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Abstract

The first Vlasov-Fokker-Planck simulations of nanosecond laser-plasma interac-

tions – including the effects of self-consistent magnetic fields and hydrodynamic

plasma expansion – will be presented. The coupling between non-locality and mag-

netic field advection is elucidated. For the largest (initially uniform) magnetic fields

externally imposed in recent long-pulse laser gas-jet plasma experiments (12T) a sig-

nificant degree of cavitation of the B-field will be shown to occur (> 40%) in under

500ps. This is due to the Nernst effect and leads to the re-emergence of non-locality

even if the initial value of the magnetic field strength is sufficient to localize transport.

Classical transport theory may also break down in such interactions as a result of

inverse bremsstrahlung heating. Although non-locality may be suppressed by a large

B-field, inverse bremsstrahlung still leads to a highly distorted distribution. Indeed

the best fit for a 12T applied field (after 440ps of laser heating) is found to be a super-

Gaussian distribution – f0 ∝ e−vm
– with m = 3.4. The effects of such a distribution

on the transport properties under the influence of magnetic fields are elucidated in

the context of laser-plasmas for the first time.

In long pulse laser-plasma interactions magnetic fields generated by the thermo-

electric (‘∇ne × ∇Te’) mechanism are generally considered dominant. The strength

of B-fields generated by this mechanism are affected, and new generation mechanisms

are expected, when non-locality is important. Non-local B-field generation is found

to be dominant in the interaction of an elliptical laser spot with a nitrogen gas-jet.
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Symbol Definition

α Resistivity tensor.
α⊥ Resistivity perpendicular to the magnetic field and parallel to j⊥
α‖ Resistivity parallel to the magnetic field
β Thermoelectric tensor.

β⊥ Thermoelectric coefficient perpendicular to the B-field and parallel to ∇⊥Te.
β∧ Thermoelectric coefficient perpendicular to the B-field and ∇⊥Te.
∆xi Grid cell size at xi in finite difference equations.
∆t Time-step size in finite difference equations.
εe Internal energy per unit mass of the electrons.
ε0 Permittivity of free space, 8.85×10−12 Fm−1 in S.I. units.
γ Ratio of specific heat capacity at constant pressure to specific

heat capacity at constant volume, taken to be 5/3.
κ Thermal conductivity tensor.
κ⊥ Thermal conductivity perpendicular to the B-field and parallel to ∇⊥Te.
κ∧ Thermal conductivity perpendicular to the magnetic field and ∇⊥Te.
κ‖ Thermal conductivity parallel to the magnetic field.
λL Laser wavelength
λαβ Mean free path for collisions of particles of species α with those of species β.
λD Debye length.
λed Delocalisation length λed = (λeiλee)

1/2.
µ0 Permeability of free space, (4π)x10−7 Hm−1 in S.I. units.
ναβ Collision frequency of species α due to species β.
π Stress tensor.
ρ Mass density.
ρα Mass density of species α.
σ Electrical conductivity.
ταβ Collision time between particle α and particle β.
τE

αβ Energy exchange time between particle α and particle β.
τB Braginskii’s electron-ion collision time (= 3

√
πτei/4).

ω Electron gyro-frequency (= eB/me).
ωL Laser frequency.
ωpe Electron plasma frequency.
ωτ Hall parameter (or magnetisation).
∇⊥ Gradient perpendicular to the magnetic field, parallel to the driving force.
∇‖ Gradient parallel to the magnetic field.
∇r Gradient in configuration space.
∇v Gradient in velocity space.
∇w Gradient in velocity space where the velocity is in the ion’s rest frame.
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Symbol Definition

a Electron’s acceleration due to the electric field (= eE/me).
B Magnetic field.
b Unit vector in the direction of the magnetic field.
c Speed of light, 2.99×108ms−1 in S.I. units.
C Average ion velocity.

ca Alfven speed, given by (B2/µ0ρ)
1
2 .

Ce Average electron velocity in the ion rest-frame.
C′

e Average electron velocity in the laboratory frame.

cs Sound speed, given by (γP/ρ)
1
2 .

dΩ An infinitesimal element of solid angle in velocity space.
e Electron charge.
E Electric field.

fβ(v, r, t) Distribution function for species β.
f0 Isotropic part of the electron’s distribution function.

(∂f0/∂t)coll(isional) The rate of change of f0 due to collisions.
fm The Maxwellian distribution.
f1 Anisotropic part of the electron’s distribution function.
I Laser intensity
j Electrical current, magnitude is j.
j⊥ Current perpendicular to the magnetic field.
j‖ Current parallel to the magnetic field.
kb Boltzmann’s constant, 1.38×10−23 JK−1 in S.I. units.

lnΛei Coulomb logarithm.
mβ Mass of a particle of species β.
nα Number density of species α.
pβ Scalar pressure due to species β.
q Artificial viscosity.
qe Electron heat flow.
r position coordinate in phase space, modulus represented by r.
rL The Larmor radius.
t Time coordinate.
Tβ Temperature of species β.
v Velocity coordinate in phase space, modulus represented by v.
vN Nernst velocity.
vosc Quiver velocity of the electrons in the laser’s E-field.
vT Thermal velocity, defined as (2kbTe/me)

1/2.
w Electron’s velocity in the ion’s rest frame, modulus is w.
w′ Random part of the electron’s velocity, modulus is w′.
wT Thermal velocity in (w, r, t) coordinate system (wT = vT )
w0 Laser beam waist.
Z Ionic charge.
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Chapter 1

Introduction

1.1 The need for fusion

The dramatic rise in the world’s energy consumption over the last 150 years – as

shown in figure 1.1 [1] – is of concern as fuel sources are depleted and the output of

pollutants rises. It is difficult to estimate the world’s remaining fossil fuel reserves

accurately. Recent estimates are of the order of 80-100 years. Nuclear fission and

renewable sources provide viable alternatives to fossil fuels. However, fission leads

to very long-lived radioactive byproducts and although renewables are useful on the

small scale it is difficult to imagine how such sources could provide high power density

facilities. Nuclear fusion on the other hand could potentially provide such facilities

with relatively low levels of pollution and virtually limitless resources (of the order of

109 years of power from sea water alone).

The fusion reaction which has the most promise for use in a power plant is that

between a nucleus of deuterium and one of tritium, i.e.:

D2
1 + T3

1 → He4
2 + n1

0 (∆E = 17.6MeV, σmax = 5.0barn) (1.1)

Here ∆E represents the quantity of energy released in the reaction and σmax is the

maximum reaction cross-section. Other reactions are also candidates for controlled

fusion, for example:

T3
1 + p1

1 (∆E = 4.04MeV, σmax = 0.096barn)

D2
1 + D2

1 → He3
2 + n1

0 (∆E = 3.27MeV, σmax = 0.11barn)

He4
2 + γ (∆E = 23.9MeV, σmax = 0.16barn) (1.2)
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Figure 1.1: World energy consumption over the last 150 years (and projected into the
future if current trends continue). NB: 1Q is 1021J. This data has been taken from the
World Energy Council.

Despite the fact that tritium is radioactive and rare, the reaction between deu-

terium and tritium has several advantages over those between two deuterium nuclei.

The D-T reaction releases a reasonable amount of energy. More importantly, its max-

imum cross-section is the largest. Furthermore, its cross-section is much larger at the

typical temperatures considered in controlled inertial fusion (10keV). This is shown

in figure 1.2.

The tritium for the fusion reactions can be bred from lithium and fusion-produced

neutrons in the following reactions:

Li63 + n1
0 → T3

1 + He4
2 (∆E = −4.86MeV) (1.3)

Li73 + n1
0 → T3

1 + He4
2 + n1

0 (∆E = 2.87MeV) (1.4)

The central relationship when determining the viability of a fusion power plant

scheme is the Lawson criterion [3]:

neτ =
3kbT

η
4(1−η)

〈σv〉∆E − αT 1/2
(1.5)
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Figure 1.2: Fusion cross-sections for deuterium-deuterium (D-D) reactions – i.e. the
reactions in equation (1.2) – and the deuterium-tritium reaction (D-T) in equation (1.1).
Data taken from Atzeni & Meyer-Ter-Vehn [2].

Here τ is the confinement time – the internal energy of the plasma must be confined

so that the temperature is high enough for fusion to occur. ne is the electron’s

number density, kb is Boltzmann’s constant, T is the plasma temperature, σ represents

the reaction cross section; when combined with the velocity v and averaged over

velocity this yields the reactivity 〈σv〉. The energy liberated by the fusion reaction

is ∆E. The constant α is 5.34 × 10−24ergs−1cm−3 and represents the energy lost by

bremsstrahlung. This equation is valid when the power gain from the fusion reactions

is equal to that lost – neτ must be greater than the quantity on the right-hand side

if the fusion scheme is viable for power production. η is the efficiency of the fusion

scheme. Choosing η = 0.2, and a temperature of 20keV, on enumeration this criterion

gives neτ > 1020m−3s. Two mainstream fusion schemes have been proposed: inertial

confinement fusion (ICF) and magnetic confinement fusion (MCF). These approach

the problem of confining the plasma in very different ways. MCF devices use relatively

tenuous plasmas confined by a magnetic field for time-scales of the order of seconds.

This presents problems as such a plasma is prone to many instabilities. ICF proposes

to do away with the need for long confinement times, meaning one must deal with

high density plasmas.
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1.1.1 Inertial confinement fusion

The simplest version of the ICF scheme is for a D-T pellet to be compressed by many

laser beams to 1000 times solid density with a central ‘hot-spot’ which is heated to

tens of keV, allowing fusion to occur. The plasma is only ‘confined’ by its inertia and

so the confinement time is very short. This method is known as direct drive ICF.

The uniformity of the lasers is of paramount importance – small non-uniformities

(on the order of 1%) can cause growth of the Rayleigh-Taylor instability and thwart

attempts to compress the pellet [4, 5]. A more uniform drive is possible using the

indirect-drive method [6,7], as illustrated in figure 1.3. Here a uniform bath of x-rays

is used to implode the capsule. These x-rays are either generated by shining lasers

into a hohlraum (effectively an empty cylindrical chamber made of a high Z material

– usually gold) with the D-T target at the centre, or by using a wire-array z-pinch

(the x-rays from which are made uniform using a hohlraum) [8, 9]. The laser-driven

version of this method is in general less efficient than direct drive as the hohlraum

intermediary causes some energy loss.

The Lawson criterion for inertial fusion is usually expressed in terms of a criterion

on ρR where ρ is the density and R is the radius of the capsule. This can be seen

to be equivalent to neτ by noting that the density of the capsule is ρ = nimi where

ni and mi are the number density and mass of the ions and ne = ZNi, the plasma is

quasi-neutral; the time taken for disassembly is approximately τ = R/cs (cs is the ion

sound speed). In order to satisfy Lawson’s criterion for hot-spot ignition ρR should

be from 0.2gcm−2 to 0.5gcm−2. In inertial fusion a common figure of merit for the

reaction is the energy gain. The gain is the ratio of the energy released by fusion in

the implosion of a single ICF capsule to the driver energy delivered to that capsule.

A gain of 30-100 is required for power production.

Currently two large scale facilities are under development to achieve ignition

(satisfy the Lawson criterion and so create a self-sustained fusion burn) using the

indirect-drive ICF scheme. These are the culmination of a long series of incremen-

tal improvements to the laser energy available to such a scheme – this is shown in

figure 1.4 [10]. These facilities are the National Ignition Facility (NIF) at Lawrence

Livermore National Laboratory (Livermore, California), and Laser Megajoule (LMJ)

at CEA (Bordeaux, France); the development of these has created a vigorous interest

in the relevant laser-plasma interactions. Note that the energy gain for the NIF is

expected to be on the order of 10. When the lasers interact with the hohlraum walls

they ionize and ablate the wall material to create a plasma. An understanding of

how the deposited heat flows in this plasma is essential if the drive uniformity is to
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Figure 1.3: An artist’s impression of a NIF hohlraum, taken from the National Ignition
Facility’s website (www.llnl.gov/nif).
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be predicted with confidence. Most simulations to address this solve the equations

of magnetohydrodynamics (MHD), with the inherent assumptions about transport

coefficients (discussed in section 2.3). Codes which directly solve the kinetic Vlasov-

Fokker-Planck (VFP) equation elegantly solve for the transport of heat, current and

other macroscopic quantities without these assumptions.

It will be shown, by discussing several important experiments, that a VFP treat-

ment is necessary to determine the heat flow correctly. The key consideration will

involve the importance of non-local transport. The concept of non-local transport

is described in section 2.4. Furthermore, it has been shown that large (mega-gauss

strength) magnetic fields can be generated in laser-solid interactions – thus these must

be included in the model as must their effect on non-locality. The need to develop

kinetic codes has been justified here in a hohlraum-centred way. These codes provide

theoretical tools for other problems too. An understanding of the heat flow in laser-

plasmas has implications for direct-drive ICF, indeed in many situations where MHD

is not valid Vlasov-Fokker-Planck simulations may be of use.

1.1.2 Typical hohlraum conditions

Long-pulse laser plasma interactions will form the subject matter of this thesis. Long-

pulse lasers are those used to drive the compression of the fusion target in direct-drive

ICF and to heat the hohlraum walls in indirect-drive. The typical plasma parameters

in the simulations – whose results are presented in chapters 5, 6 and 7 – are within

an order of magnitude of those in a hohlraum. Figure 1.5 shows a schematic cut-

through of a hohlraum. At the NIF the lasers will come in through the entrance hole

in two cones – the ‘inner’ and ‘outer’ cones. The number of beams will be very large,

192 in total; these are expected to deliver at least 1MJ of energy to the hohlraum.

These lasers are expected to give rise to a radiation temperature in the hohlraum of

270-300eV. Hohlraums are generally made of a high atomic number solid (gold was

the example given in the previous section) and are filled with a low Z gas-fill, such as

neon or methane, to slow the ablation of the walls [7]. The electron number density

(ne) and temperature (Te) along the ‘outer’ beams, from MHD simulations, are shown

in figure 1.6 [7]. The number densities are normalised to ncrit = 1022cm−3 (the critical

density for light with a wavelength of 0.3µm – the significance of the critical density

is described in the next chapter).

The typical conditions simulated in chapters 5, 6 and 7 are most similar to those

in the gas-fill, towards the entrance hole. The electron number density considered
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Figure 1.5: A schematic of a hohlraum.

will be 1.5×1019cm−3 – this is a factor of ten less than the lowest density in the NIF

gas-fill. The maximum temperature obtained will be 600eV under the influence of

a 12T B-field. The temperature is thus about half that expected near the entrance

hole; the magnetic fields are as expected in the gas-fill [7, 11]. The lasers modelled

later will be Neodymium-Glass and so have a wavelength of 1.054µm. These lasers

deliver 100J in 1ns in the simulations – figure 1.4 shows that this is low compared

to the energy required for ignition. In ICF shorter wavelength radiation is generally

used – at the second (λ = 0.52µm) or third (λ = 0.35µm) harmonic frequencies of a

Neodymium-Glass laser – such radiation better penetrates an ablating plasma (the

critical density is higher) and so couples its energy better to this plasma. As the

laser intensity in the simulations is relatively low relativistic effects may be ignored

(the importance of the laser intensity in determining the physics relevant to a given

laser-plasma interaction will be discussed in the next section). Nitrogen plasmas will

be modelled and will be assumed to be fully ionised from the outset (Z = 7).

These conditions are chosen to correspond to the recent experiment of Froula

et al [12]. This experiment provided a demonstration of the effect of B-fields on

transport under conditions relevant to hohlraums. It showed the suppression of non-

locality by an externally applied magnetic field in conditions relevant to the gas-fill

unambiguously for the first time. The simulations presented in their paper used a

VFP model for the situation when no B-field was present and an MHD one when the
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Figure 1.6: The electron number density (left) and temperature (right) along the line of
one of the outer beams.

largest (12T) field was present. The intermediate regime will be studied here using

a VFP treatment which includes magnetic fields. Froula’s experiment is described in

more detail in sections 2.4.1 and 5.1. The effects which are deemed important in the

experiment (non-locality, the Nernst effect – see later) should be considered in ICF

plasmas.

1.2 Thesis outline

The main subject matter of this thesis is the addition of hydrodynamic flow to the

VFP code IMPACT. The procedure by which this is done will be outlined in chapters

3 and 4. The remaining chapters detail the use of this new code to investigate kinetic

effects and magnetic fields in long-pulse laser-plasma interactions.

Chapter 2 – Background: Basic laser-plasma physics will briefly be discussed, fol-

lowed by a description of the various theoretical models typically used in long-

pulse laser-plasma physics. This leads into a discussion of the VFP equation

and its relationship to the classical theory of transport in plasmas (including

B-fields). Situations in which this breaks down are discussed – the mechanisms

which cause this to happen will be given. Previous attempts to deal with the

invalidity of classical transport in laser-plasmas will be outlined.

Chapter 3 – Ion hydrodynamics in the VFP equation: The motivation for the

inclusion of hydrodynamics into the VFP code IMPACT will be given. Imple-
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menting this gives the first such code in 2D, with self-consistent magnetic fields

and the ability to simulate nanosecond time-scale interactions. Ion-motion will

be included by transforming the VFP equation into the average ion rest frame.

Chapter 4 – Numerical solution of the new model: The inclusion of ion-motion

into IMPACT creates new terms in the VFP equation. The numerical scheme

by which these are included in the code will be outlined here. Testing will also

be described – to do this magnetosonic waves will be simulated.

Chapter 5 – Non-local transport in a magnetic field: In current long-pulse laser-

plasma experiments the magnetic field is thought to advect with the hydrody-

namic plasma flow. This will be tested in one such experimental situation (that

of Froula et al) and found not to be the case. The B-field dynamics will be

shown to be dominated by the Nernst effect; leading to strong coupling between

magnetic field dynamics and non-locality. This work has also been published in

Physical Review Letters [13].

Chapter 6 – Transport theory for a super-Gaussian distribution: Inverse

bremsstrahlung heating may also distort the distribution function in long-pulse

laser-plasma interactions. The effects of this on transport theory are derived,

the resulting new theory of transport is found to agree well with simulations of

Froula’s experimental conditions in some situations. This work is under review

for publication in Physics of Plasmas.

Chapter 7 – Non-classical magnetic field generation: The generation of mag-

netic fields will be shown to be strongly dependent on non-locality. The mag-

netic field from an elliptical laser spot will be seen to be due to a purely non-local

mechanism.
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Chapter 2

Background

2.1 Laser-plasma interactions

Laser-plasma interactions (LPI) are not only of great importance to ICF but to un-

derstanding fundamental plasma physics. The physical processes which are relevant

to a given experiment depend on the intensity of the laser. This can be seen by con-

sidering the equation which gives the maximum quiver velocity of the electron (vosc)

– the velocity which the electron acquires through acceleration by the laser’s electric

field.

γosc
vosc

c
=

(
Iλ2

1.4× 1018Wcm−2µm2

)1/2

γosc =
1√

1− v2
osc/c

2
(2.1)

The intensity of the laser is represented by I and its wavelength by λ, c is the

speed of light. Consider the energy the electrons acquire as a result of this quiver

motion (in the non-relativistic, low-intensity regime):

mev
2
osc

2kbTe

=
1.6Iλ2

1× 1018Wcm−2µm2

(
Te

eV

)−1

(2.2)

me is the electron mass and kb is Boltzmann’s constant. Therefore Iλ2 determines

the velocity and energy the electrons have as a result of the laser field – it is the

most important parameter when determining the physical processes excited by the

absorption of the laser. In figure 2.1 a description of the important physics at some

landmark values of this parameter is given.

With Iλ2 between 1011Wcm−2 and 1022Wcm−2 the interaction of a laser with

matter produces a plasma. Today experiments investigating such laser-plasma inter-

actions (LPI) usually fall into one of two categories: short-pulse (or ultra-short pulse)

31
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Figure 2.1: Important landmarks in Iλ2 space.

interactions which occur over the order of one picosecond (one femtosecond), and

have Iλ2 between 1018Wcm−2 and 1022Wcm−2; and long-pulse, which are over sev-

eral hundred picoseconds to several nanoseconds and have Iλ2 at about 1015Wcm−2.

In ICF relevant experiments long-pulse lasers are generally used. From figure 2.1 it

is clear that such LPI do not have sufficient intensity to cause the electron’s quiver

motion to be relativistic – the interactions considered here are non-relativistic.

2.1.1 Absorption mechanisms

There are various ways in which laser light may be absorbed by a plasma. The

dominant mechanism depends on the intensity of the laser. The two most impor-

tant mechanisms in long-pulse laser-plasma interactions will be discussed here; i.e.

inverse bremsstrahlung and resonance absorption. First it is important to note that

electromagnetic propagation is not possible beyond the critical density nc in an ab-

lating plasma. This is the density at which the wave frequency is equal to the plasma

frequency (ωpe).

