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ABSTRACT

Galaxy Zoo is the first study of nearby galaxies that contains reliable infor-
mation about the spiral sense of rotation of galaxy arms for a sizeable number
of galaxies. We measure the correlation function of spin chirality (the sense in
which galaxies appear to be spinning) of face-on spiral galaxies in angular, real
and projected spaces. Our results indicate a hint of positive correlation at sepa-
rations less than ∼ 0.5 Mpc at a statistical significance of 2-3 σ. This is the first
experimental evidence for chiral correlation of spins. Within tidal torque theory
it indicates that the inertia tensors of nearby galaxies are correlated. This is
complementary to the studies of nearby spin axis correlations that probe the
correlations of the tidal field. Theoretical interpretation is made difficult by the
small distances at which the correlations are detected, implying that substruc-
ture might play a significant role, and our necessary selection of face-on spiral
galaxies, rather than a general volume-limited sample.

Key words:

1 INTRODUCTION

Understanding the creation and evolution of the an-
gular momentum of dark matter halos and galaxies
is a crucial building block of a comprehensive theory
of galaxy evolution. Hoyle (1949) was first to propose
that the galaxy spin can be ascribed to the gravi-
tational coupling with the surrounding galaxies. This
idea has been formalised and extended in subsequent
work (Peebles 1969; Doroshkevich 1970; White 1984;
Heavens & Peacock 1988; Catelan & Theuns 1996) into

⋆ This publication has been made possible by the partici-
pation of more than 100,000 volunteers in the Galaxy Zoo
project. Their individual contributions are acknowledged at
http://www.galaxyzoo.org/Volunteers.aspx
† E-mail: anze@berkeley.edu

the modern theory of the evolution of galaxy spin, known
as the tidal torque theory (TTT; see Schaefer (2008) for
a review). This theory asserts that protohalos acquire
most of their angular momentum in the early stages
of their formation, from the lowest non-vanishing con-
tribution from the linear Lagrangian theory, that is, a
coupling of the quadrupole of the local mass distribu-
tion to the external gravitational shear. Compared to
N-body simulations, theory produces qualitatively cor-
rect results, although there are still significant discrepan-
cies at a more quantitative level. Moreover, it seems that
at present there are no clear theoretical directions for
improving analytical models (Barnes & Efstathiou 1987;
Porciani et al. 2002a; Bailin & Steinmetz 2005).

On the observational side, most of the work has been
done using spiral galaxies. These are characterised by a
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2 Anže Slosar et al.

rotating disk of baryonic matter. The line perpendicular
to the plane of the disk determines the axis of rotation,
while the spiral arms in most galaxies encode the sense of
rotation, i.e the difference between left-hand screw and
right-hand screw sense of rotation. For spiral galaxies
seen in projection, one can measure the observed galaxy
ellipticities, which constrain the axis of the galaxy spin
(Pen et al. 2000; Lee & Pen 2002; Lee & Erdogdu 2007;
Trujillo et al. 2006). This axis is known to within two-fold
degeneracy associated with the tilt of the galactic plane
with respect to the plane of the sky. Since the vector can
point in two directions on the same axis, the elliptici-
ties constrain the spin vector within a total of four-fold
degeneracy. Note that chiral information, viz. informa-
tion about the actual directions of the spin vectors as
opposed to spin axis, is completely absent in the study of
galactic ellipticities. However, this information contains
important clues about the details of the emergence of the
spin. As we will explain later in the text, the detection of
chiral correlation function implies that the local inertia
tensors must be correlated. This lends experimental sup-
port to the theoretical expectations that the inertia and
gravitational shear tensor are correlated (Porciani et al.
2002b).

We now have a unique tool to study the chiral prop-
erties of galaxy spins. Through an online project called
Galaxy Zoo1 (Lintott et al. 2008), members of the public
have visually classified the morphologies and spin orienta-
tions for the entire spectroscopic sample of the Sloan Dig-
ital Sky Survey (SDSS from now on) (York et al. 2000)
Data Release 6 (DR6) (Adelman-McCarthy et al. 2008).
The data and its reduction is extensively discussed in
Lintott et al. (2008).

