
Journal of Computer Security 17 (2009) 191–210 191
DOI 10.3233/JCS-2009-0337
IOS Press

Configuring storage-area networks using mandatory
security

Benjamin Aziz a,∗, Simon N. Foley b, John Herbert b and Garret Swart c

a e-Science Centre, Science and Technology Facilities Council, Didcot OX11 0QX, UK
E-mail: b.aziz@rl.ac.uk
b Department of Computer Science, University College Cork, Cork, Ireland
E-mails: {s.foley, herbert}@cs.ucc.ie
c Oracle Corporation, Redwood Shores, CA 94065, USA
E-mail: garret.swart@oracle.com

Storage-area networks are a popular and efficient way of building large storage systems both in an
enterprise environment and for multi-domain storage service providers. In both environments the network
and the storage has to be configured to ensure that the data is maintained securely and can be delivered
efficiently. In this paper, we describe a model of mandatory security for SAN services that incorporates
the notion of risk as a measure of the robustness of the SAN’s configuration and that formally defines a
vulnerability common in systems with mandatory security, i.e. cascaded threats. Our abstract SAN model
is flexible enough to reflect the data requirements, tractable for the administrator, and can be implemented
as part of an automatic configuration system. The implementation is given as part of a prototype written
in OPL.

Keywords: Storage-area networks (SAN), formal validation methods, security, configuration analysis

1. Introduction

Storage-area networks (SANs) constitute an important element in modern IT in-
frastructures due to their efficient management of the underlying storage capabili-
ties in environments shared by several servers, applications, users or even organisa-
tions. The purpose of any SAN service is to provide virtual storage services, called
a datasets, to its clients, typically file systems or database servers. Each dataset is
constructed from physical disks but unlike a physical disk, which has a fixed set of
properties that were set when the disk was designed, a dataset has a set of require-
ments that are specified when the dataset is created and these properties may change
over the life of the dataset. These properties may include current capacity, availabil-
ity in the face of component failures, reliability of the data stored on the dataset in the
face of media failures, and any real time performance requirements. These require-
ments could be in excess of what is provided by a physical device, however, it is up

*Corresponding author. Tel.: +44 1235 778840; Fax: +44 1235 445945.

0926-227X/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

192 B. Aziz et al. / Configuring storage-area networks using mandatory security

to the administrators to configure the SAN with enough resources so that datasets
meeting the requirements can be provisioned.

Like any other multi-user system, a SAN also has security requirements. These
can include data privacy – protecting data from unauthorized readers, data integrity –
protecting data from unauthorized updates and additional privacy of the data traffic.
One approach to data privacy is to encrypt the data before the application writes it
to the dataset. This provides very good privacy but does not help with integrity or
traffic analysis attacks. Another, more typical approach yielding all three security
properties, is to secure the devices used to provide the SAN service. In an enterprise
configuration, this is often done by a combination of security kernels in the SAN
devices themselves, as well as firewalls that restrict access of the SAN service to
those client machines authorised to use the service. In such an environment, both
the firewall and the SAN’s own internal security system must be breached before
unauthorized access can take place.

The kind of security threat that we are concerned with in this paper is an attack
by an authorized user of the SAN. It is more likely to take place in a large enterprise
SAN environment that is shared by a wide range of organizations, or in a service
provider that is providing storage services to many different (and possibly compet-
ing) customers. In such an environment, the administrator cannot use the firewall
to prevent the attack because it is initiated from a valid user of the SAN that must
be allowed to use the service. The administrator must rely on the configuration of
the SAN’s internal security mechanisms only to determine which datasets can be
accessed, and which ones cannot.

Using a single SAN system for storing multiple datasets, accessed by many differ-
ent authorized clients, means that the implementation of the SAN must be trusted to
provide the correct semantics. This reliance on a single layer of software to provide
data separation is a potential soft spot in the security of the system. One solution to
this security problem, which we adopt in this paper, is to specify carefully the data
separation requirements on devices making up the SAN. Once such requirements
are specified, this will lead to a search for an acceptable SAN configuration that will
maintain a low risk level associated with losing the privacy or integrity of the data
being stored on the SAN.

In carrying out an attack, an authorized user attempts to ‘copy’ data from one
dataset to another, in violation of the data-separation/security policy. The attack has
consequence for both confidentiality (leaking of dataset) and integrity (unauthorized
modification of dataset). The attack may be intentional, where the user deliberately
attempts to violate the data-separation policy, or unintentional, where the software
that the user executes contains malicious code that attempts to violate the policy un-
known to the user. This data-separation security policy is not unlike the requirements
for a Chinese Wall security policy [5], and the model that we develop in this paper
also provides a novel risk-based interpretation for Chinese Walls.

In this paper we do not consider how underlying security services for SANs might
be implemented [13], rather, we take a modeling approach and provide an abstract

B. Aziz et al. / Configuring storage-area networks using mandatory security 193

definition of what is meant by (data-separation) security in a SAN. We are concerned
with threats from insiders, and in particular, the primary contribution in this paper is
the development of a framework that can be used to determine a secure configuration
of a SAN. In addition, the configuration is chosen so as to be within an acceptable
level of risk as specified by the security administrator.

