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Abstract: We investigate the general properties of Unified Dark Matter (UDM) scalar

field models with Lagrangians with a non-canonical kinetic term, looking specifically for

models that can produce a fast transition between an early Einstein–de Sitter CDM-like

era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models

in JCAP1001(2010)014. However, while the background evolution can be very similar

in the two cases, the perturbations are naturally adiabatic in fluid models, while in the

scalar field case they are necessarily non-adiabatic. The new approach to building UDM

Lagrangians proposed here allows to escape the common problem of the fine-tuning of the

parameters which plague many UDM models. We analyse the properties of perturbations

in our model, focusing on the the evolution of the effective speed of sound and that of the

Jeans length. With this insight, we can set theoretical constraints on the parameters of the

model, predicting sufficient conditions for the model to be viable. An interesting feature

of our models is that what can be interpreted as wDE can be < −1 without violating the

null energy conditions.
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1. Introduction

In the last decade the ΛCDM model [1, 2] has emerged as the “concordance” model [3, 4] of

our Universe. It assumes General Relativity (GR) as the correct theory of gravity, and two

unknown components dominating the late times dynamics: i ) Cold Dark Matter (CDM),

responsible for structure formation, ii ) a cosmological constant Λ making up the balance

for a spatially flat Universe and driving the cosmic acceleration [5, 6, 7, 8, 9, 10].

Issues (still open today) with Λ, viz. the so-called “cosmological constant problem”

[11, 12], prompted cosmologists to investigate alternatives to the cosmological constant,

mainly in the form of a dynamic component dubbed Dark Energy (DE) [13, 14, 15, 16,

17, 18]. By now, many independent observations support both the existence of a CDM

component and that of a separate DE [5, 6, 7, 19, 20, 21, 22, 8, 9, 23, 10, 24, 25, 26].

However, it should be recognised that, while some form of CDM is independently

expected to exist within any modification of the Standard Model of high energy physics,

the really compelling reason to postulate DE has been the acceleration in the cosmic

expansion.
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It is mainly for this reason that it is worth investigating the hypothesis that CDM

and DE are two aspects of a single Unified Dark Matter (UDM) component, also referred

to as “Quartessence”, see e.g. [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47] (a more complete list of UDM models can be found in a recent

review [48]). In UDM models a single matter component must drive both the accelerated

expansion of the Universe at late times and the formation of structures. This poses an

interesting challenge to model building with this single component. Indeed, the accelerated

expansion in a feature of the homogeneous and isotropic background, while the description

of the structure formation process requires to consider inhomogeneities, at least at the first

perturbative order. This has to be contrasted with CDM+DE models, where the CDM is

perturbed and drives structure formation, while in general DE cannot cluster but drives

the acceleration of the background.

A large variety of UDM models have been investigated in the literature, mainly based

on adiabatic fluids or on scalar field Lagrangians. For example, the generalised Chaplygin

gas [27, 28, 29, 31], the Scherrer [32] and generalised Scherrer solutions [34], the perfect fluid

with “affine” equation of state [37, 39] (see [38] for the corresponding scalar field model),

and the homogeneous scalar field deduced from the galactic halo space-time [49, 36].

It is also possible to reinterpret UDM models based on a scalar field Lagrangian with

a non-canonical kinetic term in terms of non-adiabatic fluids [50, 51] (see also [34, 40, 48]).

For these models, we can use Lagrangians with a non-canonical kinetic term (namely a

term which is an arbitrary function of the square of the time derivative of the scalar field,

in the homogeneous and isotropic background).

Originally, these Lagrangians were proposed to obtain inflationary solutions driven

by kinetic energy, the so-called k-inflation [52, 53]. This scenario was also adopted as a

description of DE [54, 55, 56]. When k-inflation was extended to embrace more general

Lagrangians [57, 58], the resulting new scenario was then dubbed k-essence (see also [59,

60, 61, 56, 62, 63]). An important feature of scalar field models is the effective speed of

sound, which remains defined in the context of linear perturbation theory, is not the same

as the adiabatic speed of sound (see [64, 65, 53, 66], cf. [67]).

Independently of the approach chosen to build a UDM model with a single matter

component, in general the latter will have pressure perturbation in the rest frame (which is

then gauge invariant), which implies a non vanishing effective speed of sound (see [67], cf.

also [68, 69, 64, 65]). The latter corresponds to a Jeans length (i.e. a sound horizon) below

which clustering is suppressed [67, 35, 39]. Moreover, the evolution of the gravitational

potential on scales smaller than the Jeans length is characterised by oscillations and decay,

thus producing a strong late-times Integrated Sachs Wolfe (ISW) effect which may spoil

the agreement with the observed Cosmic Microwave Background (CMB) radiation angular

power spectrum [35]. Therefore, the general lesson to be drawn is that a viable UDM model

must necessarily be characterised by a vanishingly small effective speed of sound, so that

structure formation would not be suppressed (at least in the linear regime) and the ISW

effect would be compatible with CMB observation.

However, for many UDM models the requirement of a vanishingly small speed of sound

implies such a severe fine-tuning on the parameters that they become practically indistin-
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guishable from ΛCDM, see for example [31, 32, 33, 39, 70]. Fortunately, this does not need

to be the case in general: indeed, in order to avoid such undesirable feature, some possible

way-outs have recently been proposed. In [44] we introduced a class of UDM models whose

equation of state allows for a fast transition between an early CDM-like era and a later

ΛCDM-like phase. The speed of sound can be very large during the transition, but if the

latter is fast enough, these models predict a large-scale structure spectrum and an angular

CMB temperature spectrum in agreement with observation. Ref. [45] explored unification

of DM and DE in a theory containing a scalar field of non-Lagrangian type, obtained by

direct insertion of a kinetic term into the energy-momentum tensor. Ref. [47] introduced a

class of models based on two scalar fields, one of which is a Lagrange multiplier enforcing

a constraint between the other scalar field and its derivative. The purpose is to assure

a vanishing speed of sound. In [40], the authors devised a reconstruction technique for

Lagrangian which allows to find models where the effective speed of sound is so small that

the k-essence scalar field can cluster (see also [42, 46, 48]).