Spiral galaxies in the Galaxy Zoo sample are clas-
sified as clockwise, anti-clockwise or edge on. The spin
direction convention used here is such that clockwise
and anti-clockwise rotations correspond to galaxies whose
arms are rotating in the sense of the letters Z and S re-
spectively (Sugai & Iye 1995). For each face-on galaxy we
thus receive one bit of information corresponding to the
sign of the galaxy spin vector projected along the line of
sight. It is important to note that this information is inde-
pendent of the tilt of the plane of the galaxy. We will refer
to this one-bit information simply as galaxy spin. By the
galaxy spin vector we mean the unit vector that defines
the apparent spin of the galaxy: it is perpendicular to the
disk plane and points in the direction the right turn screw
would move if turned following the spiral arms inwards.
This quantity is strongly correlated with the real angular
momentum of the gas. The correlation, however, is not
perfect and observations show that the angular momen-
tum vector of the gas points in the opposite direction in
about four percent of systems (Pasha & Smirnov 1982).
In turn, there are theoretical expectations that there is
a strong, but not perfect correlation between the angu-
lar momentum vector of gas and that of the dark matter
halos hosting the galaxy (van den Bosch et al. 2002). A
detection of correlation in the galaxy spins would there-
fore imply a correlation in the dark matter spin vectors.

1 www.galaxyzoo.org

Conversely, a non-detection of the spin correlation can
be used to put upper limits on the correlation between
angular momentum vectors of dark matter halos.

This paper is structured as follows. In Section 2 we
shortly review the tidal torque theory and its main re-
sults. Section 3 will connect the correlation function η to
an observable correlation function of spins c, while the
Section 4 will introduce our data and measurement tech-
nique. We present our results and discuss systematics in
Section 5. Finally, we discuss our results and conclude in
the last Section 6.

2 TIDAL TORQUE THEORY

The tidal torque theory derives the following expres-
sion for the angular momentum from the 1st order lin-
ear peturbation theory in Lagrangian space (White 1984;
Catelan & Theuns 1996):

Li(t) = a2(t)ḊǫijkTjlIlk, (1)

where a is the scale factor of the Universe, D is the growth
factor and ǫijk is the Levi-Civita symbol. The local inter-
tia tensor Iij of the protohalo (the mass that will later
form the dark matter halo) in Lagrangian space is given
by

Iij = ρ̄o

Z

V

qiqjd
3q, (2)

where qi are the Lagrangian coordinates around the cen-
tre of mass of the halo and ρo is the mean density. The
local shear tensor Tij is defined by

Tij = ∂i∂jφ(q), (3)

where φ is the gravitational potential. In other words,
the TTT requires two components: a non-vanishing
quadrupole distribution of mass in the halo to be spun
up and the cosmological tidal field. In principle, it sounds
plausible to assume that while tidal fields between neigh-
boring protohalos are correlated, since they are coming
from the large scale modes, the local quadrupole moments
of mass distribution are sourced due to random distribu-
tion of the local inhomogeneities and should therefore be
random. This assumption of a statistical isotropy of the
inertia tensor, gives the following anatz for the angular
moment correlator (Pen et al. 2000):

Qij =
D

LiLj |T̂
E

=
1

3
δij + c

„

1

3
− T̂ikT̂kj

«

, (4)

where c controls the level of randomization of axial pref-
erence due to non-linear and stochastic effects. In fact,
this ansatz has been shown to satisfactorily explain the
inclinations of axes of spiral galaxies in vicinity of voids
with c ∼ 0.7 (Trujillo et al. 2006).

Some further algebra gives the probability distribu-
tion function for spins s = L̂, usually assumed to be
Gaussian (Pen et al. 2000):

P (s|T) =
|Q̂|−1/2

4π
exp

“

−s
T · Q̂−1 · s

”

. (5)

Using this expression it is therefore possible to calculate
various correlators of s if correlators of T are known.

c© 2006 RAS, MNRAS 000, 1–10
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We will now consider correlation functions. The
most general form of possible correlation statistics of
the galaxy spins consistent with the homogeneity and
isotropy is the spin correlation tensor defined by (see e.
g. Groth et al. 1989)

Ξij(r) = 〈si(x)sj(x + r)〉 =

[Π(r) − Σ(r)] r̂ir̂j + Σ(r)δij . (6)

Functions Π and Σ are parallel and perpendicular corre-
lation function. Following Porciani et al. (2002a) we will
be dealing exclusively with the “dot product” correlation
functions given by

η(r) = Ξii = 〈s(x) · s(x + r)〉 , (7)

and

η2(r) =
˙

(s(x) · s(x + r))2
¸

− 1/3. (8)