The rest of the paper is structured as follows. In Section 2, we define a simple
model of SANs. In Section 3, we define the notion of a secure SAN; essentially a
SAN equipped with generalized form of mandatory security. In Section 4, we define
a configuration analysis for our secure SANs that aims at minimising the risk level
and in Section 5, we discuss the issue of cascaded vulnerabilities in secure SANs.
In Section 6, we define our notion of an optimal configuration and in Section 7,
we review an implementation of the configuration analysis in OPL and finally, in
Section 8, we conclude the paper and discuss directions for future work.

2. Storage-area networks

According to the model of SANs defined in [1,19], a SAN is composed from the
following elements, as illustrated in Fig. 1, where the terminal connectors express
many–one and many–many relations among the different elements of the model.
These elements are described in the following paragraphs.

2.1. Disks

These are the physical storage units that may include tapes, hard disks, optical and
solid state devices. We shall write the set of all disks as DISK = {disk, disk′, . . .}.

Fig. 1. The structure of a SAN.

194 B. Aziz et al. / Configuring storage-area networks using mandatory security

2.2. Disk controllers

Usually, disks are arranged into arrays which are connected to one or more con-
trollers. Each controller has a direct access to its attached arrays and, in general,
the controller will retain a few spare disks inside the array for use in the event of a
failure. We refer to the set of disk controllers as CNTR = {ctr, ctr′, . . .}.

2.3. Logical volumes

A controller usually builds one or more large virtual disks, which we call logi-
cal volumes, out of the physical storage units that it is connected to using RAID
techniques [16]. For availability reasons, logical volumes are not typically tied to a
single controller and the failure of the primary controller will trigger its back-up to
controllers to start serving the logical volumes it was serving.

We define the set of logical volumes as LV = {lv, lv′, . . .}. Furthermore, we define
the following two functions, which relate logical volumes to disks and controllers,
respectively:

partOf : DISK → LV ,

serves : CNTR → ℘(LV).

Hence, partOf (disk) = lv denotes that disk is part of the logical volume lv, and
serves(ctr) = {lv1, . . . , lvn} denotes that logical volumes lv1, . . . , lvn are served by
controller ctr.

2.4. Datasets1

In our simplified model, a dataset is a collection of related data files that are ac-
cessed by applications as a unit. Controllers implement the datasets by constructing
RAID-based logical volumes with the appropriate properties out of a set of iden-
tical physical disks and then partitioning them to datasets of the appropriate size.
Examples of datasets include the set of web files comprising a website, the set of
files holding a database and a user’s email files. We write the set of datasets as
DATASET = {data, data′, . . .}.

The following function relates datasets to logical volumes:

storedOn : DATASET → LV

such that storedOn(data) = lv signifies the fact that the dataset, data, is stored on the
logical unit, lv.

1In SANS, these are more specifically called Logical Units or LUNs.

B. Aziz et al. / Configuring storage-area networks using mandatory security 195

2.5. Applications, streams and servers

Applications, which constitute a set, APP = {app, app′, . . .}, are active entities
that read and write information stored in one or more datasets. In effect, datasets are
regarded as virtual disks that are accessed by applications using streams. A stream is
regarded as a triple:

(app, op, data) ∈ STREAM,

where an application, app, accesses some dataset, data, using operation, op ⊆
{R, W}, which is a subset of the Read and W rite capabilities.

At any one time, an application runs on a particular application server, which
may be running more than one application. We write the set of application servers as
SERVER = {srv, srv′, . . .}, and we define the following function, relating applica-
tions to their application servers:

runsOn : APP → SERVER

such that runsOn(app) = srv expresses the fact that application, app, is currently
running on the application server, srv.

2.6. Switches

SAN switches, much like switches in a Local Area Network (LAN), are used to
connect the components of a SAN (i.e. its controllers, other switches and application
servers) and to connect a SAN to a set of LANs. For a SAN application to be able
to access a SAN, the application must either be connected to the LAN which is
connected to the SAN, or must be directly connected to the SAN via a network
controller specific to the SAN fabric being used.

Assuming that DEVICE = CNTR ∪ SWITCH ∪ SERVER is the set of devices of a
SAN, ranged over by dev, dev′, . . . , then we can define the following function:

connects : SWITCH → ℘(DEVICE)

such that connects(swt) = {dev1, . . . , devn} denotes the fact that swt currently con-
nects the devices, dev1, . . . , devn. It is also possible to refer to the transitive closure
of connects as connects∗.

3. A mandatory security model

In this section we propose a basic mandatory security model that will be used
later to characterize security in SANs. The model builds on and extends the label-
based model of Multilevel Security with partially trusted subjects [2,4,7]. It has been
shown that a wide variety of application security policies can be encoded in terms of
label-based policies [10].

196 B. Aziz et al. / Configuring storage-area networks using mandatory security

3.1. Label-based security policies

A label-based security policy is a lattice of security labels (classifications), SC,
with partial ordering, �, and the least-upper and greatest-lower bound operators,
�, �, respectively. An example is the multilevel security policy with labels, SC =
{unclassified, secret, topsecret}. In this paper, we shall adopt the lattice resulting
from the powerset of the set of all organisation names ordered by subset inclusion
with the empty set and the full set being the bottom and top elements, respectively.
More formally, assume that ORG = {org1, org2, . . .} is the set of organisations,
℘(ORG) is the powerset of ORG, then our security lattice is defined in the standard
manner as:

(℘(ORG), ⊆, ∩, ∪, ∅, ORG).