In the present paper we develop the technique of [40] to build scalar field Lagrangians

with non-canonical kinetic term which can produce a fast transition, similarly to the

barotropic fluid UDM models we proposed in [44]. However, while the background evo-

lution can be very similar in the two cases, the perturbations are naturally adiabatic in

fluid models, while in the scalar field case they are necessarily non-adiabatic [64, 65, 66],

cf. [67, 68, 69]. This new approach allows us to escape the problem of the fine-tuning on

the parameters which usually plague many UDM models.

The rest of the paper is organised as follows. In Section 2 we present the basic equa-

tions describing the background and the perturbative evolution of a general k-essence

Lagrangian. In Section 3 we generalise the class of UDM models investigated in [40] and in

Section 4 we introduce a UDM model with fast transition, analysing its background evolu-

tion. In Section 5 we analyse the properties of perturbations in this model, focusing on the

the evolution of the effective speed of sound, of the Jeans length and of the gravitational

potential during the transition. Section 6 is devoted to our conclusions.

Throughout the paper we use 8πG = c2 = 1 units and the (−,+,+,+) signature for the

metric. Greek indices run over {0, 1, 2, 3}, denoting space-time coordinates, whereas Latin

indices run over {1, 2, 3}, labelling spatial coordinates.

2. Background and perturbative equations for UDM scalar field models

The action describing a generic Unified Dark Matter scalar field model in GR can be written

as

S = SG + Sϕ =

∫
d4x

√−g

[
R

2
+ L(ϕ,X)

]
, (2.1)

where

X = −1

2
∇µϕ∇µϕ . (2.2)

The energy-momentum tensor of the scalar field ϕ is

Tϕ
µν = − 2√−g

δSϕ

δgµν
=

∂L(ϕ,X)

∂X
∇µϕ∇νϕ+ L(ϕ,X)gµν . (2.3)
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If ∇µϕ is time-like, Sϕ describes a perfect fluid with Tϕ
µν = (ρ + p)uµuν + p gµν , with

pressure

L = p(ϕ,X) , (2.4)

and energy density

ρ = ρ(ϕ,X) = 2X
∂p(ϕ,X)

∂X
− p(ϕ,X) , (2.5)

where

uµ =
∇µϕ√
2X

(2.6)

is the “energy frame” four-velocity [71, 65]. In this frame, the kinetic term becomes X =

ϕ̇2/2, where ϕ̇ = uµ∇µ is the proper time derivative along uµ.

Now we assume a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background

metric with scale factor a(t). When the energy density of radiation becomes negligible, and

disregarding also the small baryonic component, the background evolution of the Universe

is completely described by the following equations:

H2 =
1

3
ρ , (2.7)

Ḣ = −1

2
(p+ ρ) , (2.8)

where the dot denotes differentiation with respect to the cosmic time t (coinciding with

proper time along uµ) and H = ȧ/a is the Hubble parameter. Eqs. (2.7)-(2.8) imply the

energy conservation equation

ρ̇ = −3H (ρ+ p) . (2.9)

On the background FLRW metric, the equation of motion for the scalar field ϕ(t)

follows from the energy momentum tensor (2.3) and Eq. (2.9):

(
∂p

∂X
+ 2X

∂2p

∂X2

)
ϕ̈+

∂p

∂X
(3Hϕ̇) +

∂2p

∂ϕ∂X
ϕ̇2 − ∂p

∂ϕ
= 0 . (2.10)

The two relevant quantities that characterize the background and perturbative dynamics

of a UDM model are the equation of state w ≡ p/ρ and the effective speed of sound cs,

which, in our case, read

w =
p

2X(∂p/∂X) − p
, (2.11)

c2s ≡ ∂p/∂X

∂ρ/∂X
=

∂p/∂X

(∂p/∂X) + 2X(∂2p/∂X2)
. (2.12)

The effective speed of sound plays a major role in the evolution of the scalar field per-

turbations δϕ and in the growth of the overdensities δρ. In fact, let us consider small

inhomogeneities of the scalar field, ϕ(t, x) = ϕ0(t) + δϕ(t,x), and write FLRW metric in

the longitudinal gauge:

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Φ)δijdx
idxj , (2.13)
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where δij is the Kronecker symbol and we have used the fact that δT j
i = 0 for i 6= j [72].

Indeed, for this perfect fluid case, there is a unique peculiar gravitational potential Φ,

analogous to the Newtonian potential [71]. When we linearize the (0 − 0) and (0 − i)

components of Einstein equations (see Refs. [53, 66]), we obtain the following second order

differential equation [66, 35]:

u′′ − c2s∇2u− θ′′

θ
u = 0 (2.14)

where u ≡ 2Φ/(p+ ρ)1/2, θ ≡ (1+ p/ρ)−1/2/(
√
3a) and the prime denotes derivation w.r.t.

the conformal time η, which is defined through dη = dt/a. As it is clear from (2.10) and

(2.14), the effective speed of sound plays a crucial role in the evolution of the scalar field

perturbations δϕ and of the gravitational potential.

3. Prescriptions for building a scalar field UDM model

A well-known issue of UDM models is the existence of an effective sound speed [see

Eq. (2.14)], which may become significantly different from zero during the Universe evo-

lution and thus leading to the appearance of a Jeans length (i.e. a sound horizon) below

which the dark fluid cannot cluster (e.g. see [67, 35, 39]). Indeed, the presence of a non-

vanishing speed of sound modifies the evolution of the gravitational potential, producing

a strong Integrated Sachs Wolfe (ISW) effect [35]. For this reason, one of the main issues

in the framework of UDM model building is to investigate whether the single dark fluid is

able to cluster and produce the cosmic structures we observe.