ωpe =

(
nee

2

ε0me

)1/2

(2.3)
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Figure 2.2: A schematic explaining resonance absorption.

In the above formula e represents the charge of the electron and ε0 is the permit-

tivity of free-space, the electron’s number density is represented by ne. The plasma

frequency is the typical response frequency of the electrons to a perturbation in the

electric field and so waves with frequencies below this threshold may be screened-

out by the plasma. The plasma frequency is also the frequency of electrostatic wave

modes in the plasma known as Langmuir waves. When the plasma’s density is less

than the critical density the plasma is said to be under-dense, when it is greater than

nc it is over-dense.

Resonance absorption

A laser propagating into a region of plasma with a density close to the critical density

may excite plasma waves and thus deposit some of it’s energy in the plasma. The

standard configuration considered when discussing this type of absorption is shown in

figure 2.2. The laser must be polarised in such a way that a component of its electric

field is in the direction of the density gradient, this component may then give rise

to electrostatic plasma modes (Langmuir waves) These waves may then generate hot

electrons with a temperature which may be estimated by the formula below [14,15].

Thot

keV
≈ 6

(
Te

keV

Iλ2

1× 1015Wcm−2µm2

)1/3

(2.4)

Where Thot is the temperature the hot electrons acquire by absorption. For a typ-

ical long-pulse laser with a wavelength of one micron heating a plasma with tempera-
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ture 100eV the heated temperature is of the order of about 1keV – this is significant.

However, in the interactions considered here, resonance absorption may be neglected.

Only under-dense plasmas will be considered. It should be noted that there is no

absorption if the laser strikes the target at normal incidence (θ = 0); in this case

there is no component of the laser’s E-field in the ∇ne direction. The absorption

decreases to zero as θ → π/2. The laser is reflected when the density is nccos2θ, the

electric field must evanescently tunnel through to nc where it may excite Langmuir

waves. As θ → π/2 the distance between these two densities increases, less E-field

tunnels through and so less absorption occurs.

Inverse bremsstrahlung (IB)

v
osc

ion

e-

collisional
scattering

Figure 2.3: The IB heating

mechanism.

As the laser passes through an under-dense plasma the

electrons begin to quiver in it’s electric field. If some

of these electrons then collide with ions a proportion

of this quiver energy is transformed to thermal energy

and the plasma heats up. This mechanism is illustrated

in figure 2.3. The rate of energy absorption into the

plasma by IB can be estimated as follows. Assum-

ing that all of the quiver energy is thermalised in one

electron-ion collision time (τei), the power input per

unit volume (P/V ) is:

P

V
≈ 1/2nemev

2
osc

τei
(2.5)

Using equation (2.2) this can be estimated for the

typical laser and plasma parameters considered later. Heating region of 50 cubic

microns with an electron density of 1019cm3, an ionic charge of 7 and an initial

temperature of 100eV; and assuming a constant rate of input of power (100J in 1ns);

this mechanism should heat the plasma by 125eV in one nanosecond. This mechanism

is the most important in the interactions studied here and so is the only one included.

2.2 Kinetic modelling of plasmas

A plasma is a collection of charged particles. Further, under the conditions considered

in this thesis these particles behave classically (and non-relativistically). Therefore,

the most complete way in which to describe the plasma is to specify the positions
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and velocities of all the particles. This can be done using the N -particle distribution

function (fN) [3]:

fN(r1,v1, r2,v2, . . . , rN ,vN) =
N∏

i=1

δ[ri −Ri(t)]δ[vi − Ṙi(t)] (2.6)

This distribution function is defined in 6-N dimensional phase space, i.e. there are

three position and velocity coordinates for each particle. fN is only non-zero when all

the position coordinates ri and the velocity coordinates vi are equal to the position

and velocity of the respective particle i (i.e. Ri and Ṙi). Taking the time derivative

of equation (2.6) gives the Liouville equation:

∂fN

∂t
=

N∑
i=1

(
Ṙi ·

∂fN

∂Ri

+ R̈i ·
∂fN

∂Ṙi

)
(2.7)

This is only non-zero when ri = Ri and vi = Ṙi. The acceleration of a particle is

R̈i = Fi/mi (mi is the mass of particle i and Fi is the force on it). Assuming that

the only forces on the particle are electromagnetic, Fi is given by the Lorentz force.

∂fN

∂t
+

N∑
i=1

[
vi · ∇ri

fN +
qi
mi

(EN + vi ×BN) · ∇vi
fN

]
= 0 (2.8)

The symbols ∇ri and ∇vi
refer to differentiation by the coordinates ri and vi

respectively. The fields EN and BN are those felt by particle i as a result of the

positions and velocities of all the other particles. Of course such a description as

this is of no use when applied to a macroscopic plasma. The number of electrons

in experimental laser-plasmas is larger than 1011. Therefore, not only is an exact

solution to equation (2.8) analytically intractable, but a numerical simulation of it

would require N2 operations and so is also impossible. This problem can be overcome

in a variety of ways. The most ubiquitous numerical model is Particle-in-Cell (PIC).

The PIC model conglomerates many particles to form a single macroparticle. The

charge and current distributions from the distribution of these macroparticles are

then used in Maxwell’s equations to compute the electric and magnetic fields, which

then go on to accelerate the macroparticles. In this way the number of calculations

is reduced to N which makes numerical simulation a possibility.

Can progress be made analytically? The rigorous way to proceed from equation

(2.8) is through a procedure known as the ‘BBGKY hierarchy’ [16]. This is very

complicated and as such it will not be detailed here. The coordinates of all but one

particle are ‘integrated-out’ from equation (2.8). This introduces the distribution
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function f , in 6D phase space; in such a phase space the coordinates of a point are

(r,v). This distribution function is the statistically-averaged density of particles in

phase space. The time evolution of this is given by the VFP equation. The necessity

of this approach is obvious when one notes that any solution of the Liouville equation

as given would involve an exact knowledge of the initial positions and velocities of

all the particles. Realistically, only the statistically averaged initial conditions can be

known.

2.2.1 The Vlasov-Fokker-Planck equation

The Vlasov-Fokker-Planck (VFP) equation is given by [3]:

∂fα

∂t
+∇r · (fαv) +∇v ·

[
Zαe

me

(E + v ×B)fα

]
=

(
∂fα

∂t

)
collisional

(2.9)

In cartesian coordinates∇r = (∂/∂x, ∂/∂y, ∂/∂z) and∇v = (∂/∂vx, ∂/∂vy, ∂/∂vz).

A somewhat heuristic justification of this equation comes from applying arguments

about the conservation of fα in six-dimensional phase space; the VFP equation is a

continuity equation in phase space. The right hand side gives the (yet to be eluci-

dated) affect of collisions. The distribution function fα(v, r, t) is for species α with

charge Zα. This distinction may be dropped as a VFP treatment is only used for

the electrons. The collisional term may be expressed as a series expansion in the

average deflection of a particle due to a collision. The electric and magnetic fields

(E & B) in equation (2.9) are the macroscopic fields, i.e. those arising large-scale

collective phenomena. The distinction between these and the microscopic fields will

be clarified shortly. Equation (2.9) can be simplified by noting that the variables r

and v are independent as are v and the acceleration (the v×B term is dependent on

the velocity, but its ith component does not depend on vi). The VFP equation may

be written in gradient form.

∂f

∂t
+ v · ∇rf −

e

me

(E + v ×B) ·∇vf =

−∇v·
[
f
〈∆v〉
∆t

]
+

1

2
∇v∇v :

[
f
〈∆v∆v〉

∆t

]
(2.10)

The terms on the left-hand side of this equation are the Vlasov terms. They

describe the advection of particles in phase space. Note that the acceleration term

(the third term) involves macroscopic forces. The terms on the right-hand side are
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the collisional terms – these describe the change in the distribution function due to

collisional effects, i.e. microscopic forces. The quantities 〈∆v〉 and 〈∆v∆v〉 are the

averages over velocity of combinations of the change in the particles velocity due to

a collision (∆v). The reason why collisional effects can be split from macroscopic

forces can be understood through the concept of Debye shielding. The idea that

plasmas can shield out charge imbalances if they have a frequency below the plasma

frequency has already been mentioned; there is an analogous condition which states

that a plasma may also shield charge imbalances occurring on spatial scales smaller

than the Debye length (λD). This is given by:

λD =

(
ε0kbTe

nee2

)1/2

(2.11)

A charge imbalance created at a point in the plasma will create a microscopic

electric field which cannot penetrate beyond a sphere with radius λD (the Debye

sphere). This leads to the concept of quasi-neutrality (Zni = ne, where ni is the

ion density) – charge imbalances in plasmas are very small as Debye shielding is so

effective, so the plasma is almost neutral on length scales larger than the Debye length

and time scales longer than the inverse of the plasma frequency. The responses of

electrons to microscopic charge perturbations within the Debye sphere are known as

collisions, fields coming from outside this sphere result in the macroscopic forces just

described. This separation of effects is only valid for weakly coupled plasmas. These

are plasmas in which the average thermal energy of the electrons is much larger than

the average electrostatic potential energy between electrons a distance of λD apart.

e2

ε0λDkbTe

=
1

neλ3
D

<< 1 (2.12)

This is equivalent to demanding that there are many electrons in the Debye sphere.

Obviously, if there were few then Debye shielding would not work.

Consider the force term in the Liouville equation (2.8). This is due to the fields EN

and BN – the electric and magnetic fields resulting from the positions and velocities

of all the N particles. The difference between these fields and the macroscopic and

collisional terms in the VFP equation shows the second important difference between

the VFP and Liouville equations – the first being that the VFP treatment deals

with the statistically averaged distribution function instead of the exact N -particle

distribution. The fields E and B are the average macroscopic fields, these are the

fields that act over scales larger than the Debye length and are generated by collective

phenomena. Contrastingly, microscopic fields are generated within the Debye sphere
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and so are only significant between a limited number of particles. EN and BN , by

contrast, are the micro-fields from all the particles. In this way the VFP equation

requires significantly less computation to solve numerically.

As an aside, note that the PIC model is collisionless. The macroparticles only

respond to the macroscopic fields. It is possible to include collisions in PIC via

random Monte-Carlo interactions between macroparticles [17]. The difficulty here

lies in doing enough collisions to get accurate statistics and this model has yet to be

adequately tested against classical transport theory. The VFP equation includes a

good model for the collisions and so is the preferred method for kinetic simulations

of long-pulse experiments where collisions are important.

2.2.2 Collisions – the Rosenbluth potentials

The quantities 〈∆v〉 and 〈∆v∆v〉 are defined by [3]:

〈∆v〉 =
1

∆t

∫
ψ(v,∆v)∆vd(∆v) (2.13)

〈∆v∆v〉 =
1

∆t

∫
ψ(v,∆v)∆v∆vd(∆v) (2.14)

ψ(v,∆v) is the probability that in a time ∆t an electron travelling with velocity

v will get deflected by an amount ∆v. The quantities in the angled brackets give

the averages of the deflection ∆v and the dyadic product ∆v∆v. To evaluate these

quantities consider the interaction, via the Coulomb force, between a particle of mass

mα with initial velocity vα and a ‘scatterer’ with mass mβ and initial velocity vβ.

This situation is shown in figure 2.4. A small difference in initial impact parameter

δb gives rise to the particle scattering by δθ less – i.e. it scatters into a different solid

angle δΩ.

On integrating over solid angle of the scattered particle, and assuming that small

angle collisions dominate the scattering – this is valid for a weakly coupled plasma –

the following expressions for 〈∆v〉 and 〈∆v∆v〉 are arrived at [18]:

〈∆v〉
∆t

= Γ
∂H

∂v

〈∆vi∆vj〉
∆t

= Γ
∂2G

∂vi∂vj

Γ =
Z2

αe
4

4πε20m
2
α

lnΛαβ (2.15)

The Coulomb logarithm (lnΛαβ) is given by the logarithm of the Debye length

divided by the impact parameter for ninety degree scattering for collisions between

particles of species α and β (or the de Broglie wavelength of particle α if this is larger).
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Figure 2.4: A sketch of the collision between the ‘scattered’ particle (blue) and the ‘scat-
tering’ particle (red).

The ‘scattered’ particle has been denoted by α and the ‘scatterer’ by β. Therefore,

Zα refers to the charge of the scattered particles. The functions H(v) and G(v) are

known as the Rosenbluth potentials and are given by [18]:

H(vα) =
∑

β

Z2
β

(
mα +mβ

mβ

)∫
fβ(vβ)

|vα − vβ|
dvβ (2.16)

G(vα) =
∑

β

Z2
β

∫
|vα − vβ|fβ(vβ)dvβ (2.17)

These functions depend on the distribution function of the scatterers fβ. Substi-

tution into the VFP equation yields:

∂fα

∂t
+v · ∇rfα−

e

me

(E + v ×B) ·∇vfα = −Γ∇v · (fα∇vH)+
Γ

2
∇v∇v : (fα∇v∇vG)

(2.18)

For simplicity it will be assumed that the scattered particles are electrons and

the scatterers are either other electrons or a single species of ion with charge Z. The

subscript α will be dropped. The dominance of small angle collisions in deriving

these forms for the Rosenbluth potentials can be seen clearly by considering the

impact parameter for a binary Coulomb collision (between a stationary ion and an

electron moving with speed v) [19]:
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b =
Ze2

4πε0mev2
cot

(
θ

2

)
≈ Ze2

2πε0mev2θ
(2.19)

The second equality has been achieved by making the small angle approximation.

In this case the smaller the angle of deflection in the collision (θ), the larger the

impact parameter. Therefore, small angle collisions are much more likely.

2.2.3 The cartesian tensor expansion

To make progress in solving equation (2.18), the electron distribution function is

expanded in the cartesian tensors. An nth order cartesian tensor is of rank n and is

given by the direct product of n velocity unit vectors (v̂). The distribution function

is then expanded as follows [20,21]:

f(v, r, t) =
∞∑
l=0

fl(v, r, t) (·)l v̂l (2.20)

Here fl is a rank l tensor and is a function of the magnitude of the velocity

only (v). The symbol (·)l represents contraction over l indices. The result of the

contraction in equation (2.20) is always a scalar. Terms where l is greater than unity

are neglected [22]. Thus the form of the expansion is:

f(v, r, t) = f0(v, r, t) + f1(v, r, t) · v̂ (2.21)

The isotropic part of the distribution function (in velocity space) is described by f0,

this part of the distribution function describes the number density and temperature

of the plasma at a point. f1 describes the anisotropy which leads to heat flow and

electric current. Half of what is known as the diffusive approximation has been made.

The full diffusive approximation involves not only neglecting all terms involving f
2

and higher, but also neglecting electron inertia terms (∂f1/∂t – the correspondence

of which to the electron inertia will be shown in section 3.4.2). This term is retained.

Velocity space is described in spherical polar coordinates (v, θ, φ). The f0 term in

equation (2.21) is angularly isotropic in velocity space. The f1 term is anisotropic.

To describe finer scale angular variation than this would require retaining more terms

in the expansion.

Substitution of the expanded distribution function, in equation (2.21), into the

VFP equation (2.10), yields the following two equations [20,22]:
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∂f0

∂t
+
v

3
∇r · f1 −

(e/me)

3v2

∂

∂v

(
v2E · f1

)
=
ν ′ee
v2

∂

∂v

[
C(f0)f0 +D(f0)

∂f0

∂v

]
(2.22)

∂f1
∂t

+ v∇f0 −
eE

me

∂f0

∂v
− e

me

(B× f1) = −νeif1 (2.23)

Equation (2.22) is known as the f0 equation and equation (2.23) as the f1 equa-

tion. As discussed previously, the right-hand sides have been obtained by considering

the velocity deflection of an electron due to many small angle Coulomb collisions, a

two particle collision mediated by Coulomb forces, to obtain 〈∆v〉 and 〈∆v∆v〉. In

equation (2.22) only the effects of electron-electron collisions have been considered.

The evolution of f0 here describes electron energy equilibration, which primarily de-

pends on energy exchange between electrons. Electrons may exchange energy much

more easily with each other than with the ions due to the ions much larger mass.

The constant ν ′ee and the operators C and D acting on f0 account for the effect of

electron-electron collisions. Conversely, the magnitude and direction of f1, which de-

scribes anisotropies in the electron’s velocities, depends on angular scattering rates.

Such scattering is strongly increased when the charge of the scatterer is large; there-

fore the ions are much more effective at angular scattering than the electrons in the

limit of high ionic charge (Z). Neglecting electron-electron collisions in the f1 equa-

tion is known as the Lorentz approximation.

The following relations define the symbols in the f0 and f1 equations:

νei =
Y Z2nilnΛei

v3
ν ′ee = Y lnΛee Y = 4π

(
e2

4πε0me

)2

C(f0) = 4π

∫ v

0

f0(u, r, t)u
2du D(f0) =

4π

v

∫ v

0

u2

[∫ ∞

u

f0(v
′, r, t)v′dv′

]
du

2.2.4 Fluid models

The models described so far have been kinetic models; they have retained the position

and velocity information about the particles (albeit in a statistically averaged form).

The commonly used magnetohydrodynamic model is a fluid model – it does away with

the velocity-space information of the particle distribution. In fact in fluid models

the velocity distribution is prescribed to be Maxwellian. The equations solved by

MHD are simply the conservation equations for mass, momentum and energy of an
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indivisible fluid (in conjunction with Maxwell’s equations). Often the model includes

other effects such as radiation or ionisation dynamics, in fact part of its utility is in

the fact that including such effects is relatively straightforward. The fluid equations

can be derived from the VFP equation by taking various velocity averages (velocity

moments) – this is discussed in more detail in section 3.4.1. However, the mass,

momentum and energy equations derived in this way do not form a closed system.

Specifically an equation is required for the heat flow. This can be derived analytically

if the distribution function is close to a Maxwellian. The result is the classical heat

flow equation. This and the classical Ohm’s law (similarly derived) form classical

transport theory.

If the particles are highly collisional, i.e. they collide many times over the length

and time scales of interest, classical theory works well. However, the most interesting

laser-plasma interactions often take place in the partially collisional regime: i.e. where

collisions are not important for some particles. This can be seen by considering the

expression for the mean free path in a plasma (for electron-ion collisions) [19].

λei =
v4

Y Z2nilnΛei

Y = 4π

(
e2

4πε0me

)2

(2.24)

The dependence of this on the fourth power of the particles speed means that hot

(fast) particles are much less collisional than cold (slow) ones. Thus in long pulse LPI

there is usually always some population of electrons which are not very collisional.

2.2.5 The definition of λ, τ , ω and rL

The mean free path given in equation (2.24) is the distance over which an electron

moves before being scattered by ninety degrees by many small-angle collisions with

ions. The corresponding collision time is given by:

τei =
v3

Y Z2nilnΛei

(2.25)

τei depends on the velocity of the particle, it will be beneficial to define an average

collision time. The convention which is used in most of this thesis is to define this

average to be the collision time for electrons moving with the thermal speed (v2
T =

2kbTe/me). Unless otherwise stated this is the collision time (and corresponding mean

free path) represented by τei. Braginskii used a different convention, where the mean

averaged velocity was used (averaged over the the distribution, which was assumed

to be Maxwellian). This will be denoted as τB. The two are related by:



2.3. CLASSICAL TRANSPORT THEORY 43

τB =
3
√
π

4
τei (2.26)

The gyro-frequency of an electron (ω) is given by:

ω =
eB

me

(2.27)

The radius of this gyration is given by the Larmor radius (rL):

rL =
mev⊥
eB

(2.28)

The speed v⊥ is that of the gyrating electron perpendicular to the field line. Again,

an average value is often required. The Larmor radii calculated in this thesis are those

for electrons gyrating with the thermal speed. The quantity ωτ is known as the Hall

parameter (or the magnetisation); this quantity tells us how many times an electron

moving with the thermal speed collides with an ion in one gyration. It is therefore a

measure of the relative importance of the magnetic field and collisions.