It is important to realize what these two quantities mea-
sure. The first one measures if the angular momentum
vectors are correlated, while the second one measures if
the axes of angular momentum vectors are correlated.
Note that is perfectly possible to have η2(r) > 0 while
η(r) = 0. For example, if all spins were aligned along the
z axis, but with an orientation that is chosen at random
from ẑ and −ẑ, η2 = 1, while η = 0. In fact, following the
ansatz of Equations (4) and (5) results in vanishing η(r)
and a finite η2(r) (analytical expression for which can be
found in Lee & Pen (2001)). This is trivially seen from
Equation (5), since P (s|T) = P (−s|T) and is a direct
consequence of the assumption of isotropy of local mo-
ments of inertia. To put it simply, for a fixed tidal field,
averaging over possible realisations of the inertia tensor
will, in general produce a preferred axis (determined by
eigenvectors of T), but not a preferred direction. This
is due to the fact that for every inertia tensor I that
produces a final angular momentum L, an equally likely
mirror image inertia tensor −I will produce an equal and
opposite angular moment −L. Therefore, the common
assumption that the local moments of inertia are ran-
dom and uncorrelated will, in general, produce a non-
vanishing axis correlation, but a vanishing correlation of
the actual spin vectors. The important corollary is, that a
detection of chiral correlations in the galaxy spins would
directly indicate that the moments of inertia are non-
random.

3 CORRELATIONS OF PROJECTED SPINS

3.1 Small scale correlation function of spins

Our life as observers is complicated by the fact that the
sense in which spiral arms wind in a projected image of
a spiral galaxy measures the sign of the spin vector pro-
jected along the line of sight rather than the spin vector
itself. We will therefore consider the correlation function
of s̃ = sgn(s · ẑ):

c(r) = 〈s̃(x)s̃(x + r))〉 , (9)

where we assumed that the radial vectors to positions x

and x + r are parallel, i.e. the flat-sky approximation.

Note that this only requires pairs of galaxies to be close
enough so that the flat-sky approximation holds, rather
than an entire survey occupying a small portion of the
sky. For the time being we also neglect the difference
between the dark-matter angular momentum and the gas
angular momentum.

To proceed, we note that η(r) is determined entirely
by the one-point distribution function P (µ|r) for cosine
angle µ = cos θ between the two spin vectors:

η(r) = 〈si(x)sj(x + r)〉 = 〈µ〉 =

Z

µP (µ|r) dµ (10)

For a given µ, one will observe two galaxies with
the same orientations of spins with the probability (see
beginning of the Appendix A)

P+1(θ) = 1 − θ/π (11)

and with different orientations of spins with the proba-
bility

P−1(θ) = 1 − P+1(θ) = θ/π (12)

The correlation function of the spin signs is then
given by

c(r) =
1

N

Z

dµP (µ|r) (P+1(θ) − P−1(θ)) , (13)

where normalisation N is in this case trivially given by:

N =

Z

dµP (µ|r) (P+1(θ) + P−1(θ)) = 1 (14)

When there are no correlations, P (µ) dµ = 1/2d µ
and both η(r) and c(r) = 0. When correlations exist, we
must specify a one point probability distribution function
for P (θ|r). We assume the following form:

P (θ|r) = sin(θ) (1 + e(r) cos(θ)) (15)

Using this form, one obtains

η(r) =
1

3
e(r) (16)

c(r) =
1

4
e(r) (17)

and so

η(r) =
4

3
c(r) (18)

Equation (18) hinges on the particular form for P (θ|r)
that we chose. In practice, different forms generically give
the results that η(r) = qc(r) with q typically between 1
and 3/2.

In reality, however, we measure the correlation func-
tion only for galaxies that are sufficiently away from
the edge-on orientation not to be classified as a face-on
galaxy. For simplicity, let us assume that our sample con-
tains only galaxies, whose spin vector satisfies

s(x) · ẑ > cos α. (19)

In other words, galaxies that are inclined with an angle
greater than α with respect to the line of sight are as-
sumed to have been classified as edge-on. What is the

c© 2006 RAS, MNRAS 000, 1–10



4 Anže Slosar et al.

functional form for P+1(θ) in this case? In Appendix A,
we show that for α > π/4

P+1(θ) =

8

>

>

>

<

>

>

>

:

f(θ) θ < π − 2α;

f(θ) π − 2α < θ < 2α;

0 2α < θ
(20)

and

P−1(θ) =

8

>

>

>

<

>

>

>

:

0 θ < π − 2α;

f(π − θ) π − 2α < θ < 2α;

f(π − θ) 2α < θ,
(21)

where

f(θ) = 1 − 2 cos(α)

−
1

π
cos−1

„

cos θ − cos2 α

sin2 α

«

+
2 cos α

π
cos−1

„

cos α(cos θ − 1)

sin θ sin α

«

. (22)

The “lost” probability, i.e. 1−P+1 −P−1 corresponds to
geometries that are not detected and in general result in
N < 1. Numerically integrating Equation (13), we can
obtain a relation between η and the measured cmeas(r).