In Ref. [40] the authors proposed a technique to construct UDM models where the

scalar field mimics the ΛCDM background evolution and, at the same time, has an effective

sound speed that is small enough to allow for structure formation, also avoiding a strong

ISW effect (see also [42, 46]).

In this Section we develop and generalize the approach of Ref. [40]. Specifically, we

focus on scalar field Lagrangians with non-canonical kinetic term to obtain Unified Dark

Matter models where a single component can mimic the dynamical effects of Dark Matter

and Dark Energy. This sets the ground for Section 4, where our aim is to build scalar

field models in which the dynamics is characterised by a fast transition between an early

CDM-like phase, with the background following an Einstein de Sitter evolution, and a

late accelerated DE-like phase, in this way generalising the UDM fluid models with fast

transitions we presented in [70].

We look for a scalar field Lagrangian L whose classical trajectories are directly de-

scribed by an appropriate pressure p(N) that we choose a priori , where N = ln a. Let us

consider a Lagrangian of the form

L(ϕ,X) = p(ϕ,X) = f(ϕ)g(h(ϕ)X) − V (ϕ) . (3.1)

Note that, with the freedom allowed by the three potentials f(ϕ), h(ϕ) and V (ϕ), we can

independently specify the equation of state parameter w and the sound speed cs [40]. In

order to reconstruct these potentials we need three dynamical conditions: a) a choice for
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p(N), b) the continuity equation or, equivalently, the equation of motion (2.10), c) a choice

for c2s(N).

Now we look at the four main prescriptions needed to to obtain the various terms of

the Lagrangian (3.1).

3.1 Equation of state of UDM

Assuming p(N) as a function that we choose a priori , Eq. (2.9) becomes

dρ(N)

dN
+ 3ρ(N) = −3p(N) , (3.2)

i.e.

ρ(N) = e−3N

[
−3

∫ N (
e3N

′

p(N ′)dN ′

)
+K

]
, (3.3)

where K is an integration constant. In particular, by imposing the condition

L(X,ϕ) = p(N) along the classical trajectories on cosmological scales, we obtain

ϕ = L(−1)(X, p(N))
∣∣
Mp(N)

. Here, we are constraining the solutions of the equation of

motion to live on a particular manifold Mp(N) [depending on our choice of p(N)] embedded

in the four dimensional space-time.

We assume that the pressure p and energy density ρ of our UDM: a) satisfy the null

energy condition ρ+ p ≥ 0 [73, 59] (here we are not interested in phantom cosmology); b)

violate the strong condition at late time, i.e. p < −ρ/3, in order to reproduce the observed

accelerated expansion of the Universe; c) imply an attracting fixed point for Eq. (3.2): for

N → ∞, ρ → ρΛ and p → −ρΛ, so that dρ/dN → 0 and ρΛ plays the role of an unavoidable

effective cosmological constant [74, 75, 37].

Now, if p = −ρΛ, then K = (ρ0 − ρΛ), where ρ0 is the value of ρ today. The freedom

provided by the choice of K is particularly relevant. In fact, by setting K = 0, we can

remove the term ρ ∝ a−3 from Eq. (3.3). Alternatively, when K 6= 0, we always have a

term that behaves like pressure-less matter (see Ref. [40]), with density today K = ρm0 =

(ρ0 − ρΛ). This simply follows from assuming p(N) as given, so that, in the solution ρ(N)

(3.3), ρm(N) = ρm0e
−3N represents the matter-like homogeneous solution of (3.2), and

p(N) generates the particular solution (see [48, 40, 76]).

We conclude with the following two remarks: i) starting from Eqs. (3.2) and (3.3) we

can obtain a dark component which can mimic not only a cosmological constant but also

any dynamical DE; ii) in order to obtain explicitly the three potentials f(ϕ), h(ϕ) and

V (ϕ), p(N) should be chosen in order to have an analytic expression for ρ(N).

3.2 Reconstruction of the potential f(ϕ)

From the Lagrangian L = f(ϕ)g(h(ϕ)X) − V (ϕ), and Eq. (3.2), we get

2X

[
∂g(h(ϕ(X,N))X)

∂X

]
f(ϕ(X,N)) = p(N) + e−3N

[
−3

∫ N (
e3N

′

p(N ′)dN ′

)
+K

]
.

(3.4)
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The relations (3.4) and ϕ = L(−1)(X, p(N))
∣∣
Mp(N)

enable us to determine a connection

between the scale factor a and the kinetic term X on the manifold Mp(N) and, therefore,

a direct mapping between the cosmic time and the manifold Mp(N).

Let us define f(ϕ(X,N)) in the following way

f(ϕ(X,N)) =
p(N) + ρ(N)

2X [∂g(h(ϕ(X,N))X)/∂X ]
∆(N,X) , (3.5)

along the classical trajectories on cosmological scales, we deduce that ∆(N,X) = 1. Specifi-

cally, let us define ∆(N,X) = ∆̃(N,X/ρ(N)). Then, knowing thatX = (dN/dt)2(dϕ/dN)2/2 =

ρ(N)(dϕ/dN)2/6, we get

X = ρ(N)∆̃(−1)(N) , (3.6)

ϕ = ϕi ±
∫ N

Ni

(
6∆̃(−1)(N ′)

)1/2
dN ′ . (3.7)

Without any loss of generality, consider the case with the + sign in front of the integral

above. Redefining Eqs. (3.6) and (3.7) as X ≡ Gp(N) and ϕ ≡ Qp(N), we can write

f(X,N) = f(Gp(N), N) = f(Gp(Q(−1)
p (ϕ)),Q(−1)

p (ϕ)) = f(ϕ). Obviously, in order to

obtain f(ϕ) we must have chosen an appropriate g(h(ϕ)X) (see point 3).