2.3 Classical transport theory

The transport relations used to close the MHD equations are given by the classical

transport theory first derived by Braginskii [23]. The classical Ohm’s law and heat

flow equation are given by [24,25]:

e

me

E = − ∇Pe

mene

− e

me

j×B + αc · j

nee
− βc · ∇Te

me

(2.29)

qe = −nekbTeτB
me

κc · ∇Te − βc · jTe

e
(2.30)

Here αc, βc and κc are the classical transport coefficients. The electron pressure

is given by Pe, the current by j and the heat flow by qe. The most important terms

in these equations (at least for the results presented later) are those proportional to

βc · ∇Te (in Ohm’s law) and κc · ∇Te (in the heat flow equation). The components of

these terms perpendicular to the B-field and the temperature gradient are responsible

for the Nernst effect and the Righi-Leduc heat flow respectively. When discussing

Froula’s experiment in chapter 5 it will be shown that the Nernst term dominates

magnetic field advection for all imposed fields. The Righi-Leduc heat flow will become

very large as the imposed magnetic field increases – up to ten times the size of the
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heat flow parallel to ∇Te. Equations (2.29) and (2.30) are derived by taking moments

of the f0 and f1 equations (neglecting electron inertia). The isotropic part of the

distribution function f0 is assumed to be a Maxwellian. The break down of this

assumption is what leads to classical transport theory not being valid. The variation

of the transport coefficients with the Hall parameter (ωτ) are shown in figure 2.5 –

the reason why ωτ is crucial to transport is explained in section 2.3.1. The transport

coefficients also vary with Z. The red curves are for Z = 1, the pink for Z = 7 and

the blue are valid as Z approaches infinity (the Lorentz approximation).

The transport coefficients in equations (2.29) and (2.30) – i.e. αc, βc and κc – are

in dimensionless form and as such are only functions of the Hall parameter. These

are related to the dimensional coefficients by:

α =
mneα

c

τB
β = βc κ =

nekbTeτBκ
c

me

(2.31)

In a magnetized plasma the B-field provides a unique axis whereby transport is

different parallel to this axis as compared to perpendicular to it. Thus the components

of the transport coefficients are described with reference to the magnetic field and the

driving force behind the transport. Therefore:

φ · s = φ‖b(b · s) + φ⊥b× (s× b)± φ∧b× s (2.32)

φ is a general transport coefficient, s is the driving force and b is the unit vector

in the direction of the B-field. In the case of the resistivity α the sign of the last

term is negative and the driving force is the current j. For the thermoelectric tensor

β and thermal conductivity κ the sign is positive and the driving force is the electron

temperature gradient ∇Te.

It should be noted that there is an alternative way in which to express the trans-

port equations. This is the formulation used by Shkarofsky, Bernstein and Robin-

son [26]. In this case equations are provided for the current (j) and total heat flow

(qT ).

j = σ ·
(
E + Te

∇ne

nee

)
+ τ · ∇Te (2.33)

qT = −µ ·
(
E + Te

∇ne

nee

)
+ K · ∇Te (2.34)

The transport coefficients here are: the electrical conductivity tensor σ, the ther-
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Figure 2.5: The variation of the dimensionless transport coefficients with Hall parameter.
The red curves are for Z = 1, the pink for Z = 7 and the blue is valid as Z approaches
infinity.
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moelectric tensor τ , the energy conductivity tensor µ and the thermal diffusion tensor

K. Note that the total heat flow is that including the electron’s average velocity –

the thermal heat flow is given by the random velocity only. The relationship between

these is [25]:

qT = q− j

(
5/2Pe

nee
+

1/2meneC
′2
e

nee

)
(2.35)

Where C ′
e is the average electron velocity. The formulation of Epperlein & Haines

will be employed here almost always. This is because it gives the thermal heat flow,

which is usually required in MHD to close the equations, and E, which gives ∂B/∂t

(using Faraday’s law) and so determines the B-field dynamics.

2.3.1 The effect of magnetic fields on (classical) transport

The equation for the evolution of the electron’s internal energy per unit mass εe

as a result of thermal conduction perpendicular to the B-field (but parallel to the

cross-field temperature gradient) is:

∂εe
∂t

= −∇ · (κ⊥∇Te) (2.36)

This can be rearranged (assuming quasi-neutrality):

∂Te

∂t
= −(γ − 1)mi

Zkb

∇ ·
(
nekbTeτB

me

κc
⊥∇Te

)
= ∇ · (D⊥∇Te) (2.37)

This is a diffusion equation with diffusion constant D⊥. In this equation γ is the

ideal gas constant (γ = 5/3) and mi is the ion mass. In the limits of weak and strong

magnetic field:

κc
⊥ ≈ κc

‖ ωτ << 1 (2.38)

κc
⊥ ≈

γ′1
(ωτB)2

ωτ >> 1 (2.39)

γ′1 is a constant whose value is given in appendix A (for Z = 7). Substituting the

results from equations (2.38) and (2.39) into (2.37) yields expressions for the diffusion

constant in the strong and weak field limits:
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D⊥ ∝
λ2

ei

τei
ωτ << 1 (2.40)

D⊥ ∝
r2
L

τei
ωτ >> 1 (2.41)

In general, the diffusion constant is given by the ratio of the square of the charac-

teristic diffusion length to the characteristic diffusion time. In the weak B-field limit

this length is the mean-free path. If the Hall parameter is large, i.e. in the case of

strong magnetic fields, then the particles gyrate around the magnetic field lines many

times before colliding. In this case the gyro-radius and not the collisional mean free

path becomes the step-length that controls the thermal transport perpendicular to

the field – the transport parallel to the field is unaffected. In this case rL << λei

and so transport is suppressed. In fact, if rL controls the transport the mobility of

the hot electrons is more strongly curtailed than the colder ones. This can be seen

from the fact that the Larmor radius scales with velocity much more gently than the

mean free path: rL ∝ v and λ ∝ v4. This is the reason why magnetic fields suppress

non-locality as discussed later.

Magnetic fields do not just affect thermal transport. Figure 2.5 shows that all the

transport coefficients are dependent on the Hall parameter and so on the magnetic

field. This dependence can be expressed using the approximate polynomial fits derived

by Epperlein & Haines [25]. These polynomials are given in appendix A. They are

only in error by a maximum of 15% and so give the most convenient way to calculate

the classical transport coefficients; in fact the transport coefficients in figure 2.5 have

been calculated in this way. Two of these will be important to later discussions and

so should be considered in more detail.

βc
∧ =

ωτB(β′′1ωτB + β′′0 )

(ωτB)3 + b′′2(ωτB)2 + b′′1ωτB + b′′0
(2.42)

κc
⊥ =

γ′1ωτB + γ′0
(ωτB)3 + c′2(ωτB)2 + c′1ωτB + c′0

(2.43)

The values of constants β′′0 , β
′′
1 , b

′′
0, b

′′
1, b

′′
2, γ

′
0, γ

′
1, c

′
0, c

′
1 and c′2 (for Z = 7) are given

in appendix A along with the fits to the rest of the components of the transport

coefficients. The limiting cases of the conductivity component κ⊥ have been discussed.

The regime of intermediate ωτ will be of the most interest; in this case equation (2.43)

can be used. Equation (2.42) is useful as the Nernst effect is crucially dependent on



48 CHAPTER 2. BACKGROUND

this transport coefficient and will be shown to play an important role in magnetic

field advection in long-pulse LPI in chapter 5.

2.3.2 Classical magnetic field generation

Large (mega-gauss strength) magnetic fields have been observed in laser-solid target

interactions. These are believed to be generated by the ‘∇ne × ∇Te’ (or thermo-

electric) mechanism. This mechanism can be understood simply by considering part

of the classical Ohm’s law already discussed (the term proportional to ∇Pe) and

Faraday’s law:

∂B

∂t
= − kb

ene

∇ne ×∇Te (2.44)

B B

n
T

nc

Laser

Figure 2.6: The generation of mag-

netic fields by the thermoelectric

mechanism in laser-plasmas.

Figure 2.6 illustrates how this mechanism typ-

ically operates in laser-plasma interactions. When

a laser is shone into a plasma ablating from a solid

target it encounters a density gradient as shown.

The laser deposits its energy around the critical

density – by exciting plasma waves in the process

of resonance absorption – and generates temper-

ature gradients towards the laser-heated region.

Such a plasma then has temperature and density

gradients which are not parallel; these generate

azimuthal B-fields as shown.

The first high-strength B-fields generated by

this mechanism in laser-plasmas were measured

by Stamper et al in 1971 [27]. Field strengths of

several kilogauss were measured in the interaction

between a neodymium-glass laser – delivering 60J

in 1ns. Larger fields were later observed closer

to the laser focal region in such interactions, with

field strengths reaching 1MG [28, 29]. Experimental and numerical data found that

these fields could only be generated by the thermoelectric method [30, 31]. Mega-

gauss fields have also been observed in short-pulse laser-solid interactions [32]; thus

high-strength magnetic fields are ubiquitous in solid density LPI. Such interactions

are of obvious relevance to ICF – particularly indirect drive – thus B-fields should

be included in ICF modelling. Glenzer et al demonstrated, through the comparison
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between experiments and fluid simulations, that large B-fields are generated at the

hohlraum wall and advected into the gas-fill [11].

It is possible to use a reduced model of collisions in the plasma to derive a simple

equation for the rate of change of the magnetic field. Haines has shown that under

certain conditions the electron-ion collision frequency may be modelled as νei ∝ v−2

instead of the realistic νei ∝ v−3 [33]. In this case the following simplified equation

for ∂B/∂t may be derived:

∂B

∂t
=∇×

(
C×B− j×B

nee

+
∇Pe

nee
+
∇Te

e
+

2qe ×B

5Pe

− ηj

)
(2.45)

η is the resistivity. The important terms for the work presented later in the thesis

are as follows. The second term, describes frozen-in flow – i.e. advection of the B-

field with the bulk flow velocity C. The thermoelectric term (∇Pe/nee) is responsible

for the ‘∇ne × ∇Te’ magnetic field generation. The term ηj describes diffusion of

magnetic field as a result of the plasma not being a perfect conductor – known as

resistive diffusion. Finally, the Nernst term (∝ qe×b) acts to advect the B-field with

the heat flow – as will be described in more detail in section 5.4. It has been shown

that equation (2.45) is accurate to approximately 5% for plasmas with moderate Z

– in the range from 3-8 – and for any Hall parameter [33]. Note the plasmas later

investigated fall into this range, with Z = 7.

The equation for ∂B/∂t using the correct collision model may be derived using

Ohm’s law as given in equation (2.29). Expressing the transport coefficients in their

components, for example (αc
‖,α

c
⊥,αc

∧), yields Ohm’s law in the form [33,34]:

E + C×B = −∇Pe

nee
+
α‖
n2

ee
2
b(b · j) +

α⊥
n2

ee
2
b× (j× b)− α∧

n2
ee

2
(b× j)

−
β‖
e

b(b · ∇Te)−
β⊥
e

b× (∇Te × b)− β∧
e

(b×∇Te) (2.46)

Similarly the heat flow equation (2.30) can be broken down:
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qe = −κ‖b(b · ∇Te)−κ⊥b× (∇Te × b)− κ∧(B×∇Te)

−
β‖Te

e
b(b · j)− β⊥Te

e
b× (j× b)− β∧Te

e
(b× j) (2.47)

Taking the vector product of the heat flow equation (2.47) with the unit vector in

the direction of the magnetic field (b); making ∇Te × b the subject of this equation

and then eliminating it from equation (2.46); yields the rate of change of the magnetic

field as [33]:

∂B

∂t
= ∇×{(C×B)− j×B

nee

[
1 +

1

ωeτe

(
αc
∧ −

β∧β⊥
κc
⊥

)]
+
∇Pe

nee
+
β‖
e
∇‖Te

+

(
β⊥ +

β∧κ∧
κ⊥

)
∇⊥Te

e
+

β∧
eκ⊥

qe × b−
α‖
n2

ee
2
j‖ −

(
α⊥
n2

ee
2
− β2

∧Te

e2κ⊥

)
j⊥}

(2.48)

The important terms already mentioned take on a very similar form in this more

complicated equation.

2.3.3 B-field generation by other mechanisms

The equation for ∂B/∂t, i.e. equation (2.48), was derived neglecting several effects.

Firstly, it was assumed that high frequency effects from the laser fields, as discussed

by Haines [33], could be ignored. This is justified by the fact that the laser period

is of the order of 1fs – this is much shorter than the time-periods which will be

simulated and can thus be ignored. Additionally, the time-averaged effects of the

high frequency field, such as the ponderomotive force, may be neglected as the laser

intensities considered are low.

The derivation outlined in section 2.3.2 used the assumption that the distribution

function was close to a Maxwellian. If this is not true, i.e. if |f1| is not small compared

to f0, then more terms must be retained in the Cartesian tensor expansion. This

makes the derivation of an analytical solution for ∂B/∂t, such as that outlined in the

last section, impossible. However, if the electron distribution can be approximated

by a beam of ‘fast’ particles and a Maxwellian background of ‘slow’ ones then the

following approximation may be used [35]:
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∂B

∂t
= ∇× (ηjf ) (2.49)

The fast electron current is jf . The plasmas considered in this thesis will be close

to isotropic (not close to Maxewellian as f0 may take any form) and so this effect

need not be considered.

Magnetic fields may be generated in the process of resonant absorption of laser

light [36]. However, it has already been shown that such absorption is not important

in the simulations considered here; additionally, this process only generates large B-

fields (of the order of 1MG) when the laser intensity is greater than 1016Wcm−2 – this

is a factor of 100 larger than the intensities simulated here. Magnetic fields may also

be generated by anisotropic radiation pressure [37] or anisotropic pressure [38]. By

neglecting terms in f
2

the pressure is forced to be isotropic in the model used here.

Finally, if the laser light is circularly polarised then laser photons may deposit

their angular momentum directly into the plasma, this may then generate a magnetic

field [39]. In which case:

∂B

∂t
=

1

r

∂

∂r

(
βr

neeωLL

∂I

∂r

)
(2.50)

The distance r is from the centre of the laser spot, β is the fraction of laser energy

absorbed over a distance L. For a Gaussian intensity profile this is maximised on the

laser axis. A field of only 10−12T would be produced in one nanosecond by a laser

with maximum intensity of 1015Wcm−2 (e-folding distance of 75µm), and a frequency

of 1015s−1, in a plasma with an electron density of 1019cm−3. This mechanism is much

more important for high intensity lasers. Another (more well established) mechanism

by which a laser may directly induce a magnetic field in the plasma is by the inverse

Faraday effect. The B-field comes directly from the curl of the lasers electric field.

Magnetic fields of several mega-gauss have been measured from the mechanism [40].

The laser intensity required to do this was of the order of 1019Wcm−2 – much higher

than dealt with here. This mechanism can safely be ignored.

2.4 The break-down of classical transport

Classical transport theory ceases to be valid when the distribution function is strongly

non-Maxwellian. There are many processes which can cause this to happen, some of

which will be briefly described here. Following this the most important of these

processes in the LPI considered in this thesis will be discussed in more detail.
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Non-local transport

When the scale-length of a macroscopic physical quantity (examples – temperature,

density) is not much greater than the mean free path of the particles which transport

the quantity most effectively, then non-local transport becomes important. As an

example, the temperature scale-length LT , in the x-direction, is given by:

LT =

(
1

T

∂T

∂x

)−1

(2.51)

Consider non-local heat flow: when the temperature scale-length becomes less

than 100 times the mean free path of electrons moving with the thermal speed, non-

locality is important [41]. In this case electrons with speeds 2-3 times the thermal

velocity will have a mean free path comparable to the scale-length (mean free path

scales with speed to the fourth power). Electrons moving at such speeds are of

particular interest as they carry most of the heat. From equation (2.24) it can be seen

that the mean-free path increases strongly with speed; but the number of particles

at this speed generally decreases more rapidly. Two or three times the thermal speed

represents the optimum speed below which the collisional mean free path is too small

and above which there are too few particles to effectively transport heat. Strongly

non-local heat flow causes the distribution function to become non-Maxwellian. The

faster (hotter) electrons have longer mean free paths than the slower (colder) ones;

thus non-locality can lead to a depletion of hot electrons in one region and an excess

in another region.

The criterion imposed on the scale-length is actually only applicable to non-linear

transport. This is a sub-set of non-local transport – the transport becomes non-linear

when the gradients of the physical variables become very steep (This is equivalent to

the scale-length getting small). Steep gradients are not a requisite for non-locality to

be important. It has been shown that in the case of a small temperature perturbation,

which can have a long scale-length, that the wavelength determines whether the

transport is non-local [42]. Additionally, this discussion has not included the effects

of magnetic fields.

Inverse bremsstrahlung

It has already been discussed that inverse bremsstrahlung is the process by which

laser energy is absorbed by under-dense plasmas at low intensities (≈ 1014Wcm−2) –

as opposed to resonance absorption in over-dense plasmas. This mechanism prefer-

entially heats the slower electrons and so leads to the distribution function tending
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towards a Langdon distribution, i.e.: f0 ∝ e−v5
[43].

Collisions with neutral molecules in an electric field

A similar distribution is obtained when the collision of electrons with neutral molecules

under the influence of an electric field are considered – for example in a plasma dis-

charge. In this case it can be shown that the distribution function is described by the

Druyvestyn distribution (f0 ∝ e−v4
) [20].

Ionization

Various ionization processes operate in plasmas, which do not necessarily result in a

Maxwellian distribution of electrons. Mechanisms which can be important at high

intensities are multi-photon ionization – where several photons are absorbed by a

neutral particle; and direct field ionization – the electric field of the laser is strong

enough to rip electrons from the neutrals directly. At the lower intensities considered

here collisional ionization is the dominant process, a free electron collides with an ion

and increases its ionization state (or ionizes a neutral particle). Whether ionization

occurs depends on whether the incident, ionizing, electron has energy greater than

the ionization energy. The newly liberated electrons are initially ‘cold’; the injection

of these low-velocity particles distorts the distribution (as does the opposite process

of recombination). The distortion depends on the ionization energy; this is a material

dependent property which complicates matters [44].

2.4.1 Non-local transport

Two of the processes described will be discussed in this thesis – namely non-local

transport and inverse bremsstrahlung. In fully ionised long-pulse laser plasma inter-

actions these two are the dominant causes of the break down of classical transport.

Non-locality is important in laser-plasmas when the effective delocalisation length

(
√
λeiλee – λee is the mean free path for electron-electron collisions) becomes equal to

0.01 times the laser spot radius. This limitation on the validity of classical theory was

predicted by several independent numerical solutions to the VFP equation [45–48].

The fact that such a combination of mean-free paths determines the importance of

non-locality [49, 50] may be understood by considering the following factors: it was

shown in section 2.3.1 that classical transport is controlled by λei (in the absence of

B-fields) and so one might expect this to affect the degree of distortion of the distri-

bution functions also; electron-electron collisions will act to return the distribution
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function to Maxwellian so the shorter λee the less important non-locality should be.

In the situation where nonlocal effects are dominant classical transport theory

can predict un-physically large heat flows – i.e. greater than the heat flow if all the

electrons are streaming directly down the temperature gradient (the free-streaming

limit). This free-streaming heat flow (qF ) is given by:

qF =
1

2
nemev

3
T

∇Te

|∇Te|
(2.52)

Attempts have been made to overcome this problem by arbitrarily limiting the

heat flux to some fraction of the free-streaming limit, by using a flux-limiter (f) when

classical theory predicts it to be un-physically large [51]. This can be done a variety

of ways, the most common is to blend the classical heat flow qB and the flux-limiter

multiplied by the free-streaming heat flow qF in the following manner [19] (in the

absence of a magnetic field):

q = −
[(

1

|qB|

)n

+

(
1

f |qF |

)n]−1/n ∇Te

|∇Te|
(2.53)

Alternatively some degree of non-locality can be included in fluid models by using

a convolution method to calculate the heat flux [48]. This represents the heat flux,

in one dimension, as:

q(x) =

∫ ∞

−∞
W (x, x′)qB(x′)dx′ (2.54)

Where qB is the Braginskii heat flow. The problem with using a flux-limiter

or convolution function to circumvent non-locality is that the choice of f or W is

somewhat arbitrary – if they are to be useful these methods must be calibrated

against experimental data or a fully kinetic (i.e. VFP) theory. This has been done in

a limited number of situations [52–59]; however, there is no simple way of including

the full effect of non-locality in classical MHD.

The effect of non-locality on the thermal conductivity (in the absence of magnetic

fields) is shown in figure 2.7. The analytical expression for the non-local thermal

conductivity plotted in this figure was derived by Bell [42]. In order to do this the

VFP equation was linearised. The distribution function was written as:

f = fm +
∞∑

n=0

fnPne
i(kx−ωt) (2.55)

Where Pn are the Legendre polynomials – this is the equivalent expansion to the
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Figure 2.7: The ratio of the thermal conductivity from the linearised non-local theory to
the classical thermal conductivity. Note that for classical conductivity log(κ/κc) = 0.

spherical harmonics in the absence of B-fields and when the spatial gradients are in

one direction only. Linearised theories rely on the fact that any perturbations from

equilibrium are small; terms second-order in perturbed quantities can then be ignored.