Hence, ∀x, y ∈ SC: x � y ⇐⇒ x ⊆ y. Intuitively, this means that label y is more
important than label x if the set of organisations associated to y is a superset of that
associated to x. This association could have different semantics depending on the
type of entities x and y are being used to label. In what follows, we are interested
mainly in read/write semantics.

Let ENTITIES represent the set of all components that can source and/or sink
information (disks, controllers, applications, etc.). Every entity, e, is bound to an
interval of the policy lattice, where int(e) = (x, y) ∈ SC × SC, and x � y, is
interpreted to mean that entity e may sink information at class y or lower and may
source information at class x or higher. We also write int(e) = [int⊥(e), int�(e)].

If entity e is a subject (in the traditional sense) then int(e) = [x, y] corresponds to
a partially trusted subject that may view/read information at class y and lower (vmax)
and may write may write/alter information at class x and higher (amin). Conventional
objects may be interpreted within this model as entities that are bound to an interval
[x, x] with a single level. Informally, int(e) = [x, y] means that an entity, e, can be
trusted to properly manage multilevel information within the security interval, [x, y].

Within this model, the definition of a secure system is simply a generalization of
the Bell–La Padula axioms (the simple security condition and star property). A sys-
tem is secure if for all entities, A and B, such that information can flow from A to
B then int⊥(A) � int�(B) holds. Other possible properties such as the integrity
property can also be modeled using, for example, the Biba integrity axioms (where
the flow of information is dictated by int�(B) � int⊥(A)). In this paper, we shall
only deal with the Bell–La Padula axioms.

Example 1. A SAN is to be configured to manage IBM, HP and Exxon informa-
tion. The powerset lattice resulting from the set {IBM, HP, Exxon} is shown in
Fig. 2. According to our labeling policy, an application server that is being used
to securely process IBM and Exxon data will be assigned the security interval
[{}, {IBM, Exxon}] and a dataset belonging to IBM will have the security interval
[{IBM}, {IBM}].

B. Aziz et al. / Configuring storage-area networks using mandatory security 197

Fig. 2. The powerset lattice of {IBM, HP, Exxon}.

In a MAC model subjects do not necessarily correspond to users. For exam-
ple, a subject might be a process that is created and/or owned by a user. In our
model, a user is cleared to an interval and may create/own a subject with an inter-
val that is a subset of the user’s clearance. Thus, a user that is cleared to interval
[{Exxon}, {IBM, Exxon}] might create processes A and B with classification inter-
vals [{Exxon}, {Exxon}] and [{Exxon, IBM}, {IBM, Exxon}], to process Exxon in-
formation and aggregates of Exxon and IBM information (and process A may send
data to B, but not vice-versa). Thus, while the user is permitted to read IBM data,
the user is not permitted to write IBM-only information. A wide variety of MAC
policies can be enforced with these simple policies and the reader is referred to [10]
for further examples.

3.2. Assurance levels

An assurance level expresses the level of confidence in the capability of an en-
tity to properly meet its security requirements. An assurance policy is a lattice of
assurance levels, A, with partial ordering, �. The assurance of a device may depend
on the complexity of the device’s function, the amount of testing that has been ap-
plied to the device, the frequency of use, and the development methodology that has
been used. Traditionally, assurance ratings are given as a total ordering, for example,
A1 > B3 > B2 > B1 > · · · is the assurance ratings from [20]. In this paper,
following [11], we generalize this to a lattice structure as it allows for incomparable
assurance levels. Every entity, e, has an associated assurance rating, assur(e) ∈ A.
An off-the-shelf physical disk might have a low assurance rating; a multilevel secure
application system that has been formally evaluated might have a high assurance rat-
ing, while a less formally developed embedded device with very limited functionality
might also have a high assurance rating.

198 B. Aziz et al. / Configuring storage-area networks using mandatory security

3.3. Risk functions

The relationship between assurance levels and security intervals can provide an
indication of how much an entity should be relied upon. A low-assurance off-the-
shelf physical disk configured with security interval [{IBM}, {IBM}] can be relied
upon to manage single-level IBM data. However, the same disk should not be con-
figured with an interval [{IBM}, {IBM, HP}] as there is not sufficient assurance that
it will reliably manage/separate the data between these competing organizations. On
the other hand, a disk configured with the interval [{}, {IBM, Exxon}] is sufficient to
manage/separate the non-competing IBM and Exxon data.

We use a risk function to encode the relationship between assurance levels
and security intervals. Given an entity, e, with assurance level, a, and a secu-
rity interval, [x, y], then the risk that the entity can be compromised is defined as
risk([x, y], a, e) ∈ N along with the standard “+” operator to aggregate risk values
and the “<” operator to compare them.

It would be interesting in the future to develop algorithms that would compute
the risk level of an entity, given its assurance level and security interval. An early
approach that adopted the notion of risk was introduced in the “Red Book” [20] and
the “Yellow Book” [6], which also discussed the issue of what constitutes acceptable
risk levels when evaluating the security of computing systems.

Note that our choice of natural numbers as a quantification of risk is arbitrary,
however this choice is simple and useful. Other choices (other algebras) could have
been equally valid, however, the exploration of these is outside the scope of the paper.

Example 2. Consider the security policy from the previous example and an assur-
ance lattice, lo � hi. There is a low security risk to using an off-the-shelf disk, disk,
for single level data:

risk
(
[{IBM}, {IBM}], lo, disk

)
= risk

(
[{HP}, {HP}], lo, disk

)

= risk
(
[{Exxon}, {Exxon}], lo, disk

)

= risk
(
[{HP, IBM}, {HP, IBM}], lo, disk

)

= 1.