Now, let us assume ∆(N,X) being of the following form:

∆(N(a),X) =
βa3

µ

µρ(N(a))/(2βν) −X

X
, (3.8)

where β and µ are two appropriate constants whose choice depends on p(N) and c2s(N) and

ν = Ωm/ΩDE, where Ωm = ρm0/(3H
2
0 ) and ΩDE = 1−Ωm. Along the classical trajectories

on cosmological scales, we obtain

X(a) = Gp(N(a)) =
µ

2νβ

ρ(N(a))

1 + (µ/β)a−3
, (3.9)

ϕ(a) = Qp(N(a)) =

(
4µ

3νβ

) 1
2

sinh(−1)

[(
β

µ

) 1
2

a
3
2

]
. (3.10)

In conclusion, from Eq. (3.5), relations (3.9) and (3.10) allow us to determine explicitly

f(ϕ). Obviously if p = −ρΛ we get the same X(a) and ϕ(a) obtained in Ref. [40].

3.3 Reconstruction of the potentials h(ϕ) and V (ϕ)

In order to get h(ϕ) we have to know g(X ), where X ≡ h(ϕ)X. From (2.12) we have

c2s(X ) =
∂g(X )/∂X

(∂g(X )/∂X ) + 2X (∂2g(X )/∂X 2)
, (3.11)

where we must impose c2s(X ) ≥ 0. In general c2s is not bounded from above; however in

specific cases the condition c2s(X ) ≤ 1 must be satisfied. Knowing that X = X (a) from
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Eqs. (3.9) and (3.10), we can choose an appropriate function c2s(X ) = Rp(N(a)) such that

c2s ≪ 1. Therefore,

h(ϕ(a)) =
2νβ

µ

1 + (µ/β)a−3

ρ(N(a))

[
c2s
](−1)

(Rp(N(a))) (3.12)

and, through Q(−1)
p (ϕ), we can reconstruct h(ϕ).

In order to get V (ϕ) we have to use Eq. (3.1):

V (ϕ(a)) = f(ϕ(a))g(X (a)) − p(N(a)) . (3.13)

Using Q(−1)
p (ϕ), we can reconstruct V (ϕ).

3.4 Simplification of the Lagrangian

At this point, it is important to stress that the Lagrangian we have obtained may be very

complicated. In [40] it was shown that there exists a class of Lagrangians having similar

kinematical properties: in particular the equation of state w and speed of sound cs are

invariant under certain transformations within the class. Thanks to this property we are

able to remarkably simplify our Lagrangian.

Specifically, from L(X,ϕ), we can obtain a new Lagrangian L(R(φ)Y, φ) where

Y =
φ̇2

2
=

X

R(φ(ϕ))
and φ(ϕ) = ±

∫ ϕ

[R(ϕ̃)−1/2dϕ̃] + K̂ , (3.14)

with R(φ) > 0 and where K̂ is an appropriate integration constant. Without any loss of

generality, consider the case with the + sign in front of the above integral. Defining

[R(φ(ϕ))]−1/2 = cosh

[(
3νβ

4µ

)1/2

ϕ

]
, (3.15)

we obtain the following relations

φ(a) =

(
4/3

νa−3

)1/2

, (3.16)

R(φ(ϕ)) =
1

1 + [3νβ/(4µ)] φ2
. (3.17)

3.5 Prescriptions: further remarks

Let us stress that the receipt described in the previous subsections is completely general

for any p(N) (when p+ ρ ≥ 0) and for any positive c2s(N). Obviously, the values of c2s(N)

depend strongly on the definition of g(X ), through Eq. (3.11).

Now additional comments are in order:

i) From Section 3.1 we note that, having assumed ρm(a) = ρm0 a−3 as the pressure-less

solution of (3.2), we can formally define

wDE =
p

ρ− ρm
, (3.18)
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where ρ − ρm is the DE-like part on our UDM energy density and p is its pressure.

Interestingly, it is possible to build models with wDE < −1 without violating the null

energy condition, see the next Section for explicit example.

ii) Choosing an arbitrary equation of state w(N) we obtain

ρ(N) = ρi e
−3

∫N (w(N ′)+1)dN ′

, (3.19)

p(N) = ρi w(N)e−3
∫N (w(N ′)+1)dN ′

, (3.20)

where ρi is a positive integration constant. Therefore, imposing again the condition

L(X,ϕ) = p[w(N), N ] along the classical trajectories, i.e. ϕ = L(−1)[X, p(w(N), N)]
∣∣
Mw(N)

,

we get

2X
∂g(h(ϕ[X,N ])X)

∂X
f(X,N) = ρi [w(N) + 1]e−3

∫N (w(N ′)+1)dN ′

. (3.21)

Hence, on the classical trajectory we can impose, via w(N), a suitable function p(N)

and thus the function ρ(N). Also in this case, from Eq. (3.21) and following ar-

guments similar to those described in the points above, we can get the relations

X ≡ Gw(N), and consequently

ϕ ≡ Qw(N) = ±
∫ N

{
[
6Gw(N

′)
]1/2

[
ρi e

−3
∫ N′

(w(N ′′)+1)dN ′′

]−1/2

dN ′

}
+ ϕi .

(3.22)

With the functions Gw(N) and Qw(N), we can write f(X,N) = f(Gw(N), N) =

f(Gw(Q(−1)
w (ϕ)),Q(−1)

w (ϕ)) = f(ϕ). Then we can find a Lagrangian whose behaviour

is determined by w(N) and whose speed of sound is determined by the appropriate

choice of g(h(ϕ)X).

iii) Once we have obtained a Lagrangian, it is important to investigate the kinematic

behaviour of the UDM fluid during the radiation-dominated epoch and, in particular,

to choose appropriate initial conditions in order to ensure that, during recombination,

we obtain solutions of the equation of motion which properly describe p(N) during

the subsequent dark epoch.

In the next section, we give an example in which we apply the prescriptions above and

consider the explicit solutions in the case of the following Dirac-Born-Infeld type kinetic

term:

g(h(ϕ)X) = −
√
1− 2h(ϕ)X , (3.23)

which implies

c2s(h(ϕ)X) = 1− 2h(ϕ)X . (3.24)

Moreover, we will choose a suitable p(N) in order to obtain a class of UDM models charac-

terized by a fast transition in the equation of state and, in section 5, an appropriate c2s(N)

such that the k-essence scalar field can cluster.
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4. A simple UDM scalar field model with fast transition.