In the this case the anisotropy is small, but the deviation from Maxwellian is not.

The spatial variation of the distribution function is set to be that for a wave (an ion-

wave), i.e. ei(kx−ωt). Therefore, this is a linear theory for wave motion in the plasma.

Figure 2.7 shows the ratio of the thermal conductivity to the classical conductivity

against the ratio of λ/λc (λ is the wavelength of the ion wave. k is its wavevector, λc

is the collisional mean free path and is proportional to λei). This shows that as λ/λc

gets smaller non-local effects become more important and the conductivity decreases

below the classical value (κc). The reason for this decrease is that non-locality leads

to strong flow of the ‘hot’, i.e. less collisional, electrons away from any hot regions

and into colder ones ahead of the classically predicted heat front [42,45,46,49,60,61].

The thermal conductivity is suppressed in regions where the temperature is high due

to the depletion of the tail of the distribution and high in colder regions due to it’s

enhancement. The non-local dispersion relation was also derived for these waves. It

shows a significant divergence from the classically derived dispersion relation. This

implies that hydrodynamic ion-motion and non-locality can affect one another – this
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is an important motivation for developing the improved code described in chapter 4.

2.4.2 The effect of magnetic fields on non-locality

So far the concept of non-locality has been discussed in the absence of magnetic

fields. Not only can large magnetic fields reduce transport, they can also act to

re-localise it. The important parameter for the suppression of non-locality is again

the Hall parameter. If the Larmor radius is much smaller than the thermal mean

free path and any scale-lengths of interest then non-locality is not important. If the

Hall parameter is sufficiently large transport is localised no matter how large λed.

The intermediate regime where magnetic fields and non-locality are important is still

poorly understood.

The effects of magnetic fields on non-local transport have been considered in

several situations. Kho & Haines discussed the effect of non-locality on magnetic

field advection (due to the Nernst effect) using 1D VFP simulations [62]. Luciani,

Mora & Bendib also investigated this analytically and numerically using a convolution

method [52]. This work was extended recently to show that simulations of recent

laser-solid target experiments agreed best when both B-fields and non-locality were

included in the model [55,59]. An entirely non-local mechanism for the self-generation

of magnetic fields has been proposed analytically and corroborated with 2D VFP

simulations (using IMPACT) [63] – this will be described in more detail in section

2.4.4 and its relevance to B-field generation by elliptical laser-spots in chapter 7.

Linearised theories of non-local transport in the presence of magnetic fields have been

expounded by Brantov et al [64]. Alternatively, noting that the fluid equations solve

for the first three velocity moments of the distribution function, non-classical effects

may be included by solving for higher moments [65]. As the number of moments (n)

retained gets larger then the distribution function is more accurately represented; as

n tends to infinity then the full distribution is retained. This can be understood by

noting that the most important limitation of fluid theory – as discussed in section

2.2.4 – is that to close the set of equations the classical heat flow equation is used, this

assumes that the distribution function is close to a Maxwellian. If this hypothetical

infinite number of moment equations were used there would be no need for closure and

such a fluid theory would work as well as VFP [66]. A fully kinetic VFP treatment

of long-pulse LPI including the effects of self-generated fields and plasma motion is

clearly missing from the previous work and forms the subject of this thesis.
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Figure 2.8: Electron temperature profiles at two times (reproduced with the author’s
permission). The variable x refers to distance from the centre of the gas jet backwards
relative to the direction of the laser propagation. The value of f is the flux-limiter. Note
the time dependence of the flux-limiter.

2.4.3 Experimental measurements of the importance of non-

locality

Non-local transport is not merely a theoretical curiosity, it has been observed to be

important in many experimental long pulse laser-plasma interactions. The first exper-

imental observations to definitively show the importance of non-locality in nanosecond

laser-plasma interactions were made in 1975 [67]. These experiments involved the in-

teraction of a CO2 laser (λL = 10.6µm, I = 3×1010Wcm−2) with a z-pinch produced

plasma. This, along with several follow-up experiments [41, 68, 69] showed that the

thermal conductivity was significantly reduced due to non-local effects. Although the

plasma was approximately 100 times more tenuous compared to those considered here

(ne = 8× 1016cm−3).

Gregori et al measured the electron temperature and number density profiles in

the interaction between a nitrogen gas-jet (initial density ne = 1.5× 1019cm−3) and a

nanosecond neodymium-glass laser beam (with an intensity of 1.5× 1014Wcm−2 and
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wavelength λ = 1.054µm). To determine the importance of non-locality the profiles

for ne and Te (taken after 0.3ns and 1.5ns) were compared to fluid simulations (using

LASNEX which has a flux-limited heat flow model), Fokker-Planck simulations and

hot spot relaxation (HSR) simulations. These results are shown in figure 2.8. HSR

refers to a fluid model which captures some of the non-local transport effects by using

a convolution formula for the heat flux, as in equation (2.54). Gregori et al observed

that using a Fokker-Planck model or the HSR model gave better agreement than the

fluid LASNEX model at later times. At early times LASNEX gave good agreement,

so the other models were not shown in the early time plots. The fully Fokker-Planck

simulation gave the best agreement; the conclusion drawn from this by Gregori et

al was that non-locality was dominating the transport of heat. Furthermore the

flux-limiter required by LASNEX was found to be strongly time-dependent.

A similar comparison between Fokker-Planck, fluid theory and experiment was

made by Hawreliak et al. This was done for the interaction between six neodymium-

glass lasers and a solid aluminium foil [70]. The combined focal spot intensity of all

the lasers was 3 × 1014Wcm−2. the experimental temperature profiles agreed best

with those from the Fokker-Planck code IMPACT rather than the fluid code. Taken

together, these experiments show that non-locality is important in a wide range of

long-pulse LPI.

Recently the nitrogen-gas jet experiment described previously has been repeated

with the introduction of an externally applied magnetic field (and an intensity of

1015Wcm−2); the intention being to measure its suppression of non-locality [12]. The

external magnet could provide a field of up to 12T. Such a B-field strength was deemed

enough to re-localise transport through kinetic simulations with no magnetic field and

using LASNEX including B-fields. The experiment just described will be simulated

using the new kinetic code developed here – the results of which are presented and

discussed in chapter 5 – particular interest will be taken in the intermediate B-field

regime which has not been well characterised. These simulations will lead into the

first comprehensive discussion of the temporal evolution of the coupling between non-

locality and magnetic field dynamics in these types of laser-plasma interactions.

2.4.4 Non-local magnetic field generation

The equation for the evolution of the magnetic field (2.48) is only valid if the dis-

tribution function is close to Maxwellian. This is not the case in many important

laser-plasma experiments. Kingham & Bell have formulated a non-classical theory of
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magnetic field generation [63,71]. This was a perturbative theory valid for a magnetic

field initially growing up from zero. Therefore, they considered a simpler form of the

f1 equation than used in the classical analysis, i.e.:

ṽ∇̃f̃0 + Ẽ
∂f̃0

∂ṽ
= −Ẑ

2ñi

ṽ3
f̃1 (2.56)

Note the variables in the above equation are normalised. The exact normalisations

are unimportant here but will be given in chapter 4 – normalised variables will be

denoted by the tilde, for example as X̃. Electron inertia has been ignored (the ∂f1/∂t

term) and it is assumed there is no initial magnetic field. By taking the current

moment – i.e.
∫∞

0
...v3dv – and setting j = 0 Ohm’s law was derived as in equation

(2.57). Setting the current to zero in this way is valid if the plasma remains quasi-

neutral because initially there is no magnetic field.

Ẽ = −∇(ñe〈ṽ5〉)
6ñe〈ṽ3〉

(2.57)

Where:

〈ṽm〉 =
4π

ñe

∫ ∞

0

f̃0ṽ
m+2dṽ (2.58)

Ohm’s law is left in terms of moments of the distribution function; i.e. its integral

in velocity space. The fact that these correspond to familiar physical variables such

as number density, bulk flow velocity and temperature will be discussed in section

3.4.1. Usually such an identification is made when the distribution function has

some specified form, in order to clarify that that the distortion of the distribution

is arbitrary in our case the description remains one explicitly in terms of moments.

From this Ohm’s law, Faraday’s law gives the rate of change of the magnetic field (ω̃)

as:

∂ω̃

∂t̃
=
∇ (ñe〈ṽ5〉)×∇ (ñe〈ṽ3〉)

6 (ñe〈ṽ3〉)2 (2.59)

Equation (2.59) is the generalised expression for the thermoelectric magnetic field

generation term already discussed several times so far. Further progress can be made

with this formulation by calculating the moment in equation (2.58) for a Maxwellian

distribution.

〈ṽm〉M = Γ

(
m+ 3

2

)
2m/2+1

√
π

T̃m/2
e (2.60)
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Where Γ(n) is the gamma function whose properties are briefly discussed in ap-

pendix F. On substitution of this result into equation (2.59) the standard ‘∇ne×∇Te’

mechanism is recovered. If f0 is not Maxwellian a whole host of new generation mech-

anisms are introduced, one such mechanism will now be described. On enforcing that

〈vm〉 = 〈vm〉M but ∂〈vm〉/∂t 6= ∂〈vm〉M/∂t an early time model is derived for the non-

local magnetic field generation rate [63,71]. Note that the previous assumption makes

physical sense – the plasma is initially in equilibrium with a Maxwellian distribution,

the model describes the small deviation from this at early times. This model predicts

magnetic field generation in a plasma with no density gradients. This early-time seed

magnetic field is given by:

ω̃τ̄ = −1

2

(
t̃

τ̄ei

)2 ∇̃T̃e

T̃e

×

[
154

∇̃(∇̃2T̃e)

T̃e

+ 620
|∇T̃e|2

T̃e
2

]
λ̄4

ei

6π
√

2
(2.61)

Note that this expression is derived by assuming that the temperature profile

is constant and as such is only valid for the first few collision times. The barred

variables are those for the local plasma conditions instead of the global ‘normalising’

conditions. In section 7.1.3 this formula will be useful for predicting the early-time

seed to non-locally generated magnetic fields by an elliptical laser spot.

2.4.5 Inverse bremsstrahlung

The second important effect leading to distortion of the distribution function is inverse

bremsstrahlung. The fact that IB heating tends to cause the distribution function to

become a Langdon distribution can be shown by a consideration of reduced forms of

the f0 and f1 equations [43]). Considering the 1D form of the f1 equation, neglecting

magnetic fields and electron-electron collisions yields:

∂f0

∂t
=
eE

me

1

3v2

∂

∂v

(
v2f1

)
(2.62)

∂f1

∂t
=
eE

me

∂f0

∂v
− ν ′ei
v3
f1 (2.63)

If the electric field driving the anisotropy in the distribution function is harmoni-

cally varying with the laser frequency ωL, i.e. E = E0e
−iωLt then the anisotropy itself

must vary in this manner. In this case it is possible to express f1 as:

f1(v) =
ieE0

meω

(
1 +

iν ′ei
ωLv3

)−1
∂f0

∂v
(2.64)
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Here: ν ′ei = νeiv
3. After assuming that the collisional term in the above equation

is small – i.e. νei/ωL << 1 – this is substituted into the f0 equation. This then gives

the solution (where time is represented by t):

f0 =

(
6

5ν ′eiv
2
osct

)3/5

exp

[
−1

5

(
6

5ν ′eiv
2
osct

)
v5

]
(2.65)

However, if the effects of electron-electron collisions are included than the distri-

bution function will lie somewhere between a Langdon and a Maxwellian. In this case

the distribution function is given by the more general super-Gaussian [72–74], i.e.:

fSG
0 = C(m)

ne

v3
T

e−(v/αevT )m

(2.66)

Here αe = [3Γ(3/m)/2Γ(5/m)]1/2 and C(m) = m/4πα3
eΓ(3/m). m varies between

2 and 5. Note that ‘super-Gaussian’ is the term used to describe any distribution

that goes as e−vm
with m > 2. How closely the value of m gets to five is quantified

by the following formula (derived by fitting numerical results from VFP simulations,

in the absence of B-fields and transport, by Matte et al [74]):

m = 2 +
3

1 + 1.66
α0.724

α = Z
vosc

vT

(2.67)

Here α is the Langdon parameter, as this tends to infinity then m tends to five. It

is clear that as vosc increases, i.e. as the laser becomes more intense, m increases from

two to five. Increasing Z has the same effect. For larger Z the electron-ion scattering

rate increases and more of the laser’s quiver energy is thermalised and so the rate of

collisional heating is greater.

To date no direct experimental measurement of the importance of the super-

Gaussian distribution has been made. However, simulations have shown that the

distortion of the distribution function can affect X-ray emission in LPI [74] and non-

local transport [75–77]. It has also been shown that although the super-Gaussian

distribution gives the best fit to the bulk of the electron distribution, when electron-

electron collisions are considered it does not work well in the tail [78] – a Maxwellian

often gives a better fit here. The electrons in the tail of the distribution can seriously

affect transport properties, which could be an important effect. Non-locality will

only exacerbate this problem – in some regions the tail will be enhanced, in others

depleted. An investigation of the simultaneous action of inverse bremsstrahlung and

non-locality on the distribution function will be presented in chapter 5, and the

transport theory for a super-Gaussian in chapter 6.



62 CHAPTER 2. BACKGROUND



Chapter 3

Ion hydrodynamics in the VFP

equation

3.1 The importance of ion hydrodynamics

Previous IMPACT simulations treated the ions as a stationary neutralizing back-

ground. However, ion motion is expected to be very important in nanosecond LPI.

An estimate of the importance of ion-motion and examples of experiments where it is

crucial will be discussed here. The task of including such motion in a VFP treatment

will be simplified by justifying a fluid treatment of the ions.

3.1.1 A simple estimate of hydrodynamics’ importance

A first justification of the inclusion of ion motion may be made by showing that a

significant degree of hydrodynamic plasma flow is expected in a typical NIF hohlraum.

As a simple first estimate the ablation velocity can be approximated to the ion acoustic

speed (cs), so that the ablation distance xa in the time ta is given by:

xa = csta =

(
γkbTe

mi

)1/2

ta (3.1)

Here, γ is the ideal gas constant (γ = 5/3). A conservative estimate for the electron

temperature achievable near the wall in a NIF hohlraum is 1keV. Considering a pulse

duration of five nanoseconds, the ablation distance is estimated to be 2mm. The

hot-spot size on the wall of a NIF hohlraum is of the order of one millimetre [7].

Ion fluid effects are therefore expected to travel a significant distance over the pulse
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Figure 3.1: A schematic of the two-beam experiment.

duration, and therefore ion hydrodynamics should play an important role.

3.1.2 Ion motion is crucial in long-pulse laser-plasma inter-

actions

Perhaps a more important consideration than the amount of hydrodynamic flow that

will occur is the effect of this flow. Ion flow is thought to be important in hohlraums;

such flow is predicted to advect magnetic fields produced at the hohlraum wall into the

gas-fill plasma [7, 11]. Indeed this effect, as well as non-uniform plasma flows, could

modify the x-ray symmetry of the hohlraum. In order to model a direct-drive ICF

implosion one must clearly include ion-motion, a full VFP treatment of this including

magnetic fields has yet to be done. The inclusion of hydrodynamics is crucial to

understanding the interplay of magnetic field dynamics and non-local transport in

these situations.

The recent experiment by Froula et al (which was discussed in section 2.4.1) was

designed to investigate the effect of an externally applied B-field on non-locality in

long-pulse LPI. The coupling between the importance of non-locality and magnetic
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field dynamics (controlled by hydrodynamic flow in Froula’s analysis) in the pres-

ence of moderate B-fields is poorly understood. These two effects are also of interest

to laser-solid target experiments where the intention is to characterise the B-field

profile [79, 80], or measure such effects as reconnection in the high energy density

regime [81, 82]. Figure 3.1 shows a schematic of the first experiment where such re-

connection was inferred [81]. Two long-pulse laser beams illuminated a solid target

(either aluminium or gold) the resulting temperature and density gradients in the

plasma then generated a magnetic field by the ‘∇ne ×∇Te’ mechanism. These fields

were orientated azimuthally around each laser spot as shown in figure 3.1. The fields

were then advected away from the laser spots leading to compressed fields with oppo-

site orientations close together – a situation in which magnetic reconnection might be

expected. Indeed this was postulated to be responsible for anomalous heating in the

marked ‘reconnection region’. The B-field was assumed to be frozen into the plasma

and as such hydrodynamic plasma expansion was thought crucial in getting the B-field

from where it was generated to the reconnection region – later the possibility that

the Nernst effect may be responsible for the advection of the B-field will be explored.

The plasma was also observed to form fast moving jets in the reconnection region

– clearly the inclusion of bulk plasma motion is essential to conducting simulations

pertinent to this experiment.

3.1.3 Justification for a hydrodynamic model

Having demonstrated the importance of ion motion the way in which it is to be

modelled must now be considered. In long-pulse LPI a fluid treatment is justified. It

has already been argued that fluid treatments break down when non-local transport

becomes important. To show that this is not the case for the ions, consider the ratio

of the ion-ion to the electron-ion collisional mean free paths (for electrons and ions

moving with their thermal speeds [3]).

λii

λei

=
1

Z2

(
Ti

Te

)2
lnΛei

lnΛii

(3.2)

This ratio will usually be smaller than unity. For the plasmas considered here

Z = 7 – recall that the Lorentz approximation requires it to be larger than unity.

The factor 1/Z2 is then 0.02. The factor (Ti/Te)
2 is expected to be less than one.

This ratio depends on the fact that laser energy heats the electrons first which later

come into thermal equilibrium with the ions due to their much higher inertia. The

ion temperature is expected to be less than the electron temperature over relatively
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long time-scales. The weak dependence on temperature in the Coulomb logarithms

(lnΛei/lnΛii) has been ignored. The time-scale over which this temperature equili-

bration is expected to take place is dependent on the ratio of the electron-ion and

electron-electron energy exchange times. The energy exchange time τE
AB is the time

taken for the change in the kinetic energy of particle A to equal to its original kinetic

energy by collisions with particles of species B. The ratio (τE
ei/τ

E
ii ), for thermal parti-

cles, is proportional to the mass ratio (mi/m
1/2
e ). The ions take this factor longer to

equilibrate with the electrons than they do to equilibrate with each other.

It then follows that the the ion-ion thermal mean free path should be less than

the electron-ion thermal mean free path. For ion non-locality to be unimportant,

λii needs to be much smaller than the length scales of the macroscopic variables. In

typical long-pulse LPI a regime where λii is significantly smaller than λei is studied,

therefore electron non-locality is important but ion non-locality is not. Additionally,

for a fluid treatment to be valid the ions must be in local thermodynamic equilibrium

with each other. In this case the ion’s distribution function is a Maxwellian at all

points in space with a different temperature at each point. The rate at which energy

is transferred from the electrons to the ions is very slow compared to the rate at which

it is transferred amongst the ions. Recall that the ion-ion energy equilibration time

(τE
ii ) is a factor of (mi/me)

1
2 faster than the electron-ion energy equilibration time.

This means the ions can much more easily equilibrate with themselves than with the

electrons maintaining local thermodynamic equilibrium.

3.1.4 Some caveats

Some important effects will be lost by assuming that the ions behave as a fluid (with

a Maxwellian velocity distribution). Taking the specific example of the experiment

performed by Nilson et al (discussed in section 3.1.2), there are several ion-kinetic

effects that might be important. The ion flows coming into the reconnection region are

expected to interpenetrate somewhat, influencing the magnetic field. This cannot be

described by a single-fluid ion model. These separate flows, while being in equilibrium

with themselves will not be with each other. This is illustrated by figure 3.2. The

counter-propagating beams from the two laser spots are represented by the orange

ion distributions. If the beams are moving at a high velocity then even if they are

Maxwellian they will be shifted by a velocity ux. Eventually the beams would be

expected to equilibrate with each other – resulting in the red ion distribution. If this

takes a significant fraction of the experimental time, i.e. if the beams are moving
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fi

vx-ux ux

Figure 3.2: If two counter-propagating beams (moving in the x-direction) are present the
ion distribution function fi is given by two shifted Maxwellians (orange curves), instead of
the single Maxwellian required for a fluid treatment to be valid (red curve).

sufficiently quickly, the fluid assumption that fi is a single Maxwellian will break

down.

Shocks were shown to occur in the reconnection region as the two plasmas met

in Nilson’s experiment. If one is interested in resolving the structure of such shocks

then ion kinetics must be included. Shocks cannot be exactly described by a fluid

treatment, although they can be approximately modelled – as discussed in appendix

D.