3.2 Connection to gas angular momentum

As discussed in Pasha & Smirnov (1982), a fraction f =
0.04 of galaxies has gas angular momentum that is point-
ing in the opposite direction to the apparent galaxy spin
inferred from orientation of spiral arms. If we momen-
tarily distinguish between the actual gas spin correlation
function and apparent gas spin correlation function, we
can write

ηapparent(r) =
`

(1 − f)2 + f2
´

η(r)−2f(1−f)η(r), (23)

since correlation function of spins will receive a negative
contribution if exactly one spin (but not both) was ran-
domly reversed. This simplifies to

ηapparent(r) = 4

„

f −
1

2

«2

η(r). (24)

This has the expected properties. The spin correlation
function will become zero if exactly half the spin vectors
are reversed, effectively randomizing them and exactly
following the primary correlation function if all or none
spins are reversed. For f = 0.96 one gets that η(r) ∼
1.2ηapparent(r).

4 DATA & METHOD

4.1 Data

The basic data reduction is described in great detail
in Lintott et al. (2008) and Land et al. (2008). We will
briefly summarise the data reduction in the following
paragraph, but the reader is invited to read the above
papers if interested in the details of the primary data
reduction.

In the Galaxy Zoo project, a sample 893,212 galax-
ies were visually classified by about 90,000 users. The
sample was selected to be sources that were targeted for
SDSS spectroscopy, that is extended sources with Pet-
rosian magnitude r < 17.77. Additionally, we included
objects that were not originally targeted as such, but were
observed to be galaxies once their spectrum was taken.
Where spectroscopic redshifts are available, we find that
they have the mean redshift of z = 0.14 and the ob-
jects with the highest redshift reach z ∼ 0.5. The galax-
ies thus probe our local universe at cosmological scales.
Each object has been classified about 40 times from a
simplified scheme of 6 possible classifications: an ellip-
tical, a clockwise spiral galaxy, an anti-clockwise spiral
galaxy, an edge-on spiral galaxy, a star / unknown ob-
ject, a merger. Various cuts (hacking attempts, browser
misconfigurations, etc.) removed about 5% of our data.
The data were reduced into two final catalogues based
on whether data was weighted or unweighted. In the un-
weighted data, each user’s classification carries an equal
weight, while in the weighted case, users weights are iter-
atively adjusted according to how well each users agrees
with the classifications of other users. In both cases, the
accrued classifications are further distilled into super-
clean, clean and cleanish catalogs of objects, for which we
require 95%, 80% and 60% of users to agree on a given
classification. In all cases, this is a statistically significant
detection with respect to random voting; however, the hu-
man “systematical” error associated with it is difficult to
judge. In any case, we are in the limit where taking more
data will not change our sample beyond noise fluctua-
tions as the votes are uncorrelated. In Land et al. (2008)
a bias of unknown origin toward anti-clockwise galaxies
was discovered and corrected for by adjusting the clean-
liness level for the clock-wise galaxies to a slightly lower
value. This work uses the same data and bias correc-
tion. We note, however, that if unaccounted for, such bias
would generate a constant offset in the correlation func-
tion that cannot mimic the correlations we are seeing in
the data. After bias correction is applied, the numbers of
clockwise and anti-clockwise galaxies are the same within
Poisson noise in each sample.

We decided to use the 80% clean weighted sub-
sample. We stress that the decision to work with 80%
clean sample was made in advance and was not chosen
to maximize our signal. We show an example of a typi-
cal clockwise and anti-clockwise spinning galaxies from a
clean catalogue in the Figure 1.

4.2 3D, angular and projected configuration

spaces

In the formalism of Section 3, we have always referred
to distance between two galaxies as being r, the physical
distance in real-space. In practice, it can be any measure
of distance between galaxies. In this work we use three
different distance measures:

(i) Angular distances. These have the advantage of
producing the highest number of pairs. We denote the
corresponding correlation function with c(θ).