We now propose a UDM model with the following equation of state, which we give in

parametric form:

p(N(a)) = −ρΛ
2

{
1 + tanh

[
β

3

(
a3 − a3t

)]}
, (4.1)

ρ(N(a)) = ρΛ

{
1

2
+

3

2β
a−3 ln

{
cosh

[
β

3

(
a3 − a3t

)]}
+

ρm0

ρΛ
a−3

}
, (4.2)

where (4.2) follows from (4.1) by integrating Eq. (3.3). The parameters at and β respec-

tively represent the scale factor value at which the transition takes place and the rapidity

of the transition. The third parameter of the model is ρΛ: it is clear from Eq. (4.2) that in

the limit a → ∞ ρ → ρΛ and p → −ρΛ, so that ρΛ plays the role of an effective cosmological

constant, i.e. a fixed point of Eq. (3.2) (see Section 3.1). Finally, we note that our UDM

model depends on a fourth parameter, ρm0/ρΛ = Ωm/ΩΛ in Eq. (4.2) (ΩΛ = ρΛ/(3H
2
0 )).

In comparison with our barotropic fluid model in [70], here we have this extra parameter

because we have explicitly introduced a matter-like part in the energy density thanks to

the integration constant K in (3.3).
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Figure 1: Illustrative plot of p/ρΛ, ρ/ρΛ and w as functions of the redshift z, with zt = 2 and

Ωm/ΩΛ = 3/7. The lines, from short to long dashes, correspond to β = 1, 10, 100, respectively; the

black solid line corresponds to β = 1000. For reference, in the bottom panel, we also plot the total

w for the ΛCDM model (thin black line) with Ωm/ΩΛ = 3/7 (cf. [74, 37, 44]).
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In Fig. 1 we show the evolution of p(N(z)), ρ(N(a)) and the equation state parameter

w(N(a)) as a function of the redshift z. An important difference with the barotropic

model in [70] is that the parametric representation (4.1)-(4.2) is effectively equivalent to

an equation of state p = p(ρ, s), where s is an entropy density. Therefore, in general the

condition p = −ρ does not uniquely determine a fixed point of Eq. (3.3) as in the barotropic

case. In other words, in a certain region of parameter space the condition p = −ρ has two

solutions: one is the effective cosmological constant ρΛ, the asymptotic value of ρ and −p

for a → ∞, the other is a minimum value of energy density ρ∗ < ρΛ that is attained in

the future for a finite value of a∗ > 1, with p(a∗) = −ρ∗. For a > a∗ the null energy

condition is violated, so that the equation of state becomes phantom and ρ grows again,

asymptotically approaching ρΛ. In this paper we are interested in mapping the equation

of state (4.1)-(4.2) into a Lagrangian for a scalar field that does not violate the null energy

condition, thus we will focus on the relevant region in parameter space (see below). Fig. 2 is

0 5 10 15 20 25 30

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

Ρ

ΡL

p

ΡL

Figure 2: Illustrative parametric plot of p/ρΛ as a function of ρ/ρΛ, with zt = 2 and Ωm/ΩΛ = 3/7.

The short to long dashed lines correspond to β = 1, 10, 100, respectively; the black solid line

corresponds to β = 1000. For reference we also plot the p = −ρ line. Note that the latter line

is crossed by the β = 1 model (see text). All models asymptotically evolve toward the effective

cosmological constant ρΛ.

a parametric plot of p(a) vs. ρ(a), assuming a transition at zt = 2 and for a representative

choice of the other parameters. The curve for β = 1 illustrate in particular a case where

indeed the parametric equation of state (4.1)-(4.2) becomes phantom in the future.

The parametrization of Eqs. (4.1)-(4.2) in terms of ρΛ is mathematically natural, but

it can be deduced from Figs. 1-2 that it is not so practical from a phenomenological point

of view; a more useful parametrization is obtained using ρDE = ρ0 − ρm0, i.e. the present
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value of the DE-like part of our UDM. We obtain the following relation:

ρΛ
ρDE

=
1

2
+

3

2β
ln

{
cosh

[
β

3

(
1− a3t

)]}
. (4.3)

In Fig. 3 we plot ρDE/ρΛ for different values of β and zt. Notice that, for zt > 2 and large

0 1 2 3 4 5
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1.

Β

ΡDE

ΡL

Figure 3: Left panel: ρDE/ρΛ as function of zt, for β = 0.1, 1, 10, 102, 103 (from bottom to top).

Right panel: ρDE/ρΛ as function of β, for zt = 0.5, 1, 1.5, 2, 2.5, 5 (from bottom to top).

β, we have that ρDE/ρΛ → 1.

0 2 4 6 8 10

0

2

4

6

8
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zt

Β

Figure 4: The gray region represents the part of the zt-β plane where the null energy condition

p+ ρ ≥ 0 is satisfied, assuming the representative value ν = 3/7.
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Figure 5: Illustrative plot of p/ρDE, ρ/ρDE and w as functions of the redshift z, with zt = 2 and

ν = 3/7. The lines, from short to long dashes, correspond to β = 4, 10, 100, respectively; the black

solid line corresponds to β = 1000. For reference, in the bottom panel, we also plot the total w for

the ΛCDM model (thin black line) with Ωm/ΩΛ = 3/7 (cf. [74, 37, 44]).