3.2 The transformation

Now that a fluid-ion treatment has been justified, the effects of ion-motion can be

included in the electron’s VFP equation by transforming it into the ion’s rest frame.

First, recall the VFP equation:

∂f

∂t
+ v · ∇rf + (a + v × ω) · ∇vf =

(
∂f

∂t

)
collisional

(3.3)

a =
eE

me

ω =
eB

me

Let v be given by the sum of the electron velocity in the ion’s rest frame w and

the ion drift velocity C – this drift velocity is the average ion velocity, and is as such

a function of position and time only [20]. As well as the velocity coordinate, the

derivatives must be transformed. The important results are given below.



68 CHAPTER 3. ION HYDRODYNAMICS IN THE VFP EQUATION

v = w + C(r, t) (3.4)

f(r,v, t) = f ′(r,w, t) (3.5)

∂f

∂t
=
∂f ′

∂t
− ∂f ′

∂wj

∂Cj

∂t
(3.6)

∂f

∂ri

=
∂f ′

∂ri

− ∂f ′

∂wj

∂Cj

∂ri

(3.7)

∂f

∂vi

=
∂f ′

∂wi

(3.8)

Substituting these results into equation (3.3) yields equation (3.9). Note that the

collisional part of the equation remains unchanged; the collision operators in the VFP

equation are unaffected by the change of variables as collisions are naturally expressed

in the ion’s rest frame.

∂f ′

∂t
+ wi

∂f ′

∂ri

− (ai + εkjiwkωj)
∂f ′

∂wi

− ∂f ′

∂wi

∂Ci

∂t
− wi

∂f ′

∂wj

∂Cj

∂ri

+Ci
∂f ′

∂ri

− Ci
∂f ′

∂wj

∂Cj

∂ri

− εkjiCkωj
∂f ′

∂wi

=

(
∂f ′

∂t

)
collisional

(3.9)

In the above equation the summation over components is implied by repeated

indices. Terms involving Ci are the new ones resulting from the transformation. The

relationship between the velocities v and w is shown in figure 3.3. It can be seen

that in both the (r,v, t) and (r,w, t) coordinate systems the velocity coordinate is

independent of the space and time coordinates. The diagram shows that if we know

r and t in either frame we have no information about v or w (a velocity vector with

a given magnitude can lie anywhere on a sphere in velocity space as shown).

Strictly speaking the transformation just made is not a coordinate transformation.

Equation (3.9) is the VFP equation in the ‘laboratory’ frame. If a coordinate trans-

formation were then made into the ion-rest frame all of the new terms would vanish,

leaving the old VFP equation as solved by the previous version of IMPACT. The diffi-

culty with solving the VFP equation in the moving frame is that such a treatment is

Lagrangian (one where at every point we are following the ion-fluid). In two spatial

dimensions this fluid can moving in very complicated ways – making re-mapping back
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Figure 3.3: A diagrammatic representation of the transformation into the ion ’drift’ frame.

onto the lab frame equally complicated. When the equation is solved numerically the

spatial grid can become hopelessly tangled using such a treatment.

For these reasons an Eulerian (lab-frame based) treatment will be used here. This

involves solving equation (3.9) in a fixed 2-D configuration space. The transformation

made to obtain equation (3.9) is perhaps best described as a ‘separation of effects

transformation’ where terms resulting from ion-motion have been separated from the

‘standard’ Vlasov terms. Not only is the Eulerian approach easier to solve numerically,

but it transparently shows the effects that ion-motion has on the VFP equation. This

will be important when the velocity moments of the transformed VFP equation are

considered.

3.3 The cartesian tensor expansion

The distribution function must now be expanded in Cartesian tensors (described in

section 2.2.3). This expansion is truncated after two terms.

f = f0 + f1 ·
w

w
(3.10)

In the above equation the distribution function is expressed in the (r,w, t) system

but the primes have been dropped from f0 and f1 for brevity. Substitution of this

into equation (3.9) yields:
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∂f0

∂t
+
∂f1
∂t

· w
w

+ w · ∇rf0 + (w∇rf1) :
ww

w2
+

a · f1

w
+
∂f0

∂w
a · w

w
+

[
wa

∂

∂w

(
f1
w

)]
:
ww

w2

+(ω × f1) ·
w

w
− ∂C

∂t
· f1
w
− ∂f0

∂w

∂C

∂t
· w
w
−
[
w
∂C

∂t

∂

∂w

(
f1
w

)]
:
ww

w2
−
(
∂f0

∂w
w∇rC

)
:
ww

w2

+
[(w

w
· ∇rC

)]
· f1 −

[
w2∇rC

∂

∂w

(
f1
w

)]
...
www

w3
+ C · ∇rf0 + [(C · ∇r) f1] ·

w

w

−
[
(C · ∇r)C

∂f0

∂w

]
.
w

w
− [(C · ∇r)C].

f1
w
−
{
w[(C · ∇r)C]

∂

∂w

(
f1
w

)}
:
ww

w2
+

(C× ω) · f1
w

+

[
(C× ω)

∂f0

∂w

]
· w
w

+

[
w(C× ω)

∂

∂w

(
f1
w

)]
:
ww

w2
=

(
∂f

∂t

)
collisional

(3.11)

Next the above equation is multiplied by the direction cosines in velocity-space

(cosθj = vj/v) and integrated over solid angle in velocity space; this will be referred

to as ‘taking the angular moment’. This splits equation (3.11) into equations for the

time evolution of f0 and f1 (using the orthogonality of the direction cosines). To begin

this procedure, consider taking angular moments of the several generic types of terms

in equation 3.11. Note that summation is implied over repeated indices.

Scalar terms:

Ts = A(w) (3.12)

Vector terms:

Tv = A(w) · w
w

= Aj(w)cosθj (3.13)

Matrix terms:

Tm = A(w)B(w) :
ww

w2
= Ai(w)Bj(w)cosθicosθj (3.14)

Not all terms in equation (3.11) fit into these categories. The two misfit terms

below will henceforth be referred to as the ‘other’ terms.

[(w

w
· ∇rC

)]
· f1

[
w2∇rC

∂

∂w

(
f1
w

)]
...
www

w3
(3.15)

The following useful identity has been used to evaluate these integrals:
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∫
cospθxcosqθycosrθzd

2Ω = 4π
1.3.5...(p− 1).1.3...(q − 1).1.3...(r − 1)

1.3.5...(p+ q + r + 1)
(3.16)

Note that this is only true if p, q and r are all even, otherwise the integral is zero.

3.3.1 The zeroth angular moment

The zeroth moment is taken by integrating equation 3.11 over solid angle. Consider

the angular moments of the generic terms:

Scalar terms ∫
Tsd

2Ω = A(w)

∫
d2Ω = 4πA (3.17)

Vector terms ∫
Tvd

2Ω = Aj(w)

∫
cosθjd

2Ω = 0 (3.18)

Matrix terms ∫
Tmd2Ω = Ai(w)Bj(w)

∫
cosθicosθjd

2Ω =
4π

3
A ·B (3.19)

Other terms ∫ [(w

w
· ∇rC

)]
· f1d2Ω = f1k

∫
cosθj

∂Ck

∂rj

d2Ω = 0 (3.20)

∫ [
w2∇rC

∂

∂w

(
f1
w

)]
...
www

w3
d2Ω =

Ai(w)Bj(w)Ck(w)

∫
cosθicosθjcosθkd

2Ω = 0 (3.21)

Where:

A = w2∇r B =
∂

∂w

(
f1
w

)
(3.22)

These results can then be used to determine the new f0 equation:
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∂f0

∂t
+
w

3
∇r · f1 + C · ∇rf0 −

w

3

∂f0

∂w
∇r ·C +

1

3w2

∂

∂w

{
w2

[
a + C× ω − ∂C

∂t
− (C · ∇r)C)

]
· f1
}

= collisional terms

(3.23)

3.3.2 The first angular moments

To take these moments equation (3.11) is multiplied by cosθj and integrated over

solid angle.

Scalar terms ∫
Tscosθjd

2Ω = A(w)

∫
cosθjd

2Ω = 0 (3.24)

Vector terms ∫
Tvcosθjd

2Ω = Ai(w)

∫
cosθicosθjd

2Ω =
4π

3
Aj (3.25)

Matrix terms∫
Tmcosθjd

2Ω = Ai(w)Bk(w)

∫
cosθicosθkcosθjd

2Ω = 0 (3.26)

Other terms∫ [(w

w
· ∇rC

)]
· f1cosθjd

2Ω = f1k

∫
cosθi

∂Ck

∂ri

cosθjd
2Ω =

4π

3
f1k

∂Ck

∂rj

(3.27)

∫ [
w2∇rC

∂

∂w

(
f1
w

)]
...
www

w3
cosθjd

2Ω =

Ai(w)Bl(w)Ck(w)

∫
cosθicosθlcosθkcosθjd

2Ω =

4π

15
w2

[
∂Ci

∂rj

∂

∂w

(
f1i

w

)
+
∂Cj

∂ri

∂

∂w

(
f1i

w

)
+
∂Ci

∂ri

∂

∂w

(
f1j

w

)]
(3.28)

These results then give the new f1 equation:
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∂f1j

∂t
+ w

∂f0

∂rj

+
∂f0

∂w
aj + [ω × f1]j +

∂f0

∂w
[C× ω]j −

∂f0

∂w

∂Cj

∂t
+ Ck

∂f1j

∂rk

− f1k
∂Ck

∂rj

−∂f0

∂w
Ck
∂Cj

∂rk

− w2

3

[
∂Ck

∂rj

∂

∂w

(
f1k

w

)
+
∂Cj

∂rk

∂

∂w

(
f1k

w

)
+
∂Ck

∂rk

∂

∂w

(
f1j

w

)]
= collisional terms

(3.29)

3.4 Velocity moments

Physical insight into the meaning of the various new terms in the f0 and f1 equations

– i.e. equations (3.23) and (3.29) – may be gained by taking their zeroth, first and

second velocity moments. Firstly, a brief description of velocity moments of the

distribution function, particularly those leading to important physical variables, is

required.

3.4.1 Notes concerning velocity moments

In section 2.2.4 the derivation of the fluid equations was said to be a result of tak-

ing velocity averages of the VFP equation. These are known as velocity moments,

how they lead to the derivation of fluid quantities (such as the ne and Te) from the

distribution function will now be briefly described. The velocity-averaged value of a

velocity-dependent quantity (α), over a velocity-distribution of particles (f), is given

by:

〈α〉(r, t) =
1

ne

∫
α(w, r, t)fd3w (3.30)

Note that the velocities considered are those in the ion’s rest frame. This will

become important later. For now note that when considering the VFP equation

without ion-motion the ion rest-frame is stationary and the velocity coordinate w

becomes the more usual v. The integral is over the whole of velocity space. The

resulting average 〈α〉 is a function of position and time only. Velocity moments have

in fact already been used; in the discussion of non-local magnetic field generation

quantities such as that above appeared. Equation (3.30) applies to the components

of a rank n tensor as well as to a scalar. The important fluid quantities are defined

by the following moments:
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ne =

∫
fd3w = ne〈1〉 (3.31)

Ce =

∫
wfd3w = ne〈w〉 (3.32)

Pe = me

∫
(w −Ce)(w −Ce)fd3w = neme〈(w −Ce)(w −Ce)〉 (3.33)

qe =
me

2

∫
(w −Ce)(w −Ce)(w −Ce)fd3w =

neme

2
〈(w −Ce)(w −Ce)(w −Ce)〉

(3.34)

These quantities represent the electron’s number density (ne), bulk velocity (Ce),

pressure tensor (Pe) and the rank-3 tensor form of the heat flow (qe). The average

electron velocity in the lab frame is C′
e = C + Ce. The current is related to the differ-

ence between the average electron and ion velocities j = ZeniC− eneC
′
e. Note that,

if the plasma is quasi-neutral then Ce is related to the current (j = −eneCe). Fur-

thermore, it is now straightforward to see why moments in terms of w are equivalent

to those in terms of v. Consider:

∂vj

∂wk

=
∂

∂wk

(wj + Cj) = δjk (3.35)

δjk is the Kronecker delta. The number density moment in terms of v may be

expressed in terms of w in the following way:

ne =

∫
fd3v =

∫ ∞

vx=0

∫ ∞

vy=0

∫ ∞

vz=0

fdvxdvydvz =

∫
fd3w (3.36)

Therefore it was justified to write the number density moment as in equation

(3.31). The same identification may be made for the other moments in equations

(3.32) - (3.34); substitution for the electron velocity in the laboratory frame (C′
e =

Ce + C) will show these moments to be identical to those using w.

The pressure tensor is usually reduced to the scalar isotropic pressure (Pe); it will

be shown that, on expanding the distribution function to f1 only, anisotropic pressure

is neglected. The scalar pressure is related to the temperature by the equation of

state (Pe = 2
3
nekbTe). The heat flow is usually expressed as a vector expressing the

velocity-averaged flux of energy. Note that the random part of the electron’s velocity

is denoted by w′ (where: w′ = w −Ce).
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Pe =
neme

3
〈w′2〉 qe =

neme

2
〈w′2w′〉 (3.37)

The fluid equations are derived from taking moments of the VFP equation. The

general equation is given by multiplying equation (2.10) by meww . . .w – where there

are n velocity vectors (w) forming a tensor of rank-n – and integrating over velocity

space. This yields [20]:

∂Mn

∂t
+∇r ·Mn+1 − n[aMn−1 − ω ×Mn]n = ∆Mn (3.38)

Where [· · ·]l is the symmetrization of the tensor inside the bracket. To symmetrize

a tensor of rank l one must sum all the possible permutations of the indices and divide

by l!. For example: [wC]2 = (wC + Cw)/2!. The general moment is represented by

Mn, ∆Mn is the change in the fluid quantity Mn due to collisions. These are defined

by the relations:

Mn = neme〈ww . . .w〉 ∆Mn = me

∫
ww . . .w

(
∂f

∂t

)
coll

d3w (3.39)

Equation (3.38) gives rise to the fluid equations when n = 0, n = 1 and n = 2.

These are known as the zeroth, first and second moments respectively and give the

equations of MHD. As seen in the next section, these moments yield the continuity

equation, momentum equation and an equation for the pressure tensor. The following

second ‘scalar’ moment gives the energy equation, which is usually used instead of

the equation for the pressure tensor:

M2 = neme〈w2〉 (3.40)

Equation (3.38) shows that the fluid equations cannot be closed by simply consid-

ering higher and higher moments. The equation for the general moment Mn always

involves the higher moment Mn+1. A closure relation is needed to relate this moment

to those lower than it. In the case of MHD this means an equation for the vector

heat flow (the third moment) is required as the second moment (energy) equation

was the highest equation considered. The heat flow must be expressed in terms of

the lower moments, i.e. the pressure (or temperature), bulk flow velocity and number

density. In MHD closure is usually achieved by using the heat flow equation (2.30)

from classical transport theory – which only works if the distribution function is al-

most Maxwellian. A VFP treatment does not have the same requirement for closure.
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The distribution function is solved for directly, meaning that any moment can be

calculated straightforwardly.

The use of the cartesian tensor expansion complicates this discussion. The VFP

equation is now expressed in terms of the components f0 and f1. The moments of

these are related to the velocity-averages of scalar and vector quantities as follows.

Consider the velocity dependent scalar quantity α(w, r, t). Note that α only depends

on the speed. The average is given by:

〈α〉 =
4π

ne

∫ ∞

0

αf0(w, r, t)w
2dw (3.41)

This is the equivalent of equation (3.30) using the expanded form of the distri-

bution function. Now consider the average of the vector quantity α(w, r, t) (where α

has the following form):

α = α(w, r, t)
w

w
(3.42)

〈α〉 =
4π

3ne

∫ ∞

0

αf1(w, r, t)w
2dw (3.43)

The averages of higher rank tensors need not be considered. Only the zeroth, first

and scalar second moments will be taken. Comparing the moment equations for the

VFP equation involving the full distribution function to those when it is expanded

in the cartesian tensors will show which physical effects are neglected by truncating

this expansion at f1.

3.4.2 Velocity moments of the new equations

The truncation of the Cartesian tensor expansion after f1 introduces approximations

into the fluid equations derived from the f0 and f1 equations. It is sensible to show

what these assumptions are before taking the moments of the transformed f0 and

f1 equations (3.23) & (3.29) as these contain both the effect of this approximation

and the effect of the new terms. On comparing the moments of the un-transformed

equations (2.22) & (2.23) and the Vlasov part of the un-transformed VFP equation

(2.10) the effects of truncating the expansion will be elucidated. First the moments

of the un-transformed f0 and f1 equations are taken. In this case v = w and C′
e = Ce

– i.e. there is no net ion velocity. Note that the collisional term will not be included,

the transformation leaves this term unchanged.
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Zeroth Moment: Yields the continuity equation.

∂ρe

∂t
+∇r · (ρeCe) = 0 (3.44)

First Moment: Results in the momentum equation.

∂

∂t
(ρeCe) +∇rPe +∇r

(
ρeC

2
e

3

)
= ρe(a + Ce × ω) (3.45)

Second Moment: Gives the energy equation.

∂E

∂t
+∇r·qT = ρea ·Ce (3.46)

The second moment involves the electrons average energy (E) and the total heat

flow (qT ). These are defined as:

E =
neme

2
〈v2〉 qT =

neme

2
〈vv2〉 (3.47)

Now consider the corresponding moments of the Vlasov part of the un-transformed

VFP equation 2.10. The zeroth and second moments are the same as those above.

The first moment is different.

∂

∂t
(ρeCe) +∇r · Pe +∇r·(ρeCeCe) = ρe(a + Ce × ω) (3.48)

This equation may be reconciled with equation (3.45) by identifying the physical

effects that are not included when the distribution function is truncated at f1. The

pressure and bulk flow tensors, used above, are given by:

Peij = ρe〈w′iw′j〉 = Peδij + Πeij (3.49)

PBij = ρeCeiCej = PBδij + ΠBij (3.50)

Here the random part of the electron’s velocity is given by w′ = w−Ce (recall that

this is for the un-transformed case where the ion velocity is zero – the transformed

case will be dealt with later). Pe and PB are the scalar pressure and the scalar bulk

flow respectively. Πeij and ΠBij are the tensors describing stress and anisotropic bulk

flow. These are defined as:
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Pe = ρe

〈
w′2

3

〉
Πeij = ρe

〈
w′iw

′
j −

w′2

3
δij

〉
(3.51)

PB = ρe

(
C2

e

3

)
ΠBij = ρe

(
CeiCej −

C2
e

3
δij

)
(3.52)

The effect of approximating the distribution function to be the sum of f0 and f1

is the neglect of the anisotropic tensors Π
e

and Π
B
. To describe anisotropic effects it

is necessary to include further terms in the cartesian tensor expansion. This is also

true of the transformed equations. In this case the bulk flow tensor is complicated by

the electron velocity being defined with respect to the ion velocity C.

Now that the effect that making the cartesian tensor expansion has on the moment

equations has been elucidated the effects of the new terms may be discussed. The

moments of the transformed f0 and f1 equations (3.23) and (3.29) are given below in

equations (3.53) - (3.55); a comparison of these with equations (3.44) - (3.46) show

the new terms introduced by hydrodynamic flows.

Zeroth Moment: Continuity equation.

∂ρe

∂t
+∇r · [ρe(Ce + C)] = 0 (3.53)

First Moment: Momentum equation.

∂

∂t
[ρe(Ce + C)] +∇rPe +∇r

(
ρeC

2
e

3

)
+∇r · (ρeCC) +

∇ · (ρeCeC) +
2

3
[Ce · (∇rC) + Ce∇·C] = ρe [a + (Ce + C)× ω] (3.54)

Second Moment: Energy equation.