(ii) Real space distance. We use the distance in the

c© 2006 RAS, MNRAS 000, 1–10



Galaxy Zoo: Chiral correlation function of galaxy spins 5

Figure 1. This figure show a pair of typical galaxies from our
clean catalogue. The left image is an anti-clockwise (S-like),
while the right is a typical clockwise (Z-like) galaxy.

redshift space for pairs of galaxies for which both spec-
troscopic redshifts are known. These are not the true 3-
dimensional distances, but are instead distances in the
red-shift space and therefore affected by the fingers-of-
god effects (see e.g. Hamilton 1998). Since the axis of sub-
halos are correlated with the shape of the parent halo (see
e. g. Bailin & Steinmetz 2005), there exist correlations
in the ratio of edge-on to face-on spirals as a function
of projected distances from the centre of the halo. This
considerably complicates any correction for fingers-of-god
effects and therefore we do not attempt this correction,
since effects are likely to be sudominant. A concordant
flat cosmology with Ωm = 0.25 was assumed when calcu-
lating distances. We denote the corresponding correlation
function with c(r).

(iii) Projected distances. There distances are the
transversal component of the distance vector connecting
two galaxies with known redshift. If only one galaxy in
the pair has a known redshift, we assume the other galaxy
to have the same redshift. The advantage of this distance
measure is that it is not affected by the redshift space
distortions and that the number of pairs is significantly
larger than in the case of real space distances. We denote
the corresponding correlation function with c(p).

For each of the above distance measures, we first
located all galaxy pairs in our sample, that are less than
2000 arc seconds or 3 Mpc/h or 1 Mpc/h projected apart.
This gave us three sets which we describe in the Table 1.

We have then removed rogue pairs. In the primary
SDSS pipeline analysis, every object is assigned an SDSS
ID. Large nearby galaxies are often associated with more
than one ID, as various knots and substructure of the
galaxy are recognised as sources by the reduction soft-
ware. All such IDs are therefore classified as the same
galaxy, resulting in spurious positive correlation at the
shortest distances. Our automatic mechanism removed
all pairs for which their angular separation is less than
1.5 max(rp), where max(rp) denotes the larger of the two
Petrosian radii (Petrosian 1976). This did remove the ma-
jority, but not all of the rogue pairs. Therefore, the clos-
est pairs (at angular separations of less than 3rp) in each
category were examined by hand and 69 additional SDSS
objects were removed.

4.3 Determination of α angle

As discussed in the Section 3, we need to estimate the
value of α, the maximum angle of inclination at which
the spirals have a measured spin orientation rather than
a being classified as “edge-on” spirals. To do this, we use
the adaptive second moments (Bernstein & Jarvis 2002)
from the SDSS pipeline, namely e× and e+ to calculate
the axis ratio, following Ryden (2004):

q =

„

1 − e

1 + e

«1/2

, (25)

where e =
q

e2
× + e2

+. In Figure 2 we show the distribu-

tion of q values for spirals galaxies classified as face-on (of
either spin orientation) and edge-on spirals. As expected,
the two populations occupy the two corners of possible
values of q, but there is a significant overlap. Intrinsic
ellipticities, non-zero thickness of the disk and potential
human-induced selection effects likely complicate things.
We have attempted to model intrinsic ellipticities in the
spirit of Giovanelli et al. (1997), but difference was neg-
ligible.

A plausible range of the cut-off q is 0.2 - 0.5, giving
the values of α between 60◦ and 80◦. If we numerically
integrate Equation (13) as explained in Section 3.1, we
get

η(r) ∼ mcmeas(r), (26)

with the value of m between ∼ 0.6 and ∼ 0.9. We will
assume a systematic bias associated with this effect to
be m = 0.75 ± 0.15. Adding to this the effect of the
random reversing of galaxy spins and allowing a liberal
50% enhancement of the systematic error due to an ad-

hoc assumption in Equation (15), we arrive at

η(r) = (0.9 ± 0.3)cmeas(r). (27)

4.4 Correlation function measurement

Our basic method is to measure c(r) and its errors and
then to infer constraints on η(r).