Now, combining Eq. (4.3) with Eqs. (4.1)-(4.2), p(a) and ρ(a) can be re-expressed as

p(a) = −ρDE

{
1 + tanh

[
(β/3)

(
a3 − a3t

)]}

1 + (3/β) ln
{
cosh

[
(β/3)

(
1− a3t

)]} , (4.4)

ρ(a) = ρDE

{
1 + (3/β)a−3 ln

{
cosh

[
(β/3)

(
a3 − a3t

)]}

1 + (3/β) ln
{
cosh

[
(β/3)

(
1− a3t

)]} + νa−3

}
, (4.5)

where ν = ρm0/ρDE = Ωm/ΩDE (see Section 3.2). A good guess for the value of this

parameter is ν = 3/7: assuming this value, in Fig. 4 we plot the region of the zt − β plane

where the null energy condition p+ ρ ≥ 0 is satisfied.

In Fig. 5, we plot p(z), ρ(z), w(z), as functions of the redshift z for different values of

β and zt and for ν = 3/7.

Finally, in Fig. 6 we show a parametric plot of p(a) vs. ρ(a), assuming a transition at

zt = 2 and for ν = 3/7. From Figs. 7 and 8 and Eq. (3.18) we see that for z < zt we can

obtain wDE < −1 without violating the null energy condition [see comment i) in Section

3.5]. When β > 103 and zt > 2, we have that ρDE ≃ ρΛ; in this case, our class of UDM

models is characterised by a fast transition regime and today wDE ≃ −1. However, this is

not the case for β < 103 or zt < 2, so that wDE can be significantly smaller than −1 even

at small redshift.
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Figure 6: Illustrative parametric plot of p/ρDE as a function of ρ/ρDE, with zt = 2 and ν = 3/7.

The short to long dashed lines correspond to β = 4, 10, 100, respectively; the black solid line

corresponds to β = 1000.
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Figure 7: Illustrative plots of (p + ρ)(z)/ρDE and wDE as a function of the redshift z, with

zt = 2 and ν = 3/7. In both panels the short to long dashed lines correspond to β = 4, 10, 100,

respectively; the black solid line corresponds to β = 1000. Clearly (p+ ρ) > 0 always, i.e. the null

energy condition is never violated.

5. Analysis of the Jeans wave number and the gravitational potential

Knowing p(N) and ρ(N), following the prescriptions of section 3 we still need to choose a

suitable c2s in order to obtain the Lagrangian L(Y, φ) that will completely specify our UDM

scalar field model. This Lagrangian will reproduce our choice of p(N), ρ(N) and c2s(N)

on-shell, i.e. along the classical trajectories on cosmological scales (see Appendix A). In

this section we choose a suitable c2s and, via the equation state (4.4)-(4.5), we study the

evolution of the Jeans wave-number and the gravitational potential.
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Figure 8: wDE as a function of the redshift z, with ν = 3/7 and zt = 1 (left panel) and zt = 6 (right

panel). In both panels the short to long dashed lines correspond to β = 5, 10, 100, respectively; the

black solid line corresponds to β = 1000. Without violating the null energy condition our models

produce wDE after the transition.

5.1 Speed of sound and Jeans scale

We assume a speed of sound of the following form:

c2s :=
c2∞

1 + (νa−3/c2∞)n
, (5.1)

where c∞ > 0 and n ≥ 0 are free parameters, the former representing the asymptotic future

speed of sound.

In Figs. 9 and 10 we have plotted c2s for different values of c∞ and n. We can deduce

that, for practicality and in order to reduce the number of free parameters, we can choose

n = 4, 5 and c∞ = 0.1. In this case we obtain a value for the speed of sound that is suitably

small at all times, without requiring any fine tuning.

Let us now analyse the Jeans scale; rather then directly considering the physical Jeans

length λJ we look at the Jeans wave number kJ = 2πa/λJ. Starting from Eq. (2.14), the

squared Jeans wave-number is defined as follows [35]:

k2J :=

∣∣∣∣
θ′′

c2sθ

∣∣∣∣ . (5.2)

This is a crucial quantity in determining the viability of a UDM model, because of its

effect on perturbations, which is then revealed in observables such as the CMB and matter

power spectra. Indeed, any UDM model should satisfy the condition k2J ≫ k2 for all the

scales of cosmological interest, in turn giving an evolution for the gravitational potential

Φ(η,x) ∝ Φ(η, k) exp (ik · x) of the following type:

Φ(η, k) ≃ Ak

[
1− H(η)

a(η)

∫
a(η̂)2dη̂

]
, (5.3)

where Ak = Φ(0, k)Tm (k), Φ (0, k) is the primordial gravitational potential at large scales,

set during inflation, and Tm (k) is the present time matter transfer function, see e.g. [77].
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Figure 9: Illustrative plot of c2s as a function of the redshift z, with ν = 3/7 and n = 2 (left

panel) and n = 4 (right panel). Left panel: the short to long dashed lines respectively correspond

to c∞ = 10−1, 10−2, 10−3 and the black solid line corresponds to c∞ = 10−4. Right panel: the

short to long dashed lines respectively correspond to c∞ = 0.5, 10−1, 10−2 and the black solid line

corresponds to c∞ = 10−3.
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Figure 10: Illustrative plot of c2s as a function of the redshift z, with c∞ = 0.1 and ν = 3/7.

The lines, from short to long dashes, respectively correspond to n = 2, 4, 6 and the black solid line

corresponds to n = 8.

From (5.2), the explicit form of the Jeans wave number for a scalar field UDM model

turns out to be

k2J =
3

2

ρ

(1 + z)2
(1 + w)

c2s

∣∣∣∣
1

2
(c2ad − w)− ρ

(c2ad)
′

ρ′
+

3(c2ad − w)2 − 2(c2ad − w)

6(1 +w)
+

1

3

∣∣∣∣ , (5.4)

where c2ad = p′/ρ′. Comparing with the Jeans wave number for a barotropic fluid (see Eq.

(3.3) in [44]), for which c2s = c2ad, the only difference is the overall 1/c2s factor replacing

1/c2ad: this gives extra freedom in building a suitable kJ.