There is a high security risk when using the same disk to manage/store multilevel
data from competing organizations:

risk
(
[{}, {IBM, HP}], lo, disk

)
= risk

(
[{}, {IBM, HP, Exxon}], lo, disk

)
= 40.

However, there is less of a risk using the off-the-shelf disk to store multilevel data
from non-competing organizations:

risk
(
[{}, {IBM, Exxon}], lo, disk

)
= risk

(
[{}, {HP, Exxon}], lo, disk

)
= 10.

B. Aziz et al. / Configuring storage-area networks using mandatory security 199

If we assume that a specialized high assurance disk, disk′, will properly man-
age/partition data at different security classifications, then there is less risk when
using this disk to manage data from competing organizations:

risk
(
[{}, {IBM, HP}], hi, disk′) = risk

(
[{}, {IBM, HP, Exxon}], hi, disk′)

= 10.

In providing a relationship between assurance levels and security intervals, the
risk function provides a novel approach to characterizing aggregation problems. This
contrasts with the lattice based strategies for Chinese Walls that are described in [9,
15,17] which can be thought of as defining a ((un)acceptable aggregation) binary
risk relation.

4. Configuring secure SANs

A secure SAN is a SAN extended with the mandatory security model defined in
the previous section. In the context of our security model, configuring a SAN means
searching for a configuration of the SAN devices that meets the specified security
policy, the applications’ data requirements and any service level agreement (SLA)
that may have been agreed with the customers of the data, and that has the least
amount of risk possible.

More precisely, before the configuration process can commence we require:

• The security policy, that is, the lattice of security classes, SC, and the risk func-
tion, risk.

• The application requirements, that is, the security intervals of all datasets,
int(data), and the set of streams that relate each application to the datasets that
it reads and writes.

• A set of risk limitations in the form of a security class and a maximum risk
threshold. These limitations correspond to a customer requirements for an upper
bound on the risk in storing one a particular security point class.

• The device specifications, that is, the set of servers, controllers, switches and
disks that the SAN is to be configured from. For each such device, e, we need
its assurance level, assur(e).

Solving the configuration problem will result in finding values for the partOf , serves,
storedOn, runsOn and connects functions that define a particular instance of a SAN
system.

4.1. Defining security intervals

A dataset, data, is initially assigned a point interval, int(data) = [x, x], represent-
ing the sensitivity of that dataset. This is a reasonable assumption since datasets are

200 B. Aziz et al. / Configuring storage-area networks using mandatory security

passive entities that can only be manipulated and will never themselves manipulate
other datasets. Using the point intervals of a set of datasets, it is possible to compute
the interval of an application that will access those datasets through streams, using
the lattice meet, �, and join, �, operations:

int(app) = [(� set⊥), (� set�)],

where,

set⊥ = {int⊥(data) | (app, op, data) ∈ STREAM ∧ op = W},

set� = {int�(data′) | (app, op, data′) ∈ STREAM ∧ op = R}.

Now, for a particular setting of the storedOn function, we can define the security
intervals of the logical volumes:

int(lv) = [(� set⊥), (� set�)],

where,

set⊥ = {int⊥(data) | data ∈ DATASET ∧ storedOn(data) = lv},

set� = {int�(data) | data ∈ DATASET ∧ storedOn(data) = lv}.

From the security intervals of logical volumes and given a particular definition of the
serves function, we can define the security intervals of controllers:

int(ctr) = [(� set⊥), (� set�)],

where,

set⊥ = {int⊥(lv) | lv ∈ LV ∧ lv ∈ serves(ctr)},

set� = {int�(lv) | lv ∈ LV ∧ lv ∈ serves(ctr)}.

Similarly, security intervals of disks may be defined based on the security intervals
of the logical volumes and a definition of the partOf function:

int(disk) = int(partOf (disk)).

On the other hand, the security interval of an application server is defined based
on the security intervals of its applications running and a definition of the runsOn
function:

int(srv) = [(� set⊥), (� set�)],

B. Aziz et al. / Configuring storage-area networks using mandatory security 201

where,

set⊥ = {int⊥(app) | app ∈ APP ∧ runsOn(app) = srv},

set� = {int�(app) | app ∈ APP ∧ runsOn(app) = srv}.

Finally, intervals of switches are computed from intervals of the devices they connect
(i.e. other switches, controllers, disks and application servers), given a definition of
the connects function:

int(swt) = [(� set⊥), (� set�)],

where,

set⊥ = μ swt′.
(
{int⊥(srv) | srv ∈ SERVER ∧ srv ∈ connects(swt)}

∪ {int⊥(ctr) | srv ∈ CNTR ∧ ctr ∈ connects(swt)}

∪ {int⊥(swt′) | swt′ ∈ SWITCH ∧ swt′ ∈ connects(swt)}
)
,

set� = μ swt′.
(
{int�(srv) | srv ∈ SERVER ∧ srv ∈ connects(swt)}

∪ {int�(ctr) | srv ∈ CNTR ∧ ctr ∈ connects(swt)}

∪ {int�(swt′) | swt′ ∈ SWITCH ∧ swt′ ∈ connects(swt)}
)
.

The usage of the least-fixed point operator, μ, is required since the definition of
connects is recursive.