∂EI

∂t
+∇r· (EIC〉) +

2EI

3
∇r·C +∇r·q = ρe

[(
a− DC

Dt

)
·C
]

(3.55)

Where EI is the kinetic energy in the ion’s rest frame, i.e.:

EI =
neme

2
〈w2〉 (3.56)

Note that the new terms are all those involving the ion-flow velocity C. A com-

parison of these moment equations with those derived from the transformed VFP
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equation (3.9) shows that the truncation of the Cartesian tensor expansion affects the

transformed moment equations in a more complicated way than those not including

ion-motion. As with the un-transformed equations, the zeroth and second moments

of equation (3.9) are identical to those of the transformed f0 and f1 equations. These

are given in equations (3.53) and (3.55). The momentum equation derived from (3.9)

is different and is given by:

∂

∂t
(ρeC

′
e) +∇r · Pe +∇r·(ρeC

′
eC

′
e) = ρe(a + C′

e × ω) (3.57)

Where C′
e = C + Ce. The difference between equations (3.54) and (3.57) results

from the neglect of the stress tensor – as in the un-transformed case. In the case

where the first moment of the transformed Vlasov equation is taken – resulting in

equation (3.57) – the bulk flow tensor appears in the term ∇r · (ρeC
′
eC

′
e). Comparing

this to equation (3.54) shows that the bulk flow terms do not combine as neatly as this

when the Cartesian tensor expansion is truncated. This is because certain terms are

neglected as in the un-transformed case. The bulk pressure tensor in the transformed

system may be expanded as:

ρeC
′
eC

′
e = neme (C + Ce) (C + Ce)

= neme (CeCe + CeC + CCe + CC) (3.58)

The first tensor relates only to the electrons and so one might expect the truncation

of the Cartesian tensor expansion to affect this in the same way as in the case with

no ion-motion, i.e.:

∇r · (ρeCeCe) = ∇r

(
ρeC

2
e

3

)
(3.59)

This is consistent with the result in equation (3.54). The Cartesian tensor expan-

sion should not effect the last tensor in equation (3.58), i.e. ρeCC, as this term does

not involve the electron velocity. The corresponding term is indeed seen in equation

(3.54). The remaining discrepancies between the first moment of the transformed f1

equation (3.54) and the transformed Vlasov equation (3.57) must be a result of terms

neglected in the two mixed tensors ρeCeC and ρeCCe. However, it is not clear how

the expansion modifies these tensors. Retaining f2 in the cartesian tensor expansion

would allow the inclusion of the missing anisotropic effects.



80 CHAPTER 3. ION HYDRODYNAMICS IN THE VFP EQUATION

! 

"f
0

"t
+
w

3
#
r
$ f
1

+C $ #
r
f
0
%
w

3

"f
0

"w
#
r
$C+

! 

1

3w
2

"

"w
w
2
a +C#$ %

"C

"t
% C & '

r( )C
( 

) * 
+ 

, - 
& f
1

. 
/ 
0 

1 
2 
3 

=
"f

0

"t

4 

5 
6 

7 

8 
9 
coll

! 

"f
1 j

"t
+ w

"f
0

"rj
+ # $ f

1[ ]
j
+ Ck

"f
1 j

"rk
% f

1k

"Ck

"rj
+
"f

0

"w
a j + C$#[ ]

j
%
"C j

"t
%Ck

"C j

"rk

& 
' 
( 

) 
* 
+ 

! 

"
w
2

3

#Ck

#rj

#

#w

f
1k

w

$ 

% 
& 

' 

( 
) +

#C j

#rk

#

#w

f
1k

w

$ 

% 
& 

' 

( 
) +

#Ck

#rk

#

#w

f
1 j

w

$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ =

#f
1 j

#t

$ 

% 
& 

' 

( 
) 
coll

1 2

4

3

5

6 7 98

10

Figure 3.4: The physical meaning of the terms in the transformed f0 and f1 equations
gleaned by taking moments.

3.4.3 The resulting physical insight into the new terms

The fluid equations (3.53)-(3.55) derived from the transformed f0 and f1 equations

were quoted without a detailed discussion of their derivation. This was in the interest

of brevity. A detailed discussion of the moments of each term in the f0 and f1 would

have elucidated which term is responsible for describing which physical effect. The

terms responsible for important physical effects are outlined in figure 3.4 and are

marked 1-10. Term 1 gives the term Ce · ∇rρe in the continuity equation and term

2 gives C · ∇rρe. These two terms together give advection of the electron density at

the average velocity in the lab frame C′
e = Ce + C. Term 3 gives the following term

in the energy equation: Pe∇r · C – i.e. compressional heating. Terms 4 and 5 give

the work done by the electric field on the ions, this is proportional to a ·C, the other

terms arise as corrections to the E-field. The C×ω term is the relativistic correction

to the E-field by defining it in the ion’s rest frame; ∂C/∂t and (C · ∇r)C account

for the acceleration of this frame. Similar explanations apply to the terms in the f1

equation. Terms 8 and 9 apply the same corrections to the electric field as those in

the f0 equation. In the momentum equation these terms give ρe(a + C′
e × ω), which

describe the forces from the (relativistically corrected) electric field and j×B. Term

6 describes pressure gradient acceleration (i.e. gives the term ∇rPe in the momentum

equation). Terms 7 and 10 contribute to the terms in the momentum equation in Ce

and C – the bulk flow terms.
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3.4.4 Ohm’s law with flows

As a final validation of the new equations Ohm’s law is derived including the effect

of hydrodynamic plasma flow. To aid comparison with the established result – given

in equation (2.29) – the derivation of Epperlein is followed [24]. The f1 equation can

be recast to be comparable to that used by Epperlein:

w∇f0 + ω × f1 −
∂f0

∂w
ā = −νeif1 −TC (3.60)

As was done by Epperlein, electron inertia has been neglected and the Lorentz

approximation has been made. TC is a correction introduced by ion motion and ā is

the electric field including hydrodynamic corrections.

TCj = Ck
∂f1j

∂rk

− f1k
∂Ck

∂rj

− w2

3

[
∂Ck

∂rj

∂

∂w

(
f1k

w

)
+
∂Cj

∂rk

∂

∂w

(
f1k

w

)
+
∂Ck

∂rk

∂

∂w

(
f1j

w

)]
(3.61)

ā = a−C× ω − ∂C

∂t
− (C · ∇)C

(3.62)

The isotropic part of the distribution function is assumed to be a Maxwellian:

f0 = fm = ne

(
me

2πTe

)3/2

exp

(
−mew

2

2Te

)
(3.63)

This must be substituted into equation (3.60). The following relations are re-

quired:

∂f0

∂rj

=

(
1

ne

∂ne

∂rj

− 3

2Te

∂Te

∂rj

+
mew

2

2T 2
e

∂Te

∂rj

)
fm (3.64)

∂f0

∂w
= −mew

Te

fm (3.65)

Substitution of these results into equation (3.60) yields:

−(A + B)wfm + ω × f1 = νeif1 + TC (3.66)

Where:

A =
∇fm

fm

B = − ā

fm

∂fm

∂w
(3.67)
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Terms in C2 and C · f1 are now neglected. This is because C << w and |f1| <<
fm. In appendix B this derivation is repeated including all terms. Under these

assumptions and writing the equations in terms of dimensionless parameters:

−(Ã + B̃)W 4Fm +W 3Ω× F1 = F1 (3.68)

Ãj =

(
Djne

ne

− 3

2

DjTe

Te

+W 2DjTe

Te

)
(3.69)

B̃j = εj − [Ω× C̃]j −
∂C̃

∂τ
(3.70)

The dimensionless parameters are:

W =
w

wT

D = λT∇ Ω =
ω

νT

F =
4πw3

T

ne

f

ε =
eE

mewTνT

C̃ =
C

wT

∂

∂τ
= τT

∂

∂t

Now wT represents the thermal speed in the (w, r, t) coordinate system; note that

wT = vT = (2kbTe/me)
1/2. Dropping the tildes for brevity (whilst noting that the

variables are in dimensionless form from now on) and using the fact that Ω = (0, 0,Ω)

the following equations are derived for the components of F1:

Fx =
Fm

1 +W 6Ω2

[
W 7Ω (Ay +By)−W 4 (Ax +Bx)

]
(3.71)

Fy = − Fm

1 +W 6Ω2

[
W 4 (Ay +By) +W 7Ω (Ax +Bx)

]
(3.72)

Taking the first moment of these equations – i.e.
∫
w...d3w – yields:

ε− ∂C

∂τ
+ C× Ω = −DPe

2Pe

+ J× Ω +
4

3
√
π
αc · J− βc · DTe

2Te

(3.73)

This is as expected. The new terms resulting from ion motion are collected on the

left-hand side and act to modify the electric field because of hydrodynamic effects.
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3.5 The ion model

The effects of including ion flow on the electron model have been discussed in depth.

The question of how to model the ions hydrodynamically remains – C must be sup-

plied to the new f0 and f1 equations. Consider the two-fluid equations, which describe

the motion of separate ion and electron fluids.

mini
DiCi

Dt
= niZe (E + Ci ×B)−∇Pi + ∆pie (3.74)

mene
DeCe

Dt
= 0 = −nee (E + Ce ×B)−∇Pe + ∆pei (3.75)

Di/e

Dt
=

∂

∂t
+ Ci/e∇·

The average ion number density is given by ni, the ion velocity by Ci and the ion

pressure by Pi. ∆pαβ describes the rate of exchange of momentum between species

α and species β due to collisions between these species. These changes are related

by conservation of momentum (∆pei = −∆pie). Electron inertia may be neglected

as it is much smaller than the ion inertia. Adding equation (3.74) to equation (3.75)

yields:

ρi
DiCi

Dt
= (Zni − ne)eE + j×B−∇(Pe + Pi) (3.76)

j = ZnieCi − neeCe

Here ρi is the ion mass density. Next substitute for j, using Ampere’s law:

j =
1

µ0

∇×B− ε0
∂E

∂t

This yields:

ρ
DC

Dt
= (Zni − ne)eE +

[
1

µ0

(∇×B)− ε0
∂E

∂t

]
×B−∇(Pe + Pi) (3.77)

Equation (3.77) is the fluid momentum equation for the plasma. The ion inertia is

dominant, so the ion density and velocity are equal to the total plasma density (ρ) and

bulk velocity (C). Consider the charge separation electric field term. The time-scale

over which electric fields due to charge separation will be important is the plasma
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wave period. This is the time-scale over which electrons in the plasma can shield out

charge imbalances. IMPACT typically has to resolve time-scales of the order of the

electron-ion collision time to get an accurate solution (although one could make the

time-step larger than this). The plasmas discussed here typically have a ratio of the

plasma frequency to the collision frequency which is large. This is required by the fact

that the Debye sphere must contain a large number of electrons. Therefore charge

separation effects may be neglected if the simulation time-step is not much smaller

than the collision frequency, i.e. is much larger than the plasma period. In this case

quasi-neutrality can be assumed, i.e. Zni ≈ ne; this does not mean that there is no

charge separation but because large charge imbalances tend to be neutralised on a

short time-scale, there are only tiny charge imbalances. Thus the plasma does contain

electric fields, these are given by Ohm’s law.

Consider the displacement current term; this can be done by substituting the

electric field from Ohm’s law into Ampere-Maxwell’s law. Letting the electric field

vary harmonically in time, i.e.:

E = E0e
iωt (3.78)

Also, assuming that Ohm’s law is given by the simplified form:

E0 = ηj−C×B +
η

νei

∂j

∂t
+

mi

Zeρ
[j×B−∇(Pe + Pi)] (3.79)

Here, η is the resistivity of the plasma. Substitution of equation (3.78) into equa-

tion (3.79) gives the following equation – which is most revealing when expressed in

normalised units (the normalisations are detailed in section 4.2):

∇̃×ω̃ =
ωpe

νn

vn

c
j̃+
(vn

c

)2
(
ω

νn

)2
η̃

ν̃
j̃+i

(vn

c

)2 ω

νn

[
η̃j̃− 1

ñe

ω̃ × (̃j− ñeC̃)− 1

2ñe

∇̃(P̃e + P̃i)

]
(3.80)

The variables νn and vn are the normalising collision frequency and thermal speed.

Assuming that the normalised variables are not very large – this will be borne out by

the simulation results presented in chapter 5 – then the following conditions must be

satisfied if the displacement current is to be neglected:

ωpe

ω

c

vn

>> 1
ωpe

ω

c

vn

νn

ω
>> 1 (3.81)

These conditions are generally satisfied – provided phenomena which are slowly
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varying with respect to the plasma period (i.e. ω << ωpe) are being considered and

the plasma is highly collisional (ω << νn). The ions are cold, as discussed in section

3.1.3, so the ion temperature is neglected.

The model developed here is effectively a single fluid model. As a consequence

of quasi-neutrality the electron and ion densities are related. These densities can be

represented by a single fluid density ρ. The neglect of electron inertia means that

the ion velocity is equal to the single fluid velocity C. This is accurate to the order

of me/mi. Even though the hydrodynamic plasma motion is described by a single

velocity C, the average velocities of the electrons and ions need not be equal. This can

be seen from the condition imposed on the current by quasi-neutrality, i.e. ∇ · j = 0

but j 6= 0. This means that the electron currents are allowed to circulate, allowing

magnetic fields.

The simplified equation of motion for the ions, where the magnetic filed field is

perpendicular to gradients, is:

∂(ρC)

∂t
+∇r ·

[
ρiCC +

(
Pe +

B2

2µ0

)
I

]
= 0 (3.82)

ρ =
nemi

Z
Pe = (γ − 1)ρeεe

Here εe is the electron’s average internal energy per unit mass. The electron

density, current, electric field, magnetic field and electron pressure are all provided

by IMPACT. The procedure by which the hybrid VFP-hydrodynamic code will be

designed is illustrated in figure 3.5. A more complete ion model including charge

separation and ion temperature is described in appendix C.
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IMPACT

Hydro Code

Solves transformed VFP equation.
Distribution function integrated to
give ‘macroscopic’ electron
properties (ne,Te,j,q,etc).

Solves ion fluid momentum
equation.
Gives fluid flow velocity C.

ne, Pe, E, BC

Figure 3.5: An illustration of the coupling procedure between IMPACT and the fluid
algorithm. The arrows denote how quantities need to be passed between the codes.



Chapter 4

Numerical solution of the new

model

4.1 Background – VFP codes

4.1.1 Explicit versus implicit codes

Non-classical analytical theories are only valid in very specific circumstances (for

example in the description of small amplitude waves). To describe more general

situations one must resort to solving the VFP equation numerically. In fact many of

the simulation results described in section 2.4.3 were obtained using VFP codes. The

VFP equation may be solved implicitly or explicitly, to detail the difference between

these approaches consider solving the following 1-D partial differential equation:

∂α

∂t
= −∂F

∂x
(4.1)

Incidentally, this equation describes the flux of α (represented by F ) in 1-D. In

order to solve this equation numerically its finite difference form must be specified.

Consider the way that time is discretised. The left hand side may be approximated

by Euler’s method:

αn+1
j = αn

j −∆t

(
∂F

∂x

)n∗

j

(4.2)

The time tn is defined as that after which n (uniformly spaced) time-steps have

occurred, i.e. tn = n∆t. The derivative of the flux must be evaluated at the spatial

point xj and at time tn∗, where this lies in between times tn and tn+1. A fully explicit

scheme is one where n∗ is chosen to be the time at which the quantities are known

87
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(tn), a fully implicit scheme is where tn∗ is the time to which the solution is being

advanced (tn+1). Using an explicit scheme imposes a constraint on how large the time-

step can be. Information cannot cross more than a single cell in one time-step, if this

occurs the numerical solution is unstable and will produce un-physical results. This

condition is known as the Courant-Friedrichs-Lewy (CFL) condition [83]. An implicit

scheme on the other-hand is unconditionally stable (although, if a very large time-step

is chosen accuracy is compromised). This means that to simulate the same length of

time an implicit code generally needs fewer time-steps, so is the advantageous method

to use for long-time simulations.

If the spatial derivative in equation (4.2) is evaluated by centre-differencing and

the time discretisation is implicit, then the following equation is arrived at:

αn+1
j +

∆t

2∆x

(
F n+1

j+1 − F n+1
j−1

)
= αn

j (4.3)

The spatial grid-cell size is ∆x. In general F is a function of α. Therefore a matrix

can be formed for equations like (4.3) for all the cells in the system. The equation

in this case will be tridiagonal as F and so α are required at xi−1, xi and xi+1 in

equation (4.3). If the partial differential equation to be solved were more complicated

than (4.1), then the matrix would take a more complicated form, but would be likely

to be sparse (less non-zero than zero elements). For completeness, the corresponding

explicit differencing scheme is:

αn+1
j = αn

j −
∆t

2∆x
(F n

j+1 − F n
j−1) (4.4)

Finally, the solution of an equation such as the one below (the non-linear diffusion

equation) will also be illustrative.

∂α

∂t
=

∂

∂x

[
D(α)

∂α

∂x

]
(4.5)

Here α is a generic physical quantity and D is an arbitrary function of α. Treating

this equation implicitly yields:

αn+1
j = αn

j + ∆t

[
∂

∂x

(
D
∂α

∂x

)]n+1

j

(4.6)

This presents a problem, both of the unknowns Dn+1 and αn+1 cannot be solved

for simultaneously. In this case D may be treated as a non-linear coefficient, i.e.:
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αn+1,l+1
j = αn

j + ∆t

[
∂

∂x

(
Dn+1,l∂α

n+1,l+1

∂x

)]
j

(4.7)

Where Dn+1,l is initially Dn. Equation (4.7) may then be solved for αn+1,l+1. This

can then be used to calculate Dn+1,l+1, which is then put into equation (4.7) as Dn+1,l

and the solution is computed again. This procedure is iterated until the difference in

αn+1,l+1 between two iterations is below a specified tolerance.

4.1.2 The development of implicit VFP codes

The most important implicit codes to discuss here are SPARK and IMPACT. Many

other VFP codes (solving the VFP equation and Maxwell’s equations) have been

developed – the first for simulating LPI being published in 1981 by Bell, Evans &

Nicholas [45, 47, 75, 84]. Of all the other codes the work of Kho & Haines in inves-

tigating the importance of the Nernst effect in advecting the magnetic field from an

ablating plasma should be mentioned [85]. Their code was one-dimensional (in con-

figuration space) and so did not include the self-generation of magnetic fields, but

could look at the dynamics of an imposed field. The ions were modelled as a static

neutralising background. They found that the rate of Nernst advection was strongly

affected by non-locality.

The two-dimensional (in space) VFP code SPARK [86, 87] was developed by Ep-

perlein, Rickard & Bell in 1988. This code used the diffusive approximation. Hy-

drodynamic ion response was included in 2D as was IB laser absorption. The VFP

equation was solved implicitly to allow the authors to study long time-scale effects.

Note that the code was not fully implicit; the ‘Alternating Direction Implicit’ (ADI)

method was used. Under this scheme the spatial derivatives are treated fully implic-

itly and the velocity derivatives fully explicitly for one time step, this is then switched

for the next time-step. This code did not include the effects of magnetic fields. The

first 2D implicit VFP code to include magnetic fields self-consistently was IMPACT

(2002) [22,63]. Here, the affects of electron-electron collisions were neglected in the f1

equation and those of electron-ion collisions were neglected in the f0 equation. The

ions were treated as a static neutralising background and IB laser heating was mod-

elled via the Langdon operator [43]. The equations were solved on a 2D cartesian

spatial grid and the magnetic field was constrained to always be perpendicular to this

plane (this code was designed to study transport across the B-field).

The increment to VFP modelling which has already been mentioned and will

provide the subject matter for this thesis is the inclusion of hydrodynamic plasma
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motion into IMPACT – thus providing the first 2D VFP code with self-consistent

magnetic fields, ion motion and the ability to run over long time scales. IMPACT

solves the f0 and f1 equations by treating the distribution function components and

the electric field implicitly. The magnetic field is treated explicitly [22]. Such a choice

allows one to use a large time-step. To get an accurate solution the electron-ion

collision time of the thermal electrons (or the shortest time-scale of the phenomena of

interest) should be resolved. The long-pulse experiments simulated here have time-

scales of the order of a few nanoseconds. The problem with using purely explicit

differencing to model such experiments is that they require a time-step which is too

small. This can be seen by noting that in any distribution there will always be a

small number of fast particles in the tail moving with speeds close to the speed of

light. The CFL condition then limits the time-step of an explicit code to be less

than the speed of light transit time for a grid-cell – this is generally much smaller

than an electron-ion collision time (and very much smaller than 1ns). Additionally, a

fully implicit treatment of the electric field increased the robustness of the code and

ensured that the rate of change of the magnetic field was stable.