Clearly, we can indeed obtain a large k2J when c2s → 0; in addition, when c2ad changes

rapidly around zt, i.e. when the above expression is dominated by the
[
ρ (c2ad)

′/ρ′
]
term,
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we can have a fast trasition. Therefore, we can conclude that, for β < 1000 and before and

after the fast transition for β > 1000, it is crucial that c2s be sufficiently small. Defining

c2s as in Eq. (5.1), in Figs. 11 we plot the Jeans wave-number for the representative case

zt = 2 and c∞ = 0.1, for various values of β and n.
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Figure 11: The Jeans wave-number kJ (in h Mpc−1 units) assuming ν = 3/7, zt = 2, c∞ = 0.1

and β = 4 (left-top panel), β = 12.1 (right-top panel), β = 100 (left-bottom panel) and β = 1000

(right-bottom panel). The lines, from short to long dashes, respectively correspond to n = 3, 4, 5

and the black solid line corresponds to n = 6.

From the right panels of Fig. 11, we can note that for β = 12.1 and 1000 the Jeans

wave number kJ momentarily vanishes. In general, around these points the corresponding

Jeans length becomes very large, possibly causing all sort of problems to perturbations,

with effects on structure formation in the UDM model. On the other hand, for sufficiently

small cs we note that i) in general the Jeans wave number becomes larger and ii) it becomes

vanishingly small for extremely short times, so that the effects caused by its vanishing are

sufficiently negligible, as we are going to show in the next subsection when we will analyze

the gravitational potential Φ. Therefore, in building a phenomenological model, we can

choose its parameter values in order to always satisfy the condition k ≪ kJ for all k of

cosmological interests to which linear theory applies. In other words, we can always build

our model in such a way that all scales smaller than the Jeans length λ ≪ λJ correspond to

those in the non-linear regime, i.e. scales beyond the range of applicability of the model. So,

for these scales, no conclusions on the behaviour of perturbations can be derived from the

linear theory. Indeed, to investigate these scales, one needs to go beyond the perturbative

regime investigated here, possibly also increasing the sophistication of the UDM model in

order to properly take into account the greater complexity of small scale non-linear physics.
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Moreover, from Fig. 11 we can finally conclude that, for n = 4 or 5 and c∞ = 0.1, we obtain

a acceptable Jeans wave number at all times.

5.2 The gravitational potential

From Eq. (2.14) let us write explicitly the differential equation for the gravitational poten-

tial Φ:

d2Φ(a, k)

da2
+

(
1

H
dH
da

+
4

a
+ 3

c2ad
a

)
dΦ(a, k)

da
+

[
2

aH
dH
da

+
1

a2
(1 + 3c2ad) +

c2sk
2

a2H2

]
Φ(a, k) = 0 ,

(5.5)

where H = a2H2 and plane-wave perturbation, Φ(a,x) ∝ Φ(a, k) exp (ik · x) have been

assumed.

In Figs. 12 we plot the gravitational potential for different values of n, β = 0.1, zt = 2,

c∞ = 0.1 and for k = 0.05 h Mpc−1 and k = 0.2 h Mpc−1 . We note that, for k ∼ kJ,

Φ(a, k) starts to oscillate and decays, thus preventing structure formation. On the other

hand for n > 2 and for small values of β, we obtain a shape of the gravitational potential

very close to that of the ΛCDM model.
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Figure 12: Gravitational potential Φ(z, k) as a function of the redshift z, assuming ν = 3/7, zt = 2,

c∞ = 0.1 and β = 4. The lines, from short to long dashes, respectively correspond to n = 1, 1.5, 2.

For comparison, the black solid line represents Φ the ΛCDM model with Ωm/ΩΛ = 3/7. Left panel:

k = 0.05 h Mpc−1; right panel: k = 0.2 h Mpc−1.

Now, assuming for simplicity n = 4 and c∞ = 0.1 (in order to have an acceptable kJ)

we analyse the gravitational potential and investigate how it depends on the background

parameters β and zt (or, equivalently, at). As we know from Fig. 5, for β < 100 the value

of zt practically loses the meaning of scale parameter at the transition. For these range of

parameters, we can also observe this effect in Fig. 13, where we have plotted Φ(z, k) for

different values of β and zt.

Moreover, from these panels we can note another interesting effect. For large values

of β and for small values of zt, Φ(z, k) is constant in time (as it should be in a pure

matter Einstein De Sitter model) and assumes the same value of Φ(0, k) until z ∼ zt
and then for z < zt its value quickly goes down, eventually intersecting the potential of

the ΛCDM model. This happens because the background starts to “feel” the effective

cosmological constant only for z < zt. It is important to stress that this evolution of Φ

– 18 –



0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1.

z

F Hz, kL

F I103, 0M

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1.

z

F Hz, kL

F I103, 0M

0 1 2 3 4 5 6
0.75

0.8

0.85

0.9

0.95

1.

z

F Hz, kL

F I103, 0M

0 1 2 3 4 5
0.75

0.8

0.85

0.9

0.95

1.

z

F Hz, kL

F I103, 0M

Figure 13: Illustrative plots of the gravitational potential Φ(z, k) as a function of the redshift z,

for k = 0.2 h Mpc−1, ν = 3/7, zt = 1, c∞ = 0.1 and n = 4. For comparison, the black solid line

represents Φ in the ΛCDM model with Ωm/ΩΛ = 3/7. Left-top panel: zt = 1. The lines, from

short to long dashes, respectively correspond to β = 104, 50, 5. Right-top panel: zt = 2. The lines,

from short to long dashes, respectively correspond to β = 104, 50, 4. Left-bottom panel: zt = 3.

The lines, from short to long dashes, respectively correspond to β = 104, 50, 4. Right-bottom panel:

zt = 5. The lines, from short to long dashes, respectively correspond to β = 104, 50, 4.

could produce a strong Integrated Sachs Wolfe (ISW) effect: however, this would only be

due to the particular evolution and would not depend from c2s . Obviously, this effect is

weaker if we set zt > 2 and completely negligible for zt ≥ 5, i.e. these UDM models become

indistinguishable from the ΛCDM model, cf. [44].