Example 3. Given the following dataset intervals:

int(data1) = [{IBM, Exxon, foo}, {IBM, Exxon, foo}],

int(data2) = [{IBM, foo}, {IBM, foo}],

int(data3) = [{foo}, {foo}],

and an application, app, using the following streams

(app, {R}, data1),

(app, {R, W}, data2),

(app, {W}, data3),

then if app is classified with the interval, [{foo}, {IBM, Exxon, foo}], it can handle
the above data using the streams indicated.

202 B. Aziz et al. / Configuring storage-area networks using mandatory security

Fig. 3. The cascade vulnerability problem.

5. Cascade vulnerabilities

Cascade vulnerabilities were first identified in [20] in networks of systems with
multilevel security classifications and assurance levels. In such systems, the problem
arises in scenarios similar to that shown in Fig. 3.

Given the ordering on security classifications, C � S � TS, and ordering,
B1 � B2 � B3, on levels of assurance, then this system exhibits a case of the cas-
cade vulnerability problem arising from the fact that an attacker classified at security
level, C, and possessing the capabilities to break assurance level, B2 (and below),
can attack and break Sys.A and Sys.C. As a result, the attacker can go through the
following scenario: first, it downgrades information labeled TS on Sys.A to level S.
Second, it communicates this information to Sys.C. Finally, it downgrades the infor-
mation to level C, which is the level of the attacker itself, i.e. it can read the informa-
tion perfectly legally now. This scenario reflects a vulnerability, which undermines
the assurance requirement stating that for information to be down-classified from TS
to C, an attacker needs to be able to have capability at level B3 or higher.

Cascade vulnerability attacks are possible in any network model with security and
assurance classifications. In the following sections, we present an analysis of the
vulnerability in our model of secure SANs.

5.1. Introductory definitions

First, we need to clarify what we mean by a network.

Definition 5.1 (Network). Assuming a set of nodes, N = {n1, n2, . . .}, a set of
edges, E = {(n, n′, [x, x]), . . .}, where only data classified at security level, [x, x]2

(or lower), is allowed to flow from n to n′, then a network is defined as the following
quadruple:

(N , E , int, assur),

2We follow the convention adopted in Section 4.1 that data have point security intervals.

B. Aziz et al. / Configuring storage-area networks using mandatory security 203

where int : N → (SC × SC) and assur : N → A are the usual mappings from nodes
to their security intervals and to their assurance levels, respectively.

A network then contains nodes, edges and security and assurance classification
mappings. In a certain sense, a network is a directed graph with the extra information
of assurance and security level mappings. Based on this definition of a network, we
define a chain as follows.

Definition 5.2 (Chain). Given a network, (N , E , int, assur), then a chain is defined
as any list of nodes, [n1, . . . , nm], which satisfies the property:

∀ni, ni+1 ∈ [n1, . . . , nm], ∃[x, x] ∈ SC × SC: (ni, ni+1, [x, x]) ∈ E .

Hence, in Fig. 3, we have that [Sys.B, Sys.A, Sys.D, Sys.C] is a chain, and so is
[Sys.D, Sys.C]. Furthermore, a bad chain is a chain that can be compromised by
some attacker.

Definition 5.3 (Bad chain). Given an attacker, I , with a capability to break a maxi-
mum assurance level, aI ∈ A, then we say that a chain, [n1, . . . , nm], is a bad chain
with respect to I , if the following is true:

∀n ∈ [n1, . . . , nm]: assur(n) � aI .

This implies that every element in the chain can be broken by I . Using these
definitions, we can now define a cascade vulnerability formally as follows.

Definition 5.4 (Cascade vulnerability). We say that an attacker, I , with security
level, int(I) ∈ SC × SC, and capability, aI ∈ A, poses a cascaded threat using
a bad chain, [n1, . . . , nm], to data classified at level [x, x] ∈ SC × SC on some node,
n /∈ [n1, . . . , nm], if the following condition holds true:

∃ni, nj ∈ [n1, . . . , nm]: (n, ni, [x, x]) ∈ E ∧ int�(I) � int⊥(nj).

The condition in Definition 5.4 highlights the role of two important nodes in a bad
chain: the first, ni, which is linked at security level, [x, x], with the victim node, n,
acts as an indirect leakage point since data classified at [x, x] can legally pass from
n to ni. The second node, nj , acts as a direct point of leakage of data to the attacker
since the latter can legally read any data nj is allowed to write. This is true because
the attacker has a read-level of int�(I), which is more than or equal to the write-
level, int⊥(nj). In other words, a cascade vulnerability arises whenever an attacker
becomes capable of manipulating a bad chain to obtain sensitive data from a node,
which has some sort of connection to the bad chain, and then downgrade and read
the sensitive data.

In the following sections, we give concrete examples of the cascade vulnerability
problem in the cases of networks of logical volumes and networks of application
servers.

204 B. Aziz et al. / Configuring storage-area networks using mandatory security

5.2. Networks of logical volumes

Using the model of SANs as defined in Section 2, we define a network of logical
volumes as follows.

Definition 5.5 (Network of logical volumes). Given some definition of the function,
storedOn : DATASET → LV , and a set of streams, STREAM, then we can define a
network of logical volumes as follows:

(
N = {lv1, . . . , lvm},

E =
{

(lvi, lvj , [x, x]) | lvi, lvj ∈ {lv1, . . . , lvm}

∧ ∃(app, R, datai), (app, W , dataj) ∈ STREAM

∧ storedOn(datai) = lvi ∧ storedOn(dataj) = lvj

∧ [x, x] = int(datai)
}

,

int : {lv1, . . . , lvm} → (SC × SC),

assur : {lv1, . . . , lvm} → A
)
.