4.2 Normalising the new equations

IMPACT uses the following system of normalisations:

w̃ =
w

wn

C̃ =
C

wn

t̃ =
t

τn
r̃ =

r

λn

∂

∂w̃
= wn

∂

∂w

∂

∂t̃
= τn

∂

∂t
∇̃r = λn∇r

f̃p =
fpw

3
n

ne0

ã =
aτ 2

n

λn

ω̃ = ωτn Z̃ =
Z

Z0

(4.8)

The normalising quantities refer to a reference plasma; such a plasma is homoge-

neous and in a steady state. The number density of electrons in the reference plasma

is ne0. The electron-ion mean free path of thermal electrons (electrons moving with

speed wn) in this plasma is given by λn – the corresponding collision time is given

by τn (as given in equation (2.25) with v replaced by wn). The ionic charge of the

reference plasma is Z0, when the un-normalised ionic charge of the plasma is being

discussed the symbol Ẑ will be used. Note that the temperature is normalised (Tn)

at twice the ‘background’ temperature (Te0), these temperatures are defined as:
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wn =

(
2kbTe0

me

)1/2

Tn = 2Te0 (4.9)

On applying these normalisations to the f0 and f1 equations, and canceling com-

mon factors, one obtains:

∂f̃0

∂t̃
+
w̃

3
∇̃r · f̃1 + C̃ · ∇̃rf̃0 −

w̃

3

∂f̃0

∂w̃
∇̃r · C̃ +

1

3w̃2

∂

∂w̃

{
w̃2

[
ã + C̃× ω̃ − ∂C̃

∂t̃
− (C̃ · ∇̃r)C̃

]
· f̃1

}
= collisional terms (4.10)

∂f̃1j

∂t̃
+ C̃i

∂f̃1j

∂r̃i

+ w̃
∂f̃0

∂r̃j

+ εjikω̃if̃1k +
∂f̃0

∂w̃

(
ãj + εjikC̃iω̃k −

∂C̃j

∂t̃
− C̃i

∂C̃j

∂r̃i

)
−

f̃1i
∂C̃i

∂r̃j

− w̃2

3

[
∂C̃i

∂r̃j

∂

∂w̃

(
f̃1i

w̃

)
+
∂C̃j

∂r̃i

∂

∂w̃

(
f̃1i

w̃

)
+
∂C̃i

∂r̃i

∂

∂w̃

(
f̃1j

w̃

)]
= collisional terms

(4.11)

Note that for the remainder of this chapter normalised quantities will be used –

the tildes are dropped for brevity. When any variables which are not normalised are

introduced this will be clearly stated.

4.3 The finite difference equations

In this section the considerations involved in the numerical implementation of the

equations will be discussed. It is first necessary to talk about the numerical scheme

used in IMPACT without ion motion – this will show where the code requires aug-

mentation.

4.3.1 The numerics of IMPACT

IMPACT solves the following normalised forms of thef0 and f1 equations:

∂f0

∂t
+
w

3
∇r · f1 −

1

3w2

∂

∂w

(
w2a · f1

)
= Cee0 +H (4.12)

∂f1
∂t

+ w∇f0 − E
∂f0

∂w
− ω × f1 = −Ẑ

2ni

w3
f1 (4.13)

Where Cee0 is the normalised electron-electron collision operator and is given by:
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Cee0 =
1

Ẑw2

∂

∂w

[
C(f0)f0 +D(f0)

∂f0

∂w

]
(4.14)

C(w, r, t) = 4π

∫ w

0

f0(u, r, t)u
2du (4.15)

D(w, r, t) =
4π

w

∫ w

0

u2

[∫ ∞

u

f0(y, r, t)ydy

]
du (4.16)

H is responsible for laser heating (discussed in section 4.3.5). This laser heating

term is present only in the f0 equation as this equation determines the energy of a

region of plasma. The finite-differencing scheme employed by IMPACT, to solve the

f0 and f1 equations, is:

fn+1,l+1
0 − fn

0

∆t
+
w

3
∇·fn+1,l+1

1 − 1

3w2

∂

∂w

(
w2En+1 · fn+1,l

1

)
= [Cee0 +H]n+1 (4.17)

fn+1,l+1
1 − fn

1

∆t
+ w∇fn+1,l+1

0 − En+1∂f
n+1,l
0

∂w
− ωn × fn+1,l+1

1 = −Ẑ
2ni

w3
fn+1,l+1
1 (4.18)

∇× En+1 = −
(
ωn+1 − ωn

∆t

)
(4.19)

From these equations it is clear that the electric field is treated implicitly and

f0 is a lagged non-linear coefficient (note that l denotes the time-step within an

iteration). The computational domain is two-dimensional in configuration space and

one-dimensional in velocity space – a point on this grid is represented by (xi, yj, wk).

The z-direction is an ignorable coordinate meaning that there are no gradients of any

physical variables in this direction. f1z may also be ignored – if the it is initially zero,

and there are no gradients in the z-direction, it is always zero. Note that this is only

true if the magnetic field only has a z-component. Making fn+1,l+1
1 the subject of

equation (4.18) yields:
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(f b
1r)

n+1,l+1
ijk =

{
χn

k

∑
q=x,y

(δrq + εrzqω
nτ ′k)

[
−wk(∇q)

n+1,l+1
k + En+1

q

(
∂f0

∂w

)n+1,l

k

+
(f1q)

n
k

∆t

]}b

ij

(4.20)

χb,n
ijk =

τ ′k
1 + (ωb,n

ij τ
′
k)

2
τ ′k =

[
1

∆t
+

1

τei(wk)

]
(4.21)

Here f b
1r is the r-component of f1 on the boundary b of the spatial grid-cell.

τei(wk) = w3
k/Ẑ

2ni is the electron-ion scattering time for an electron traveling at

speed wk; δqr is the Kronecker delta and εqrz is the Levi-Civita symbol. The current-

constraint is also used.

jn+1,l+1 = −4π

3

∫ ∞

0

fn+1,l+1
1 w3dw =

(
c

ωpeλn

)2

∇× ωn (4.22)

This ensures that the current produced by the code is consistent with Ampere’s

law (ignoring the displacement current). ωpe is the plasma frequency of the reference

plasma. In finite-difference form equation (4.22) becomes:

[
(∇× ω)b

r

]n
ij

= εrqz(∇qωz)
b,n
ij = −4π

(
ωpeλn

c

)2 nv∑
k=1

(f b
1r)

n+1
ijk v

3
k∆vk (4.23)

Where ω = (0, 0, ωz) has been used. The next step is to eliminate f b
1r from

equations (4.17) and (4.23). This is a complicated procedure and in the interests of

brevity will not be outlined; the result are the equations which form the matrix solved

by IMPACT.

Gp,q,s (xi, yj, wk) f0

(
xi+p, yj+q, wk+s, t

n+1
)

+

Hr,b,m,n (xi, yj, wk)E
b
r

(
xi+l, yj+m, t

n+1
)

= C (xi, yj, wk)

(4.24)

Mc,r,u (r, b, xi, yj) f0

(
xi+c, yj+d, wu, t

n+1
)

+

Ng (r, b, xi, yj)E
b
g

(
xi, yj, t

n+1
)

= D (r, b, xi, yj) (4.25)

Note that summation is implied over repeated indices. Equation (4.24) corre-
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Figure 4.1: A diagram showing the matrix equation solved by IMPACT.
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sponds to the finite-difference approximation of the f0 and f1 equations and (4.25) to

the current constraint. G,H,M and N are the coefficients pre-multiplying f0 and E

in these equations. The labels p, q, s,m, n, c, d are all finite difference offsets running

over the following ranges:

c, d, p, q, s = {−1, 0, 1} m,n = {−1, 0} (4.26)

The indices r, b and g refer to which component is being discussed. The index u

affects integration over velocity.

r, b, g = {x, y} u = {1, . . . , nv} (4.27)

The matrix equation is illustrated for a 4 × 4 × 4 grid (nx × ny × nw) in figure

4.1. The matrix elements which are shaded are those that are non-zero. The matrix

is rather complex, fortunately the constant vector containing C and D is all that

needs to be modified to include hydrodynamic ion-motion. This is a consequence of

the choice to treat the new terms explicitly (as justified in the next section). This

matrix is solved by the stabilised biconjugate gradient method [88]. The details of

this method are not important here, however one should note that this method solves

the matrix iteratively to a specified tolerance. So there are two tolerances to specify,

one for the non-linear iteration in equation (4.17) and the other for the matrix solver.

Some features of the matrix should be noted. Each quadrant highlighted in figure

4.1 is labeled with the part of equation (4.17) or (4.23) to which it corresponds. Figure

4.2 shows a simplified version of the matrix. The top diagram corresponds to the top

part of the full matrix in figure 4.1; the bottom diagram in figure 4.2 corresponds

to the top part of the current constraint. Each row of the matrix corresponds to

one of the nd equations given in equations (4.24) and (4.25) – note that nd = nc +

2[2(nx × ny) + nx + ny] and nc = nx × ny × nw (nc corresponds to the number of

cell-centres, the additional term is a result of the fact that the electric field array has

ghost cells outside the domain, as well as two components and being defined on two

sets of boundaries). Each row of the matrix is represented pictorially by the smallest

shaded square in figure 4.2, this is highlighted by the red line in the figure. The most

coarse cells represent the x-coordinate, then the y-coordinate and w-coordinate are

represented by finer divisions. As an example consider the black shaded square in the

top-left of figure 4.2; this corresponds to coordinates (ix = 1, iy = 2, iw = 2). For

the electric field and the current the matrix also divided into sections representing

these quantities on the x cell-boundaries (Ex, jx) and the y cell-boundaries (Ey, jy).
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ix

iy

iw

ExEy

Ej

Ef0

jx

jy

Figure 4.2: A simplified explanation of the matrix.

The black shaded areas are always present, the grey are only present for periodic

boundary conditions.

4.3.2 The f0 equation

It has been shown where the new terms must be inserted into the matrix equation,

now these terms must be implemented numerically. On simple rearrangement, the

new f0 equation (3.23) is given by:

∂f0

∂t
+
w

3
∇r · f1 +

1

3w2

(
w2a · f1

)
+

C · ∇rf0 −
w

3

∂f0

∂w
∇r ·C +

1

3w2

∂

∂w

{
w2

[
C× ω − ∂C

∂t
− (C · ∇r)C)

]
· f1
}

=

(
∂f0

∂t

)
coll

(4.28)

Here the old terms have been separated from the new terms. As the new terms

are treated explicitly they do not modify the form of the matrix. Note that it is

possible to treat the new terms in this way as they are expected to evolve on the

hydrodynamic time-scale, which is much longer than the electron-ion collision time,

negating any CFL considerations. Note that this assumes that the hydrodynamic
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motion is sonic or sub-sonic: in this case the ratio of the hydrodynamic speed to the

thermal speed is at most cs/vT = (me/mi)
1/2 (cs is the ion sound speed). The finite-

difference approximations to the the new terms are taken in the most straightforward

way possible.

For brevity, define:

a′ = C× ω − ∂C

∂t
− (C.∇r)C (4.29)

The finite difference forms of each of the new terms are:

[C · ∇rf0]
n
ijk = (Cx)

n
ij

[
(f0)i+1 − (f0)i−1

∆xi+1/2 + ∆xi−1/2

]n

jk

+ (Cy)
n
ij

[
(f0)j+1 − (f0)j−1

∆yj+1/2 + ∆yj−1/2

]n

ik

(4.30)[
w

3

∂f0

∂w
∇r ·C

]n

ijk

=
wk

3

[
(f0)k+1 − (f0)k−1

∆wk+1/2 + ∆wk−1/2

]n

ij

×{[
Cx,i+1 − Cx,i−1

∆xi+1/2 + ∆xi−1/2

]
jk

+

[
Cy,j+1 − Cy,j−1

∆yj+1/2 + ∆yj−1/2

]n

ik

}
(4.31)[

1

3w2

∂

∂w

(
w2a′ · f1

)]n

ijk

=
(a′x)

n
ij

3(wn
k )2

[
w2

k+1/2(f1x)k+1 − w2
k−1/2(f1x)k

∆wk

]n

ij

+
(a′y)

n
ij

3(wn
k )2

[
w2

k+1/2(f1y)k+1 − w2
k−1/2(f1y)k

∆wk

]n

ij

(4.32)

It is important to note that as a result of using the simplest differencing schemes

possible the above are not conservative in mass or energy. However exact conservation

is not necessary; the code need only be conservative to a specified level of accuracy.

The discrepancy in the conservation is expected to be dependent on the Courant

number – how many cells the hydrodynamic motion is expected to move across in a

single time-step. This should be small as the hydrodynamic motion is expected to be

slow (provided it is sub-sonic). Conservation will be discussed in more detail when

testing the algorithm.

Note that the differencing of the advective term in equation (4.30) would be un-

conditionally unstable if this term were solved in isolation; however, the coupling this

term to IMPACT has a stabilising effect. This mitigates the instability in the simula-
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tion results presented in this chapter and in chapters 5-7; they show no evidence of

a hydrodynamic instability. This is thought to be because the hydrodynamics varies

very slowly in every case, in order to simulate shocks a better scheme would be re-

quired. This differencing scheme has the advantage of being accurate to second-order.

4.3.3 The f1 equation

The new f1 equation is given by:

∂f1j

∂t
+ w

∂f0

∂rj

+
∂f0

∂w
aj + [ω × f1]j +

∂f0

∂w
[C× ω]j −

∂f0

∂w

∂Cj

∂t
+ Ck

∂f1j

∂rk

− f1k
∂Ck

∂rj

− ∂f0

∂w
Ck
∂Cj

∂rk

−

w2

3

[
∂Ck

∂rj

∂

∂w

(
f1k

w

)
+
∂Cj

∂rk

∂

∂w

(
f1k

w

)
+
∂Ck

∂rk

∂

∂w

(
f1j

w

)]
=

(
∂f1j

∂t

)
coll

(4.33)

Again, the most simple finite difference approximations are used:

(f1x,i+1/2)
n+1
jk = (f1x,i+1/2)

n
jk + ∆t(a′x)

n
ij

[
(f0)k+1 − (f0)k−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

−∆t[(C · ∇r)f1r]
n
i+1/2,jk

+∆t(f1x)
n
i+1/2,jk

[
Cx.i+1 − Cx,i

∆xi

]n

j

+ ∆t(f1y)
n
i+1/2,jk

[
Cy,j+1/2 − Cy,j−1/2

∆yj+1/2 + ∆yj−1/2

]n

i+1/2

+
∆tw2

k

3

[
Cx,i+1 − Cx,i

∆xi

]n

j

[
f1x/wk+1 − f1x/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

+
∆tw2

k

3

[
Cy,i+1 − Cy,i

∆xi

]n

j

[
f1y/wk+1 − f1y/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

+
∆tw2

k

3

[
Cx,i+1 − Cx,i

∆xi

]n

j

[
f1x/wk+1 − f1x/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

+
∆tw2

k

3

[
Cx,j+1/2 − Cx,j−1/2

∆yj+1/2 + ∆yj−1/2

]n

i+1/2

[
f1y/wk+1 − f1y/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j
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+
∆tw2

k

3

[
Cx,i+1 − Cx,i

∆xi

]n

j

[
f1x/wk+1 − f1x/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

+
∆tw2

k

3

[
Cy,j+1/2 − Cy,j−1/2

∆yj+1/2 + ∆yj−1/2

]n

i+1/2

[
f1x/wk+1 − f1x/wk−1

∆wk+1/2 + ∆wk−1/2

]n

i+1/2,j

(4.34)

Note that the convective derivative is differenced using a centred method – as

in the f0 equation. The above differencing scheme is certainly not conservative in

momentum. Once again the errors will be small in the low Courant number limit.

4.3.4 The ion model

Finally consider the finite difference approximation to the ion’s equation of motion

(3.82). On rearrangement (employing the continuity equation), the x-component of

this equation is expressed in normalised form as:

ne
∂Cx

∂t
= −neCx

∂Cx

∂x
− neCy

∂Cx

∂y
− ∂

∂x

(
a1Pe +

a2B
2

2

)
(4.35)

A similar equation holds for the y-momentum. Note that the non-conservative

form of this equation is used; this is consistent with the corrections to the f0 and f1

equations not being differenced conservatively. The dimensionless constants a1 and

a2 are given by:

a1 =
Ẑme

mi

a2 =
Ẑme

mi

(
νei

ωpe

c

wn

)2

(4.36)

The flow velocity will be updated in two stages. Firstly the effects of thermal and

magnetic pressure are accounted for:

(C∗
x)n

i,j = (Cx)
n
i,j −∆t

[
(PT )i+1 − (PT )i−1

∆xi+1/2 + ∆xi−1/2

]n

j

(4.37)

Where PT is the ‘total’ pressure – including magnetic pressure. Next the plasma

is advected with the bulk flow velocity:

(Cx)
n+1
i,j = (Cx)

n∗
i,j −∆t

[
(Cx)i

(Cx)i+1 − (Cx)i−1

∆xi+1/2 + ∆xi−1/2

]n∗

j

−∆t

[
(Cy)j

(Cx)j+1 − (Cx)j−1

∆yj+1/2 + ∆yj−1/2

]n∗

i

(4.38)

This simple finite difference scheme is based on a centre-differencing scheme and
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as a result will fail in the presence of large density and velocity gradients – for example

if shocks occur in the simulation. A more robust model would be needed in this case.

Such a scheme is described in appendix D.

4.3.5 The laser – inverse bremsstrahlung and Maxwellian

heating

Inverse bremsstrahlung heating is the most important method of laser absorption at

the intensities that will be simulated with the new code – as discussed in section 2.1.

In IMPACT this is treated using the Langdon operator [43, 89]. In normalised units

this is given by: (
∂f0

∂t

)
IB

=
Z2ni

w2

∂

∂w

(
v2

oscg(w)

6w

∂f0

∂w

)
(4.39)

The (normalised) electron’s quiver velocity in the laser field is given by v2
osc, this

and the function g(w) are given by:

v2
osc =

0.091

α

(
Iλ2

0

1015Wcm−2µm2

)(
Te0

keV

)−1

(4.40)

g(w) =

[
1 +

(
Z2ni

ω0w3

)2
]−1

(4.41)

The variables on the right-hand side of equation (4.40) are not in normalised units.

The quantity α takes the value of 1/2 if the laser light is circularly polarised or 1 if

it is linearly polarised. The laser intensity is given by I and its wavelength by λ0. ω0

is the normalised laser frequency, i.e.:

ω0 =
0.6(Te0/eV )3/2

(λ0/µm)(ni/1021cm−3)Z2
0 lnΛei

(4.42)

It is possible to calculate the rate at which the plasma heats up due to inverse

bremsstrahlung. Taking the second moment of equation (4.39) yields:

∂

∂t
(neTe)IB =

4πZ2niv
2
oscf0|w=0

9
(4.43)

Langdon showed that IB heating causes the isotropic part of the distribution

function f0 to tend to a Langdon distribution (f0 ∝ e−v5
) [43]. IMPACT also has

the ability to heat the plasma but have f0 remain Maxwellian – this is useful to
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disentangle the effects that IB and non-locality have on distorting the distribution

function. The operator used in the f0 equation to give this ‘Maxwellian heating’

(MH) is [89]: (
∂f0

∂t

)
MH

=
1

Ẑw2

∂

∂w

(
D0w

2∂f0

∂w

)
(4.44)

D0 is the arbitrary constant which determines the heating rate. The form of this

operator is explained in appendix E. Taking the energy moment of equation (4.44)

yields an expression for the rate of increase in energy density due to Maxwellian

heating. (
∂Te

∂t

)
MH

=
D0

Ẑ
(4.45)

Note that the rate of Maxwellian heating is constant – compared to IB whose

rate depends on the f0 at w = 0 which decreases with increasing temperature. Note

that this is easily understood by considering the case where f0 is a Maxwellian:

fM |w=0 ∝ T
−3/2
e .

4.4 Testing the code

To test the code the simplest linear solution involving ion-hydrodynamics and B-fields

will be simulated: adiabatic magnetosonic waves. This will prove to be surprisingly

difficult. The problem arises because IMPACT is not a magnetohydrodynamics solver

and as such is not designed to work well in the regime of adiabatic hydrodynamic

waves – it is designed to study thermal conduction. To understand how to run the code

in the adiabatic regime a discussion of MHD in the presence of thermal conduction

and Ohmic heating is required – i.e. resistive MHD. At the outset it is important to

note that this test is adequate enough to trust the results presented in the remaining

chapters, but that additional tests would be useful. The magnetosonic wave tests the

effects the new terms 2, 3, 7, 8 and 9 (in figure 3.4) on linear wave propagation. The

non-linear effects of these terms and their effects on transport are not tested. Testing

such effects is left as further work. Note that the transport and IB have been tested

in IMPACT without hydrodynamics.

Consider the equations of resistive MHD – in un-normalised units and in the

one-dimensional geometry shown below:
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Figure 4.3: A diagram of the 1D MHD system considered here.