To measure c(r), we note the following. For a pair
of galaxies, whose spins are s̃i and s̃j , the product s̃is̃j

can be either +1 or -1 with probabilities p±1. Since p+1+
p−1 = 1 and the expectation value of 〈s̃is̃j〉 = p+1−p−1 =
c(r) it follows that

p±1 =
1 ± c(r)

2
(28)

Therefore, one can write the likelihood function for
c(r) as

P (c(r)|data) ∝ P (data|c(r)) =
Y

k

„

1 + dkc(rk)

2

«

,

(29)
where index k runs over all pairs of galaxies in the

sample and dk = s̃is̃j is the spin product for the k-th

c© 2006 RAS, MNRAS 000, 1–10
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Property Angular Real space Projected

Number of pairs 34031 8005 24271
Number of gal. 20827 7979 25272

Mean z 0.08 0.05 0.07

∆χ2 exponential 9.76 9.12 5.89
Evidence ratio 9 6 1

a 0.94+0.39+0.54+0.56
−0.48−0.80−0.92 0.35+0.19+0.42+0.86

−0.16−0.27−0.34 0.55+0.60+0.89+0.95
−0.47−0.54−0.55

a 23.41+11.37+42.47+73.24
−6.35−13.04−22.41 0.37+0.16+0.41+0.61

−0.11−0.23−0.37 0.02+0.08+0.37+0.47
−0.01−0.02−0.02

∆χ2 Gaussian 9.82 11.52 6.71
Evidence ratio 11 16 1

a 0.60+0.25+0.38+0.40
−0.27−0.49−0.58 0.24+0.10+0.22+0.41

−0.09−0.17−0.23 0.44+0.31+0.51+0.55
−0.37−0.43−0.44

b 26.76+9.36+34.11+68.56
−6.35−13.71−25.42 0.44+0.13+0.31+0.52

−0.10−0.20−0.42 0.02+0.05+0.36+0.47
−0.01−0.02−0.02

Table 1. This table shows the basic information about the datasets used in this work. When calculating the mean redshift, only
subset of galaxies with redshift is used and we average over galaxies and not galaxy redshifts. We also report values of best fit
∆χ2, Bayesian evidences and parameters of our fits. Note that evidence here is the evidence ratio and not its logarithm.

Figure 2. This figure shows the histogram of distributions of
q values for galaxies classified as face-on spirals (solid black,
classifications 2,3) and edge-on spirals (dashed blue, classifi-
cation 4)

pair whose distance is rk. In practice we work with the
log likelihoods

log P (c(r)|data) =
X

j

log(1 + djc(rj)) + const. (30)

We use three possible forms for c(r). First we assume
a stepwise shape for c(r) and measure it in bins. Second,
we use two 2-parameter families of curves that seem to
describe our data fairly well: an exponential

c(r) = min
n

1, ae−r/b
o

(31)

and a Gaussian

c(r) = ae−r2/2b2 . (32)

This parameter space is so small that it can be effi-
ciently explored using grid based methods and more ad-
vanced Markov Chain methods are not necessary.

5 RESULTS

In Figure 3 we plot the results of our binned estimation
of c(r). From the two figures it is immediately clear that
there is a hint of an excess at low values of r. The statis-
tical significance of this excess is marginal, at about ∆χ2

of 7.5, 14.2 and 5.6 for angular, real and projected dis-
tances with 6 extra degrees of freedom associated with 6
bins. This corresponds to 2-3 σ detection in the redshift
space but a non-detection in other spaces.

To understand this excess better, we calculate the
probability contours on the a-b plane using exponential
and Gaussian likelihoods. These are plotted in the Figure
4 and the relevant numbers are in the Table 1. How sig-
nificant are these detections? The improvement in χ2 is
between 9 and 12 with respect to zero correlation in angu-
lar and redshift cases with two free parameters. Within a
frequentist approach this is significant at 2-3 sigma level.
The excess at low redshift is not significant in the case
of projected distances, although visually the low distance
points are not incompatible with an excess.

A more appropriate statistical procedure is the
Bayesian evidence (Slosar et al. 2003; Beltrán et al. 2005;
Trotta 2007) which we calculate for all our 2 model
parametrizations and also show in table 1. These can
be calculated exactly for a simple problem like ours.
Evidence depends weakly on the prior size and in this
we chose the prior on a between 0 and 1/1.5 for Gaus-
sian/exponential case and b between 0 and 1000 arc sec
or 1 Mpc/h or 0.5 Mpc/h projected. Regardless of the
exact number employed, the evidence ratio is between a
few and a few tens units implying a weak evidence or
a hint for angular and redshift spaces, but not for the
projected space. This is consistent with results from the
frequentist approach above.
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Figure 3. This figure shows the constrains on the binned
correlation function c for angular (top), redshift (middle) and
projected (bottom) spaces. Two lines correspond to our best
fit exponential (solid red) and Gaussian (dashed green) fits.