In conclusion, the suitability of models with 4 . β < 1000, as well as that of models

with β > 1000 and zt < 2, need a study of the matter and CMB power spectra, which

will reserve for the future. On the other hand, for β > 1000 and assuming zt > 2, i.e. for

an early enough fast transition, the above analysis shows that our UDM models should be

compatible with observations.

In order to compare the predictions of our UDM model with observational data, we

have to define the UDM density contrast as δ := δρ/ρA [39], where here ρA = ρ − ρΛ
is the clustering “aether” part of the UDM component [74, 56]. Indeed, our equation of

state admits an asymptotic (a → ∞) effective “cosmological constant” [74] which we have

already defined as ρΛ in section 4. In this case, starting from the perturbation theory

that we outlined in section 2, we can infer the link between the density contrast and the

gravitational potential via the Poisson equation for scales smaller than the cosmological

horizon and z < zrec, where zrec is the recombination redshift (zrec ≈ 103) in the following
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way:

δ (k, z) = −2k2Φ(z, k) (1 + z)2

ρA
. (5.6)

6. Conclusions

The last decade of observations of large scale structure [20, 21, 22, 8, 9, 23], the search

for type Ia supernovae (SNIa) [6, 5, 7, 10] and the measurements of the CMB anisotropies

[3, 24, 25] are very well explained by assuming that two dark components govern the

dynamics of the Universe. They are DM, thought to be the main responsible for structure

formation, and an additional DE component that is supposed to drive the measured cosmic

acceleration [17, 18, 16, 14, 15]. However, it should be recognised that, while some form of

CDM is independently expected to exist within any modification of the Standard Model of

high energy physics, the really compelling reason to postulate DE has been the acceleration

in the cosmic expansion. It is mainly for this reason that it is worth investigating the

hypothesis that CDM and DE are two aspects of a single UDM component, see e.g. [48, 18].

In this paper we have developed and generalized the technique to construct scalar field

UDM models proposed in Ref. [40] and we have focused on Lagrangians with non-canonical

kinetic term to obtain models where a single component can mimic the dynamical effects

of Dark Matter and Dark Energy and, at the same time, has a sound speed small enough

to allow for structure formation.

In the second part of the paper, we have built UDM models which can produce a fast

transition, similarly to the barotropic fluid UDM models we proposed in [44]. However,

while the background evolution can be very similar in the two cases, the perturbations

are naturally adiabatic in fluid models, while in the scalar field case they are necessarily

non-adiabatic [64, 65, 66], cf. [67, 68, 69]. This new scalar field model allows to escape the

problem of the fine-tuning on the parameters which usually appeared in many previous

UDM Lagrangians.

First of all, an interesting feature of our models is that, for z < zt, wDE can be < −1

without violating the null energy conditions [see comment i) in Section 3.5]. Subsequently,

we have analysed the properties of perturbations in our model, focusing on the evolution

of the effective speed of sound and that of the Jeans scale. In general, in building a

phenomenological model, we have chosen its parameter values in order to always satisfy

the condition k ≪ kJ for all k of cosmological interests to which linear theory applies. In

this way, we have been able to set theoretical constraints on the parameters of the model,

predicting sufficient conditions for the model to be viable. In particular, we have found

that for sufficiently small cs, i) the Jeans wave number becomes larger and ii) it becomes

vanishingly small for extremely short times, so that the effects caused by its vanishing

are sufficiently negligible, as we have showed in Section 5.2 when we have analysed the

gravitational potential and the UDM density contrast δ = δρ/ρA, Eq. (5.6).

Studying observational constraints on our UDMmodels from SN 1A, CMB anisotropies

and from the formation of the large-scale structure in the Universe will be the subject of

a future analysis. In particular, it will be interesting to see if the feature wDE < −1 our
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models show after the transition will be compatible with observations. On the theoretical

side it will be important to check if, in a Universe filled with the scalar field component

defined by the Lagrangian (A.1), the dynamics will display the desired behaviour, with the

scalar field mimicking both the DM and DE components. Another issue concerning the

dynamics of our UDM is the possible development of caustics in the non-linear regime. For

instance, it is well known that inhomogeneous tachyon matter fluctuations could develop

caustics, e.g. see [78, 79]. However, comparing with these models our Lagrangian has an

additive potential V (φ). These open theoretical issues will be analysed in a forthcoming

work.
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A. Explicit reconstruction of Lagrangian L(φ, Y )

Following the prescriptions in Section 3, the analytic expression of the scalar field La-

grangian for our UDM model turns out to be

L(φ, Y ) = −f(φ)

√√√√1− 2
h(φ)(

1 + 3
4

φ2

1−c2
∞

)Y − V (φ) . (A.1)

Now, using the parametric equation of state p(N)-ρ(N) defined by Eqs. (4.4)-(4.5) and the

speed of sound defined in Eq. (5.1), we can infer a relation among the parameters µ, ν, c∞
and β, i.e.

µ = βν(1− c2∞) . (A.2)
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Thanks to this relation we can eliminate µ, finally obtaining the following potentials

f(φ) =
c∞

[
1 +

(
4
3

1
c2
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φ2

)n]1/2



1− c2∞[

1 +
(
4
3
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∞
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2
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4

(
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t
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+ 2
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1

φ2
ln cosh

[
βν

4

(
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t
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+

4

3

ρDE

φ2
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,

(A.3)

V (φ) =
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∞
φ2

)n]





−1{
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2
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− c2∞[
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3
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∞
φ2

)n]
[
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2

+ 2
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1

φ2
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4
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t
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4

3

ρDE

φ2

]
 , (A.4)

h(φ) =

[
1 + 1

1−c2
∞

(
4
3

1
c2
∞
φ2

)n] (
1 + 4

3
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∞

φ2

)

{
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2 + 2ρΛ
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1
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4
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where φt =
[
2/

(
3νa−3

t

)]1/2
.
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