Hence, the flow of information from lvi to lvj is modeled as the presence of an
application, app, which reads from a dataset, datai, stored on lvi and then writes to
another dataset, dataj , stored on lvj . Note that since it is datai which is flowing from
lvi to lvj , then [x, x] is taken as the interval of datai.

By adopting this definition of a network of logical volumes, we can reason about
the presence of a cascade threat towards a logical volume, lv ∈ N , at data inter-
val, [x, x], from an attacker, I , capable of breaking a bad chain of logical volumes,
[lv1, . . . , lvm], as follows:

cascadeLv(lv, [x, x], I)

def= ∃lvi, lvj ∈ [lv1, . . . , lvm]: (lv, lvi, [x, x]) ∈ E ∧ int�(I) � int⊥(lvj).

This definition of cascade vulnerability in a network of logical volumes is a straight-
forward adaptation of Definition (5.4).

5.3. Networks of application servers

The other network that we identify within our model of secure SANs is the net-
work of application servers.

Definition 5.6 (Network of application servers). Given some definition of the func-
tion, runsOn : APP → SERVER, and a set of streams, STREAM, then we define a

B. Aziz et al. / Configuring storage-area networks using mandatory security 205

network of application servers by the following quadruple:
(

N = {srv1, . . . , srvm},

E =
{

(srvi, srvj , [x, x]) | srvi, srvj ∈ {srv1, . . . , srvm}

∧ ∃(appi, W , data), (appj , R, data) ∈ STREAM

∧ runsOn(appi) = srvi ∧ runsOn(appj) = srvj

∧ [x, x] = int(data)
}

,

int : {srv1, . . . , srvm} → (SC × SC),

assur : {srv1, . . . , srvm} → A
)
.

In this definition, information flows from srvi to srvj if there exists a dataset, data,
which acts as a shared space to which an application, appi, running on srvi writes
and from which another application, appj , running on srvj reads from. The security
interval, [x, x], is taken directly as the interval of ata. Note that this manipulation of
streams is quite different from that of the previous section. However, the definition
of the cascade vulnerability is quite similar: a cascaded threat towards an application
server, srv, is possible at security level, [x, x], given some intruder, I , and a bad chain
of application servers, [srv1, . . . , srvm], if the following predicate holds true:

cascadeSrv(srv, [x, x], I)

def= ∃srvi, srvj ∈ [srv1, . . . , srvm]:

(srv, srvi, [x, x]) ∈ E ∧ int�(I) � int⊥(srvj).

6. Optimal configurations

After defining the security intervals, int(e), of every SAN entity, e, as in Sec-
tion 4.1, and given that entities have fixed assurance levels, assur(e), then the prob-
lem of finding optimal configurations consists in searching for definitions of one or
more of the functions, partOf , serves, runsOn, storedOn and connects, such that the
total risk level is at a minimum value:

∑

∀e∈ENTITIES

risk(int(e), assur(e), e). (1)

Individual customers may insist on a Service Level Agreement (SLA) that limits the
risk that their data is compromised. For example, a customer may provide a security
interval intSLA and a limit νSLA and require that:

∑

∀e∈ENTITIES: int(e)∩intSLA 	={}

risk(int(e), assur(e), e) � νSLA. (2)

206 B. Aziz et al. / Configuring storage-area networks using mandatory security

The SLA assures the customer that the risk in the configuration for storing their data
is low enough.

Furthermore, the customer may require that no instances exist of the two cascade
vulnerabilities as defined in Section 5 given some attacker model I:

∀lv ∈ LV , x ∈ SC: ¬cascadeLv(lv, [x, x], I), (3)

∀srv ∈ SERVER, x ∈ SC: ¬cascadeSrv(srv, [x, x], I). (4)

Example 4. In a particular incomplete configuration of a secure SAN, assume that
the aggregate risk levels of applications, logical volumes, controllers, servers and
switches are as follows:

∑

∀app∈APP

risk(int(app), assur(app), app) = 70,

∑

∀lv∈LV

risk(int(lv), assur(lv), lv) = 50,

∑

∀ctr∈CNTR

risk(int(ctr), assur(ctr), ctr) = 45,

∑

∀srv∈SERVER

risk(int(srv), assur(srv), srv) = 45,

∑

∀swt∈SWITCH

risk(int(swt), assur(swt), swt) = 30.

Then, we would like to find out the optimal definition of the partOf function (i.e.
the assignment distribution of physical disks to logical volumes), for each of the
following:

(a)
∑

∀e∈ENTITIES risk(int(e), assur(e), e) = 300,
(b) νSLA = 280.

To solve case (a), we need to find out the maximum risk level disks may have:

∑

∀disk∈DISK

risk(int(disk), assur(disk), disk)

= 300 − (70 + 50 + 45 + 45 + 30) = 60.

From the definition of disk security intervals, we obtain:

∑

∀disk∈DISK

risk
(
int(partOf (disk)), assur(disk), disk

)
= 60.

B. Aziz et al. / Configuring storage-area networks using mandatory security 207

Assuming we already have definitions of serves, storedOn, runsOn and connects,
then we can solve the above equation to find out the most suitable definition(s) of
partOf function and thereby complete the configuration of the SAN.