Finally, we acknowledge the fact that the exponential
and Gaussian form were chosen a-posteriori, after seeing
the data and hence the improvements in fits contain a
subjective a-posteriori factor.

5.1 Systematics

We can now briefly discuss some of the main systematic
effect that might affect our measurements.

Rogue pairs. As discussed in Section 4.1, we manu-
ally looked at all pairs in the clean sample and discarded
rogue pairs. It is an important systematic check, because
we have at the same time convinced ourselves that man-
ually classifying a small subset (80 galaxies) of the total
sample gave consistent results.

Weighting. Repeating our measurements with un-
weighted data, changes results by less than 5%.

Cleanliness level. We have repeated the analysis with
the super-clean sample. There are many fewer galaxies in
the super-clean sample (Lintott et al. 2008) and so the
statistical significance decreases considerably. We have no
significant detection in any of the spaces considered. The
errorbars increase by a factor of 2 to 2.5, but the central
values in individual bins remain consistent. While the

Figure 4. This figure shows the constrains on the a-b plane
for all datasets and models under consideration. Thick lines
enclose 68.3%, 99.4% and 99.7% enclose likelihood contours for
the weighted sample. Thin lines are the same for unweighted
sample. The top and bottom rows show results in real and
angular spaces respectively. The left and right columns the
exponential and Gaussian fittings exponentially.

statistical power is decreased, the final signal is consistent
with the results presented above.

We have also repeated our measurements with the
the cleanish sample that requires 60% of votes to agree.
The results imply strong detections in both angular and
projected samples, but with a lower significance in red-
shift space. We show their results in the Figure 5. The
high-confidence with which the results are detected in
angular and projected spaces is likely to be deceiving, as
the rogue pairs have not been manually cleaned for these
samples. The decrease of signal in the redshift space indi-
cates that the signal is indeed getting lower due to noise
introduced by low significance.

Selection effects. Another important question is
whether there is any physical difference between our red-
shift sample and angular sample and how do these sam-
ples compare to the general SDSS sample. To do this
we have divided the galaxies that formed our pairs at
closest distances into those for which we have redshift
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Figure 5. Same as Figure 3, but for cleanish sample. These
results are likely to be affected by the rogue pairs - see text
for discussion.

information and those for which redshift information is
not available. When comparing colors and magnitudes
we find that there is no evidence that objects with and
without redshifts are drawn from different magnitude,
u − r colour or petro radius size distributions. The rea-
son for some objects lacking redshift is therefore probably
incompleteness due to fibre collisions. We therefore find
no evidence that the correlation in the angular sample is
of a different physical origin than the correlation in the
real-space sample.

6 DISCUSSION AND CONCLUSIONS

We are now in position to make a synthesis of our results.
The redshift-space results show that there is a significant
correlation of c(r) ∼ 0.15 in the projected galaxy spins
up to the ∼ 0.5 h/Mpc. The angular correlation, shows
larger correlations of c(θ) ∼ 0.4 that are significant corre-
lations up to 30 arc-seconds, which roughly corresponds
to projected distances of about 0.03 Mpc/h, since mean
redshift of 0.08 correspond to distance of ∼ 230 Mpc/h.
This is consistent with the redshift-sample results - both
exponential and Gaussian fits do predict c(r) to raise to ∼
0.3–0.4 as r goes to zero. A consistent picture is therefore
the following: The angular sample detect correlations at

the shortest distances, where majority of pairs are physi-
cal associations, but these get diluted at larger distances
due to interlopers. The redshift-space correlations track
these correlations to larger physical distances. Projected
space pairs do not have enough signal-to-noise to detect
these correlations at high significance.

How do these results compare to theoretical predic-
tions? Simple models as those suggested in Pen et al.
(2000) (equations (4) and (5)) predict a vanishing η and
hence we have directly detected a non-random distribu-
tion of inertia tensors. Within the standard model, the
reason for correlations of moments of intertia are the cor-
relations of these with the (slowly varying) tidal field.
On the other hand, if moments of intertia are perfectly

aligned with the tidal field, the tidal torque cannot pro-
duce any angular momentum and therefore the resulting
angular momentum is due to the residual 10% of misalig-
ment (Porciani et al. 2002b). The stunning outcome of
our result, if confirmed, is that even these 10% misalig-
ments are correlated from (sub-)halo to (sub-)halo.

