±0.04

. (19)

This characteristic density is a sharply declining func-
tion of stellar mass – the decline is significantly steeper
than previously reported for a sample which includes the
full range of early-types (e.g. Bernardi et al. 2003; Hyde &
Bernardi 2009). Following our discussion of the re −M∗ re-
lation above, the more relevant comparison may be with
the ρ̄e − M∗ relation at fixed σ, for which the slope is
−1.8 (Bernardi et al. 2008). Our current estimate is slightly
steeper, perhaps because our mass estimate is less noisy. To
see this, note that we could have derived the slope from the
fact that ρ̄e ∝ M∗/r

3
e ∝ M−2.21

∗ , where the final expression
uses the fact that the scatter between re and M∗ is small
(which we argued was a consequence of the fact that our
sample has only a small range of σ, a small range in re/rap,
and that Figure 2 has small scatter). We note that, while
the z = 2.3 objects have ρ̄e orders of magnitude larger than
the bulk of the z = 0 objects of the same M∗ (compare dia-
monds with dashed or dotted curves), they are only slightly
denser than z = 0 objects of the same M∗, if such objects
had σ ∼ 400 km s−1 (extrapolate solid line to small M∗).

The steepness of this relation stands in stark contrast
to the relation between ρ̄1 and M∗. The right-hand panel of
Figure 6 shows that this relation is very shallow. We find

ρ̄1

M⊙ kpc−3
= 1.8× 1010

(

1012M⊙

M⋆

)0.25±0.05

. (20)

While the mass varies by 2 orders of magnitude (from 1011

M⊙ to 5 × 1012 M⊙), the central density remains constant
at about 1.8× 1010 M⊙ kpc−3.

The left-hand panel of Figure 6 shows another way of
presenting this information: while ρe varies by 3 orders of
magnitude, ρ̄1 varies by less than a factor of 2. We find

ρ̄1

M⊙ kpc−3
= 1.3× 109

(

ρ̄e

M⊙ kpc−3

)0.12±0.04

. (21)
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Thus the central density is approximately constant for all
the galaxies of our sample.

It is quite remarkable that they show the same relation
as in the samples of Mancini et al. and Longhetti et al. at
z ∼ 1.5 as well as of Bezanson et al. (2009) at z ∼ 2.3.
Although ρ̄e is orders of magnitude larger in the z ∼ 2.3
sample than at z = 0, ρ̄1 is different by only a factor of two
or so.

6 DISCUSSION AND CONCLUSIONS

We analyzed a sample of 23 giant elliptical galaxies. They
are very massive (M > 1011M⊙) with large central velocity
dispersions ∼> 330 km s−1, which suggests old stellar popula-
tions (Bernardi et al. 2005). We estimated dynamical masses
for each of these systems by using the observed light pro-
files and central velocity dispersions, by solving the Jeans
Equation, under the assumptions of spherical symmetry, no
tangential velocity dispersions, no radial dependence of the
stellar mass-to-light ratio, and that each system has 30 times
more dark matter than stellar matter within the virial ra-
dius, with the dark matter following an NFW profile (i.e. no
accounting for adiabatic contraction).

We found that the total stellar masses of these systems
vary from about 1011M⊙ to 5× 1012M⊙ (Table 2). In such
models, the contribution of the dark matter modifies the
central velocity dispersion by less than 5% (Figure 1). Thus,
for these objects, the observed σ0 provides a good estima-
tor of the luminous mass (equation 16). We compared the
masses we derive to estimates of the stellar mass from stellar
population models (Figure 4). We find good agreement us-
ing a composite model with high age and a small (by mass)
metal-poor sub-component. This model fits well the colors
of Luminous Red Galaxies in SDSS. A major result of this
study is that we compute the mass-to-light ratio for massive
elliptical galaxies. This ratio is roughly constant for all the
sample (Figure 3), we find M⋆/L ∼ 5± 1 in the i-band, for
0.7 < g − r < 0.9.

We also studied different ways of presenting the cor-
relation between size and mass (Figure 5). The correlation
we find, re ∝ M1.07

∗ , is slightly steeper than that reported
by Bernardi et al. (2008). We suggest that this is because
our estimate of M∗ is less noisy. For similar reasons, we find
that the density within re is a more strongly decreasing func-
tion of M∗ than reported by Bernardi et al. (2008). We find
ρ̄e ∝ M∗/r

3
e ∝ M−2.2

∗ compared to their −1.8.
A notable result is that galaxies at z ∼ 2.3 (Bezanson

et al.) and z ∼ 1.5 (Mancini et al.) appear to follow the
same relation that we find at z ∼ 0. If each sample correctly
gather the most massive galaxies for each range of redshift,
the evolution between the size and the stellar mass should
be meaningful.

The small scatter associated with our dynamical esti-
mator of M∗ means that, in the space of re, ρ̄e and M⋆, the
objects in our sample trace out a one-dimensional curve (al-
though we have argued, as did Bernardi et al. 2008, that the
re ∝ M∗ scaling we find is consistent with the simplest virial
theorem scaling, once we account for the fact that these ob-
jects have essentially fixed σ). This is also true in the space
of re, σ and M⋆. We show this explicitly in Figure 7. Had
we used the stellar population-based estimate of M∗, these

curves would have been broadened into a plane. Since the
(re, σ0,M⋆) projection is similar to that of the Fundamental
Plane, our results suggest that scatter in the relation be-
tween L and M∗, or uncertainties in estimating M∗ serve to
enhance the impression of a plane rather than a curve.