In the case of (b), the procedure is similar, except that now we have:

∑

∀disk∈DISK

risk(int(disk), assur(disk), disk)

= 280 − (70 + 50 + 45 + 45 + 30) = 40.

7. OPL implementation

To test our understanding of this security and configuration model and to test its
usefulness, we implemented the model and used it to generate the lowest risk config-
uration that meets the requirements. We decided to use OPL [21] for the implemen-
tation language because of its built-in logic and search capabilities.

The OPL program consists of five pieces:

• Input Data Model: Describes all the data that must be supplied to define a partic-
ular instance of the problem to be solved. The input data is generally validated
to make sure that the request is not obviously inconsistent.

• Variable Data Model: Describes the data that the program is to determine values
for.

• Constraints: A set of relations that must hold between the variables and the
input data. The number of these constraints can depend on the input provided.
If all the constraints hold for a particular assignment to the variable data, that
assignment is called a feasible solution.

• Objective function: A function that is maximized or minimized from among the
feasible solutions. OPL reports new maxima or minima as they are determined
during the search process, finally terminating when the search space of variable
data has been exhausted.

• Search procedure: An optional plan for how to find the optimal solution. Typ-
ically this involves carefully choosing the order in which the variable data is
examined and noticing when further changes will be ineffective.

The OPL input data consists of an instantiation of the Input Data Model. The out-
put of the OPL program is a sequence of successively improving feasible solutions.
For this application, the Input Data Model is used to represent all needed input: the
security policy, the application requirements, any SLA requirements, and the device
specifications. We do validation of the input data to ensure that the security class
forms a lattice and that the risk function is consistent with the lattice, and also to en-
sure that any static requirements, e.g. requirements on the applications themselves,
are met.

208 B. Aziz et al. / Configuring storage-area networks using mandatory security

The Variable Data Model is used to represent the interval for each device and the
SAN configuration functions, that is, storedOn, runsOn, serves, partOf and connects.
In the worst case, finding the optimal configuration means examining every combi-
nation of values in the Variable Data Model, so it is very important to make sure that
there is a minimum of redundancy or over specification in the model. The constraints
fall into several categories:

• Device interval constraints implement the formulae defined in the previous sec-
tion.

• Configuration consistency constraints make sure that the configuration meets
the basic requirements, for example, that each logical volume is assigned
enough disks to store the assigned datasets, that servers and controllers are all
connected to switches, and switches to each other.

• Canonicalization constraints prune all but one equivalent configuration from the
configuration space. This is important for reducing the search space as discussed
in [12].

• SLA constraints ensure that the risk for a particular security class is limited to
the agreed value.

The final piece of the OPL program is the search method. In this case it simply
makes judicious choices about which part of the variable data space to explore first.
The primary issue in the search is to make sure that the intervals are evaluated once
the needed bits of the configuration have been generated. Quick elimination of in-
feasible or less optimal alternatives is the key to a fast running OPL application.

As a tool for exploring the space of SAN risk models, OPL worked well for us. As
part of this research we went through several iterations of the risk model, expressing
each iteration in OPL. This process was straightforward and helped uncover holes
in our thinking. By using a logic language the semantic distance between the model
and the implementation was small enough that the implementation actually acted as
a useful means of expression, not just a hurdle to be jumped. The discipline of im-
plementing and running the model also provided a check, keeping the model simpler
than it might have been.

However the OPL implementation that we used was designed as a programming
environment not as a deployment tool. Embedding it into a larger n-tier system would
be difficult. In addition there are inputs where the search procedure we used could
require exponential time, this is hard to avoid when looking for an exact solution,
because the optimization problem itself is NP-complete by reduction to bin pack-
ing. To address both issues, a custom solver is the best answer, both for efficiency,
encapsulation and packaging. Once the model is fixed, a custom solver allows for
more efficient evaluation of the constraints and the objective functions, and for the
use of approximation techniques, such as simulated annealing or genetic algorithms,
that have been tuned to the model, Maintaining such a solver increases the cost of
changing the model, but when looked at as part of the total cost of maintaining a
complex SAN management product, it is not the highest order term.

B. Aziz et al. / Configuring storage-area networks using mandatory security 209

8. Conclusion and future work

In this paper, we presented a model of mandatory security for SANs. The primary
contribution in this paper was the development of a framework that can be used to
determine a secure data-separation configuration of a SAN. The model incorporated
an evaluation of the total risk incurred when data stored on a SAN are compromised.
We also outlined an implementation of the configuration process in OPL.

A label-based model is used to represent security in SANs. While conceptually
simple, lattice/label-based models can be used to characterize mechanisms that sup-
port a wide range of mandatory security requirements [3,7,9,10,14,15,17,20]. There-
fore, we conjecture that the results in this paper can be usefully applied to other
mandatory protection models such as Role Based Access Control; this is a topic of
ongoing research.

The SAN security model extends the dual-label/partially trusted subject lattice
model with the addition of a risk function. This function is used to encode the level
of risk associated with storing/managing combinations of information on entities
evaluated to certain degrees of assurance. This is more flexible than the conventional
assurance/evaluation criteria approach [20]; the risk function is used to guide the
generation of a secure configuration within an acceptable degree/measure of risk.
The data-separation security policy is not unlike the requirements for a Chinese Wall
security policy [5], and the model proposed in this paper provides a novel risk-based
interpretation for Chinese Walls that can be used in a non-SAN situation. Given the
duality between Chinese wall (aggregation) polices and separation of duty policies,
we argue that the proposed model can also be used to capture dynamic separation of
duty policies that are risk-based interpretations of those described in [8]. This is a
topic for future work.