What is also interesting is, however, that in
Porciani et al. (2002a) η correlations have not been de-
tected in simulations at z = 0 at all separations. In par-
ticular, η < 0.02 at r = 0.5 Mpc/h. A virtually identical
result has been found by Bailin & Steinmetz (2005), who
also find η < 0.02 at r = 0.5Mpc/h (our η is their ξLL).
This is in tension with our results even after conversion
factors in Equation (27) are taken into account. There
are many reasons that explain why our results are not
directly comparable to the above work. First, they are
comparing individual dark matter halos. In our case, we
see the signal at pair separations of less than 1 Mpc. At
such distances, one-halo pairs (pairs of galaxies that re-
side in the same dark matter halo), dominate over two
halo pairs (pairs in which two galaxies occupy two dif-
ferent halos). By selecting spiral galaxies, we are essen-
tially selecting pairs that are composed of satellites re-
siding in the same halo, rather than pairs compromised
of central halo galaxies. The latter are bright ellipticals
and hence inaccessible using our method. Unfortunately,
not very much theoretical work has been done for spin
correlations of substructure. The most relevant paper in
the literature is Lee et al. (2005), which, however, still
uses the chirality agnostic model of Pen et al. (2000) and
does not calculate the chiral correlation function. More
work on the theoretical side and N-body side is required
to understand the implications of our results. Hopefully,
the results could be turned around and help us under-
stand what kind of substructure spiral galaxies occupy in
a typical dark matter halo.

It is therefore imperative that our observational pro-
tocol is simulated on a large enough N-body simulation,
for example the Millennium Simulation (Springel et al.
2005) or MareNostrum Universe (Gottlöber & Yepes
2007) simulations. There, halos and sub-halos hosting spi-
ral galaxies can be identified and those, whose inclination
with respect to a given observer is small enough to be
considered face-on, should be correlated. This would re-
sult in a quantity c(r) that is directly comparable to the
observables that we constrain with the Galaxy Zoo data.

Another interesting aspect of our results is that, for
spiral galaxies, we essentially exclude large and random
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misaligments between gas and dark matter angular mo-
menta. Since the dark matter is dynamically dominant,
gas angular momenta can only be correlated if they are
so due to correlations between dark matter.

Finally, it is tempting to combine our measurements
with the ellipticity measurements to improve signal-to-
noise and remove some systematic. Note, however, that
our 1-bit signal divides a four-fold degeneracy into a two-
fold one and thus this is a non-trivial task which will be
left for the future.

To conclude: We have tentatively detected a chi-
ral correlation function in the spins of spiral galaxies.
This correlation function vanishes in the simplest models
based on tidal torque theory. Our results indicate, that
moments of intertia of protohalos that end up hosting
spiral galaxies are correlated at distances less than ∼ 0.5
Mpc/h.These short distances imply that these protoha-
los are often likely to be substructures of massive halos.
More work is required to understand these results at a
quantitative level.
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APPENDIX A: CALCULATIONS OF “SEEN

PAIR” PROBABILITIES.

The question that we want answer is: For a given pair
of galaxies, whose spin vectors are at angle cos θ = µ,
what is the probability of an observer seeing the pair
with the same sense of galaxy rotation, what opposite
senses of galaxy rotation and not seeing them at all due
to selection effects?

If α = π/2, the result can be obtained by considering
each spin in turn. The first spin divides the unit sphere
of possible observer directions into two half-spheres, de-
pending on the sign of its projected spin. When two spins
are considered, the intersection of the two half-spheres are
two lunes. The thickness of the lune of opposite spins is
θ/π, leading to the result in Equations (11) and (12).

When α < π/2 the dividing line between the two
half-sphere becomes a band of angular thickness 2(π/2−
α) and the two half-spheres shrink to two spherical caps
of radius α. The overlapping area of the spherical caps
separated by θ is 4πf(θ), where f(θ) is given by Equation
(22) (Oat & Sander 2007).

If α > π/4, the intersection of the 4 cups give four
“trimmed” lunes. There are three possibilities.

• θ < 2(π/2−α). Both spins are in roughly same direc-
tion and the opposite spin “trimmed” lunes are squeezed
to zero area. Hence P+1 = f(θ) and P−1 = 0

• 2(π/2 − α) < θ < 2α. General situation in which all
four “trimmed” lunes have finite area. We have P+1 =
f(θ) and P−1 = f(π − θ)

• θ > 2α. Both spins are in roughly opposite directions
and opposite spin “trimmed” lunes are squeezed to zero
area. In this caseP+1 = 0 and P−1 = f(π − θ)

These results imply Equations (20) and (21). We
have tested these analytical predictions using a Monte
Carlo code.
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