On the other hand, some of the decreased scatter in our
analysis is due to our neglect of anisotropic velocity disper-
sion profiles. We explore this in the Appendix. Nevertheless,
it is likely that the scaling relation between re and M∗ of gi-
ant ellipticals is significantly steeper than for spirals (which

have re ∝ M
1/2
⋆ ). Understanding why is a challenge for mod-

els in which ellipticals form from mergers of spirals.
Although ρ̄e decreases strongly with M∗, the average

density on smaller scales (we chose 1 kpc) is almost inde-
pendent of M∗ (Figure 6). Moreover, it is remarkably similar
to that found by Bezanson et al. (2009), in their analysis of
z ∼ 2.3 galaxies. The mean density within 1 kpc seems to
be independent of the redshift and of the mass on an object
by object basis. I.e., since z ∼ 2, as these galaxies grew in
mass, the mass in the inner kpc remained unchanged. Un-
derstanding why is an interesting challenge.

Although this is most easily accomplished in models
where the mass is added to the outer regions only (e.g. Lapi
& Cavaliere 2009, Cook et al 2009) – so it is tempting to con-
clude that minor mergers were the dominant growth mode
since z ∼ 2 (e.g. Bezanson et al. 2009) – there is a direct
counterexample to this conclusion in the literature. In nu-
merical simulations of hierarchical structure formation, Gao
et al. (2004) find that although the mass in the central re-
gions of what becomes a massive cluster at z = 0 has re-
mained constant since z ∼ 6, the particles which make up
this mass changed dramatically as the objects assembled.
This assembly occurred through a sequence of major merg-
ers at z > 1; with minor mergers beginning to dominate the
mass growth only at z < 1. Note that in hierarchical mod-
els, what is true for cluster mass halos is also true for galaxy
mass halos. While gastrophysics may complicate the discus-
sion, we raise this as an example where mass growth due
to major mergers does not lead to increased density in the
central regions. This appears to be in remarkable agreement
with what we see. If the z ∼ 2 objects studied by Bezanson et
al. (2009) are to evolve into the objects in our sample, then
the required mass growth is about a factor of 5 (Figure 6)
– this is larger than most minor merger models can accom-
modate. It may well be that major mergers were required
at z ∼> 1.5 and that minor mergers become the dominant
growth mechanism for massive galaxies only at lower red-
shift (Bernardi 2009; Bernardi et al. 2010b).

Our Figure 5 supports such a picture: major mergers
would move the z = 2.3 objects approximately parallel to
the solid lines in the two panels. A factor of 5 change in mass
and size would bring them into much better agreement with
the dotted and dashed z = 0 relations in the panel on the
left, but they would still lie slightly above the correspond-
ing line in the panel on the right. Subsequent minor mergers
would increase the sizes and decrease the velocity disper-
sions, bringing both the sizes and densities into even better
agreement. (Note that a small fractional increase in mass
results in a larger fractional increase in size and an even
larger fractional decrease in density. Indeed, because den-
sity is proportional to (σ/re)

2, minor mergers are a great
way to decrease the density for a modest change in mass.)
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Figure 7. Left : Relation between the stellar mass M⋆, the characteristic density ρe, and the de Vaucouleurs radius re. Right : Relation
between M⋆, σ0 and re.

If the high redshift objects indeed have σ ∼ 400 km s−1

(as our Figure 5 may suggest), the decrease in σ associated
with minor mergers will (in fact, may be required to) bring
the number density of large σ objects into better agreement
with that seen locally (Sheth et al. 2003).

On the other hand, selection effects (e.g. due to the
small volume observed) could limit the detection of these
very massive galaxies. For example, the sample of ultramas-
sive early-type galaxies of Mancini et al. (2010) is selected
from a 2 deg2 field. In such a volume, if galaxies of M⋆ ∼ 1012

M⊙ are yet present at z > 1.5, as predicted by model like
Fan et al. (2010), the number of detections should be around
unity and therefore not necessary detected. The detection of
these massive objects (already difficult in the local universe)
is thus a challenge for the high redshift universe.
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APPENDIX A: PROLATE GALAXIES AND

ANISOTROPY

Bernardi et al. (2008) argue that the most massive of these
objects are likely to be prolate, viewed along the long
axis (see alse Thomas et al. 2007). If the shape is due to
anisotropic velocities, then the velocity dispersion projected
along the line of sight is

σ2
los(r) =

2

Σ(r)

∫ ∞

r

ρ⋆(R)σ2
r(R)√

R2 − r2
RdR

− 2r2

Σ(r)

∫ ∞

r

β(R)ρ⋆(R)σ2
r(R)

R
√
R2 − r2

dR,

(A1)

(e.g. Binney & Mamon, 1982), where β(r) ≡ 1−σθ/(2σr) is
the anisotropy profile. When β → −∞ the orbits are purely
circular, while β → 1 corresponds to radial orbits.

We have tried different values of β from 0 to 0.5, and
found that the estimated dynamical mass decreases as β in-
creases. If β = 0.5 the dynamical estimate of M∗ is smaller
by 0.6 dex, but the assumption that all the galaxies of the
sample have β = 0.5 is inconsistent with most studies which
favor β = 0 (e.g. Thomas et al. 2009). Figure 8, which has
the same format as Figure 4 in the main text, shows re-
sults for β = 0.2. The dynamically estimated value of M∗ is
slightly smaller compared to Figure 4.

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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