One limitation of our configuration technique is the possibility that it might be
hard to apply it to newer shared storage models like those provided by Amazon’s S3
(aws.amazon.com/s3). Primarily because a dataset on S3 would typically be spread
out over the entire data center with portions stored on every single logical volume.
This reduces their cost of administration and increases their parallelism but at the
cost of not being able to bound the security foot print of the dataset.

Future work would explore the definition of risk functions and how they behave to-
wards changes in assurance levels and security intervals. Also, we plan to investigate
more deeply other security properties, such as integrity and availability, as well as
other models of security, such as the continuous Usage Control (UCONABC) model
[18]. Other future work includes extending the OPL implementation to be able to
capture instances of the cascade vulnerability problem.

References

[1] B. Aziz, S.N. Foley, J. Herbert and G. Swart, Configuring storage area networks for mandatory
security, in: Proceedings of the 18th IFIP Annual Conference on Data and Applications Security,
C. Farkas and P. Samarati, eds, Kluwer, Sitges, Catalonia, July 2004, pp. 357–370.

210 B. Aziz et al. / Configuring storage-area networks using mandatory security

[2] D.E. Bell, Concerning modelling of computer security, in: Proceedings of the 1988 IEEE Symposium
on Security and Privacy, IEEE Computer Society Press, Oakland, CA, April 1988, pp. 8–13.

[3] D.E. Bell and L.J. La Padula, Secure computer systems: Unified exposition and multics interpreta-
tion, Technical report ESD-TR-75-306, Mitre Corporation, Bedford, MA, USA, July 1975.

[4] M. Branstad et al., Trusted mach design issues, in: Proceedings of the 3rd AIAA/ASIS/DODCI
Aerospace Computer Security Conference, IEEE Press, Orlando, FL, December 1987.

[5] D.F.C. Brewer and M.J. Nash, The Chinese wall security policy, in: Proceedings of the 1989 IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Oakland, CA, May 1989, pp.
206–214,

[6] DoD, Computer security requirements guidance for applying the department of defence trusted com-
puter system evaluation criteria in specific environments, Technical report CSC-STD-003-85, DoD
Computer Security Center, 1985 (Yellow Book).

[7] S.N. Foley, A model for secure information flow, in: Proceedings of the 1989 IEEE Symposium on
Security and Privacy, IEEE Computer Society Press, Oakland, CA, May 1989, pp. 248–258.

[8] S.N. Foley, Secure information flow using security groups, in: Proceedings of the 3rd IEEE Com-
puter Security Foundations Workshop, IEEE Computer Society Press, Franconia, NH, June 1990,
pp. 62–72.

[9] S.N. Foley, Aggregation and separation as noninterference properties, Journal of Computer Security
1(2) (1992), 159–188.

[10] S.N. Foley, The specification and implementation of commercial security requirements including
dynamic segregation of duties, in: Proceedings of the 4th ACM Conference on Computer and Com-
munications Security, ACM Press, Zurich, April 1997, pp. 125–134.

[11] S.N. Foley, Conduit cascades and secure synchronization: in Proceedings of the ACM New Security
Paradigms Workshop, ACM Press, Cork, September 2000, pp. 141–150.

[12] E. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Proceedings
of the 9th National Conference on Artificial Intelligence, Vol. 1, MIT Press, Anaheim, CA, July
1991, pp. 227–233.

[13] Y. Kim, M. Narasimha, F. Maino and G. Tsudik, Secure group services for storage area networks, in:
Proceedings of the First International IEEE Security in Storage Workshop, IEEE Computer Society,
Greenbelt, MD, December 2002, pp. 80–93.

[14] T.M.P. Lee, Using mandatory integrity to enforce ‘commercial’ security, in: Proceedings of the Sym-
posium on Security and Privacy, IEEE Press, Oakland, CA, 1988, pp. 140–146.

[15] C. Meadows, Extending the brewer-nash model to a multilevel context, in: Proceedings of the IEEE
Symposium on Security and Privacy, IEEE Computer Society Press, Oakland, CA, May 1990, pp.
95–102.

[16] D.A. Patterson, G.A. Gibson and R.H. Katz, A case for redundant arrays of inexpensive disks (raid),
in: Proceedings of the 1988 ACM Conference on the Management of Data (SIGMOD), ACM Press,
Chicago, June 1988, pp. 109–116.

[17] R.S. Sandhu, Lattice-based access control models, Computer 26(11) (1993), 9–19.

[18] R. Sandhu and J. Park, The UCONABC usage control model, ACM Transactions on Information and
System Security 7(1) (2004), 128–174.

[19] G. Swart, Storage management by constraint satisfaction. in: Proceedings of the Workshop on Im-
mediate Applications of Constraint Programming, Kinsale, Cork, Ireland, September 2003.

[20] TNI, Trusted computer system evaluation criteria: Trusted network interpretation, Technical report,
National Computer Security Center, 1987 (Red Book).

[21] P. Van Hentenryck, The OPL Optimization Programming Language, MIT Press, Cambridge, MA,
January 1999.