∂ρ

∂t
+

∂

∂x
(ρC) = 0 (4.46)

∂(ρC)

∂t
+

∂

∂x

(
ρC2 + Pe +

B2

2µ0

)
= 0 (4.47)

∂(ρεe)

∂t
+

∂

∂x
(ρεeC) + Pe

∂C

∂x
+

∂

∂x

(
κ⊥
∂(kbT )

∂x

)
− α⊥j

2 = 0 (4.48)

∂B

∂t
+

∂

∂x
(BC) = 0 (4.49)

Pe = (γ − 1)ρεe (4.50)

The variable εe is the electron’s internal energy per unit mass. In the equation

of state the gas constant (γ) is set to 5/3. To examine the propagation of small

amplitude waves the MHD equations given above must be linearised. The physical

variables (B,C,ρ,εe,T ) are given by a background value α0 plus a small amplitude

harmonic perturbation (with amplitude α1A).

α(x, t) = α0 + α1Ae
i(kx−ωt) Where: α1A << α0

On treating the physical variables in this way, the following dispersion relation is

derived (in normalised units):
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ω3

k3
=

(
γa1P0

ρ0

+
a2B

2
0

ρ0

)
ω

k
− iβk

(
ω2

k2
− a1P0

ρ0

− a2B
2
0

ρ0

)
(4.51)

kβ =
4π(γ − 1)κ‖mi

ρ
1/2
0 λpa

1/2
2 B3

0

(4.52)

Cm is the normalised magnetosonic speed and is given by:

C2
m =

a1γP0

ρ0

+ a2
B2

0

ρ0

(4.53)

For simplicity, the adiabatic limit will be simulated. The condition for this to

be so is that the second term on the right-hand side of equation (4.51) – which is

responsible for damping the wave – is negligible, i.e.:

kβ

Cm

=
4π(γ − 1)κ⊥mi

ρ
1/2
0 λpa

1/2
2 B3

0Cm

<< 1 (4.54)

To make this term small there must be a large background magnetic field and a

long wavelength perturbation (λp). To get undamped propagation this parameter is

set to be to be of order of 10−3. This is achieved with the following set of physical

parameters:

ρ0 = 1 P0 = 1 B0 = 10 ωpe/νei = 40 c/vt = 50 (4.55)

There is further significance to this choice of parameters. This becomes clear on

consideration of the (normalised) internal energy equation.

ρ

(
∂εe
∂t

+ C
∂εe
∂x

)
+ P

∂C

∂x
+

∂

∂x

(
κ
∂T

∂x

)
− α⊥ |∇ ×B|2

(
c/vt

ωpe/νei

)2

= 0 (4.56)

The test runs will be over a spatial scale of 1000λei and a time-scale of 5000τei;

in this time the waves will be made to cycle once through the system. This is only

possible if the magnetosonic speed is sufficiently high. This is the case for the pa-

rameters chosen in equation (4.55). It will simplify the analysis considerably if the

effects of Ohmic heating can be ignored – these are described by the final term in

the energy equation. This term is proportional to precisely the term which was to

be greater than unity in order to get the waves to move at a measurable velocity. To

be able to neglect non-linear Ohmic heating effects we would want this term to be
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Figure 4.4: Magnetosonic waves are simulated correctly with the new code. Shown here are
three ‘snapshots’ of the wave’s density profile (the wave is moving from left to right). The
numbers in the legend refer to the time (normalised to τn) at which these ‘snapshots’ were
taken.

small. Fortunately IMPACT has the facility to ‘turn off’ Ohmic heating – doing this

prevents non-linear heating effects becoming important whilst allowing the waves to

propagate a measurable distance.

4.5 Test results – the propagation of a magne-

tosonic wave

Figure 4.4 shows that that the new code does indeed simulate magnetosonic waves

correctly. The speed of such waves is given by the equation for the normalised mag-

netosonic speed. The plasma conditions used gave a speed of 0.21, which agreed with

the value measured from the simulation to within 2%. The wave did not lose a signif-

icant amount of amplitude as it propagated for 3000τn, thus the ion hydrodynamics

scheme is not too diffusive.

4.5.1 Measuring the speed by taking the Fourier transform

The wave’s speed may be measured more accurately by using more data than two

snap-shots. Consider the (spatial) Fourier Transform of a single-frequency travelling

wave (with frequency ω and wavevector k1).
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Figure 4.5: The phase of the wave gives the expected propagation speed (dashed line).

0 1000 2000 3000 4000 5000
-0.1

-0.05

0

0.05

0.1

0.15

Time/Collision Time

D
iff

er
en

ce
F

ro
m

P
re

di
ct

io
n/

R
ad

ia
ns

Figure 4.6: The difference between the measured and predicted phases. The error bars
express the numerical error – agreement is good to within these limits.
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f(x, t) = Aei(k1x−ωt) (4.57)

F̂ [f ] =
A√
2π
e−ik1cmt

∞∫
−∞

ei(k1−k)xdx (4.58)

F̂ [f ] =
A√
2π
e−ik1cmtδ(k1 − k) (4.59)

Where A is a constant. Notice that the result of the Fourier Transform is complex.

The magnitude and phase of this complex function are:

R =
A√
2π
δ(k1 − k) θ = −k1cmt (4.60)

The changing phase of the wave with time (figure 4.5) shows that the measured

speed is in very good agreement with the magnetosonic speed over the duration of the

simulation. Figure 4.6 shows the error in the phase produced by IMPACT. The error

bars express the fact that one can only measure the position of the wave to ±∆x.

The systematic cycling of the error may be explained by noting how the sign of the

error changes after 2000 collision times. This corresponds to the crest of the wave

passing the centre of the simulation domain at which the point the method used to

measure the position of the crest flipped from the left boundary to the right – thus

changing the sign of the error.

4.5.2 The conservation properties of the new code

Earlier in this chapter it was discussed that the new code is not conservative. Figures

4.7 and 4.8 show that the new code does not perform much worse than IMPACT

without ion motion. The density, momentum and energy changes over 5000 collision

times were very small (0.001%, 0.12% and 0.1% respectively).
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Figure 4.7: The relative density change with and without the effects of hydrodynamic ion
motion.

0 1000 2000 3000 4000 5000
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
x 10

-3

Time/Collision Time

R
el

at
iv

e
E

ne
rg

y
C

ha
ng

e

No Ion Motion
With Ion Motion

Figure 4.8: The relative energy change with and without the effects of hydrodynamic ion
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Chapter 5

Non-local transport in a magnetic

field

In this chapter the first fully kinetic simulations of the coupling between non-local

transport and the dynamical evolution of the magnetic field including hydrodynamic

plasma motion will be discussed. As discussed in the introduction kinetic simulations

have addressed spontaneous generation of B-fields including non-local effects [59,63].

Others have considered how B-fields affect non-locality or how non-local effects modify

B-field dynamics [52, 85] but have not elucidated how these phenomena evolve when

coupled together. It will be shown that an applied magnetic field – which is initially

sufficient to localize transport – is eventually expelled from a laser-heated region,

leading to a re-emergence of non-local transport here. The question of the cause of

non-classicality will be addressed, i.e. the effects of inverse bremsstrahlung heating

on the distribution function will be decoupled from those of non-local transport.

Figure 5.1 shows a schematic of the experiment conducted by Froula et al which

was described in section 2.4.1 [12]. Recall that several such long-pulse laser-gas jet

interactions have been studied [12, 56]; first with the aim of directly measuring non-

local heat flow and then to suppress it with a large externally applied magnetic

field. The addition of hydrodynamic ion-motion to IMPACT gives a powerful tool for

studying these effects. The experiment of Froula et al will be simulated. As such it

is now essential to briefly summarise the experiment and its results.

109
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Nitrogen gas jet

Heater beam (1!)

Probe beam (2!) - for
Thomson scattering
measurements

Imposed magnetic field

Figure 5.1: Froula’s experiment investigating the suppression of non-local heat flow.

5.1 The experimental setup of Froula et al & their

results

The laser had a wavelength of λ = 1.054µm and delivered 100J over a pulse duration

of 1ns (giving an on-target intensity of 1015Wcm−2). This was shone into a nitrogen

gas jet which had an initial temperature of 20eV and created a plasma with an electron

number density of 1.5×1019cm−3. A 4T or 12T initially uniform magnetic field could

be applied parallel to the heater beam. The temperature profile was measured at

various times by Thomson scattering using a frequency doubled beam perpendicular

to the main beam. In figure 5.2 these profiles are shown after 1.35ns for the field-free

case and the 12T case. The profile for the field-free case clearly has pre-heat ahead of

the main heat front while the magnetized case does not. The pre-heat is postulated

to be the result of non-local heat flow – this hypothesis will be tested. The magnetic

field profile was not measured but was thought to be frozen in to the plasma, the

inclusion of hydrodynamic plasma motion in the model will allow this hypothesis to

be tested.
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Figure 5.2: Electron temperature profiles in the long-pulse laser-gas jet experiment under-
taken by Froula et al. The red profile is in the case where no external magnetic field was
applied; the blue profile is with a 12T field

5.2 Simulation considerations

Figure 5.3 shows the geometry of the simulations. The magnetic field is in the z-

direction while the current, electric field, density gradient and bulk flow velocity are

in the (x, y) plane, i.e. the cross-field transport will be studied. This is equivalent to

taking a slice through the laser perpendicular to its direction of propagation; giving a

circular heating region in 2-D. With z being the ignorable coordinate the simulations

are of a cylindrical laser beam aligned with the z-axis. This holds true if the laser

is sufficiently defocussed; that is, if it has a long depth of focus compared to the gas

jet diameter. This is illustrated in figure 5.4. Consider the propagation of a laser

beam; as it is focussed the power per unit area in the beam – the intensity – increases

as the area decreases. The depth of focus (also known as the confocal parameter)

is a measure of the distance over which the intensity of the beam is approximately

constant. This is shown as the parameter b in figure 5.4. The minimum radius

of the beam is known as the beam waist (wo). The distance along the direction of

propagation of the laser beam – the z-axis in the diagram – at which the laser intensity

in the centre of the spot falls by a factor two is known as the Rayleigh length (zo).

The depth of focus is given by 2zo. In Froula’s experiment the beam waist was 75µm

and the wavelength was 1.054µm meaning that the depth of focus was 30mm. This is
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Laser

B-Field

Figure 5.3: The simulation geometry used in the modelling of Froula’s experiment. The
magnetic field is perpendicular to the flows, gradients and electric field.

indeed much larger than the gas jet’s diameter (1.5mm) so gradients of the physical

variables in the z-direction are negligible compared to in the x and y-directions; 2D

modelling in this situation is justified. Ideally the plasma would be modelled in plane-

polar coordinates, however IMPACT uses cartesian coordinates – modifying this will

involve directly changing the matrix coefficients discussed in section 4.3.1 and is left

as future work.

The fact that an (x, y) grid is used to simulate a problem whose symmetry is

naturally cylindrical forces the use of a rather complicated grid. Figure 5.5 shows

this grid. In the very centre of the grid there are nine cells of the same size. From

these the cells get larger, in a geometric progression, moving along the x or y axis

from the centre. The ratio of the lengths of the sides of the corner grid-cells to those
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Figure 5.4: An illustration of the depth of focus.
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Figure 5.5: The computational grid used in the simulations described in this chapter. The
laser heated region is shown – in the centre of this are the nine uniform grid cells.
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Figure 5.6: The temperature profiles from one-dimensional simulations of Froula’s ex-
periment after 5000τn. ‘tol’ refers to the accuracy in the non-linear iterations and matrix
solver.

at the centre are set to be 2.5:1. The finer gridding in the centre allows adequate

resolution of the laser spot. The coarser cells around the edge of the grid form a

large buffer zone to ameliorate the problem of the hot electrons (which are highly

mobile) reaching the edge of the simulation domain. Note that periodic boundary

conditions are used in space (open were used in velocity space). Using this grid only

65 grid-cells may be used to simulate a region 6000 thermal mean free paths (for the

20eV background electrons )square, despite the fact that the laser spot has a radius

of only 450 mean free paths (at the initial temperature of the gas jet – 20eV – the

thermal mean free path is 0.167µm). The simulation domain is 1mm in length.

In order to properly resolve the distribution function as the plasma gets hotter

the velocity space grid must go out to 30 times the thermal speed at 20eV. In order to

resolve the distribution function well at low velocities and achieve a large enough grid

size a geometric grid is required here too. 45 velocity-space grid-cells give adequate

resolution. The ratio of the sizes of the first to last cells is 12:1. The simulation

duration is 885ps. This corresponds to 14,000 thermal electron ion-collision times

(again for the 20eV background particles). For the sake of accuracy a time-step of two

collision times is chosen - requiring simulation for 7000 time-steps. The accuracy of

the solution is also determined by the tolerance of the non-linear iterations and matrix

solver. These are set to be 1 × 10−9 allowing an accurate solution in a reasonable
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amount of computational time. These tolerances may seem low when compared to

the numerical accuracy of double precision numbers – 1 × 10−16. In figure 5.6 the

consequences of using such relatively low tolerances and a large time-step are shown.

The resulting temperature profiles from four one-dimensional simulations after 5000τn

show that there is very little difference between simulations using a time-step of 0.5τei

and tolerances of 1×10−14 and those using 2τei and 1×10−9. Dropping the tolerance

to 1× 10−4 is unacceptably deleterious to the accuracy of the solution.

The diffusive approximation – f = f0 + f1 · v̂ is valid for this simulation. The

maximum value of the ratio |f1/f0| is 0.1 between 0-4 times the local thermal speed

in the spot’s centre for a 12T applied field after 440ps. In the 12T case the temperature

gradients are greatest and so the largest f1 develops. Finally, the laser heating profile

and the magnetic field need to be considered. A Gaussian profile is imposed for the

laser intensity with an e-folding half-width of 75µm:

∂T̃e

∂t̃
=

(
∂T̃e

∂t̃

)
MAG

exp

[
−(x̃2 + ỹ2)

λ̃2

]
(5.1)

Here, λ is the width of the heating spot. The magnitude of the heating profile for

inverse bremsstrahlung and Maxwellian heating are as given in the previous chapter,

i.e.:

(
∂T̃e

∂t̃

)
IB

=
4

9
√
π

Z̃2ñiṽ
2
osc

ñe

(
2T̃e

)3/2

(
∂T̃e

∂t̃

)
MH

=
D0

Ẑ
(5.2)

The heating rate for the Maxwellian heating simulations is set to be equal to the

rate of inverse bremsstrahlung. Thus D0 is chosen to be:

D0 =
4ẐZ̃2ñiṽ

2
osc

9
√
πñe

(
2T̃e

)3/2
(5.3)

The light is circularly polarised and deposits 100J of energy in 1ns – the wavelength

is set as 1.054µm. The heating profile is chosen so that the laser intensity rises linearly

from zero to its maximum value in 180ps, is constant for 525ps and then linearly

decreases for the remaining 180ps. This emulates the real situation in experiments –

the laser is not ‘switched on’ instantly. Four different magnetic fields are externally

imposed - 0T,2T,4T and 12T.
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Figure 5.7: Plasma temperature profiles after laser heating for 440ps with imposed magnetic
fields at 0T, 2T, 4T and 12T. The solid lines – labelled ‘full’ – use the full equation for the
magnetic field. Those labelled ‘frozen’ – the dashed lines – assume that the magnetic field
is frozen to the plasma.

5.3 Simulation results

Figure 5.7 gives the radial temperature profiles after 440ps. In the field-free case

there is the expected non-local pre-heat of the plasma due to the low collisionality of

the hot electrons [12,45]. The peak plasma temperature in this case is 284eV. At this

temperature the mean free path of an electron moving at twice the thermal speed

is 244µm – larger than the laser spot size – non-local behaviour is expected. Recall

that the heat is carried by those electrons moving with speeds between two to three

times the thermal speed. In the 12T case the pre-heat is suppressed. The maximum

temperature in this case is 581eV, giving a mean free path for electrons moving at

twice the thermal speed of 1.24mm; however, the Larmor radius of these electrons is

26µm in the centre of the spot – where the plasma is hottest and the magnetic field

strength least. The fact that the larmor radius is less than the mean free path means

the consequent reduction in the mobility of the electrons should go some way towards

localising the heat transport; exactly how local the transport is in this and the other

cases will be discussed in section 5.5.

The increased levels of pre-heat when the applied magnetic field strength is re-

duced from 12T – to 4T and then to 2T – suggest that non-local effects are becoming
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more important as the B-field strength is decreased. The ‘kinks’ in the temperature

profiles for 2T and 4T (between 200µm and 300µm from the centre of the spot) in-

dicate that transport barriers are formed in these simulations. This is confirmed by

the magnetic field profiles – shown by the solid lines in figure 5.8. In the 2T and 4T

cases the magnetic field is largely cavitated in the laser heated region and ‘piles up’

several hundred microns away from the centre of the spot, in the next section this

will be shown to be the result of Nernst advection of the field [13]. This accumulated

field forms the transport barrier – the consequent reduction in the electron’s mobility

slows heat transport here. The profiles of the important hydrodynamic parameters –

the density and radial bulk flow velocity – after 440ps are shown in figure 5.9. As the

applied magnetic field strength increases the more heat is ‘bottled up’ in the central

laser heated region by the reduction in the electron’s mobility. This means that an

increased amount of hydrodynamic flow at a higher flow velocity takes place as the

applied field is increased. Note that plots of the current density and heat flow will be

shown in sections 5.4 and 5.5.

The new terms in the augmented code are not conservative with regards to num-

ber density or energy. However the change in these two variables is expected to be

insignificant for a simulation which is adequately resolved spatially and temporally.

The time evolution of the total number density has been examined in a typical sim-

ulation (B=12T) for the old code and the version with hydrodynamics in order to

compare them – the results are shown in figure 5.10. The new code does indeed nu-

merically gain mass, but only by 0.5% at the worst. The simulation using Maxwellian

heating is also included (see section 4.3.5). The plasmas simulated are being heated

so energy is not conserved. The effects of the new terms on energy gain in the sys-

tem may be examined by comparing to IMPACT without hydrodynamics – energy

input is comparable in the new code when using IB heating and MH. The results are

not identical for these two heating mechanisms as the precise rate of energy input

depends on Te and ne and these evolve differently in the two situations. The change

in the modulus of the total momentum after 440ps is only 0.01% of the maximum

momentum (also after 440ps).

5.4 Magnetic field advection

Figure 5.11 shows the azimuthal component of the current (jθ) after 440ps for a 12T

imposed B-field. The radial current is initially zero but may grow up at late times

(after 440ps) due to an instability. This instability is discussed in section 5.7.1. Before
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the onset of this instability the following equation holds:

∂B

∂r
= −µ0jθ (5.4)

Therefore,the radial gradient in the B-field is supported by the azimuthal current.

This current is consistent with that shown in figure 5.11.

In section 2.3.2 an equation for the rate of change of the magnetic field was derived

from the classical Ohm’s law [33, 34]. In the geometry considered here, i.e. where

the gradients of the physical variables are perpendicular to the magnetic field and the

system displays cylindrical symmetry along an axis parallel to this field, this equation

becomes:

∂B

∂t
+∇ · [(C + vN)B] = ∇ ·

(
η⊥
µ0

∇B
)

(5.5)

η⊥ =
α⊥
n2

ee
2
− β2

∧Te

e2κ⊥
(5.6)

It should be noted that in order for this equation to hold the system must be

uniform in the z-direction. The divergence term on the left describes frozen-in flow

and the Nernst effect [90, 91]. The term on the right hand side is resistive diffusion.

Resistive diffusion may be neglected, this is justified by the fact that the magnetic

Reynolds number is of the order of 106 (this is calculated at the point of maximum

hydrodynamic flow). C is the plasma flow velocity and vN is the Nernst velocity and

describes advection of the magnetic field by the Nernst effect. The Nernst velocity is

proportional to the heat flow and is given by [33,52]:

vN =
β∧

eκ⊥B
qe ≈

qe

5/2neTe

(5.7)

Here β∧ and κ⊥ are the thermoelectric coefficient perpendicular to the B-field

and temperature gradient and the thermal conductivity perpendicular to the B-field

and parallel to the cross-field component of the temperature gradient. The second

(simpler) form has been derived making the assumption that the electron-ion collision

frequency is proportional to v−2 [33]. This assumption works well for the plasma

conditions simulated here.

The dashed lines in figure 5.8 show the magnetic field profiles if frozen-in flow is

the only advection mechanism. This profile is calculated by noticing the similarity

between the continuity equation and the magnetic induction equation, taking their
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ratio and exploiting the 1-D symmetry of the problem (which is valid up to 440ps –

see section 5.7.1).

∂ne

∂t
+

∂

∂r
[neC] = 0

∂B

∂t
+

∂

∂r
[BC] = 0 (5.8)

∂

∂t

(
B

ne

)
+ C

∂

∂r

(
B

ne

)
= 0 (5.9)

Equation (5.9) shows that the ratio B/ne is constant in a given fluid element. In

the simulations this ratio is initially uniform everywhere, thus it must remain so –

enabling calculation of the magnetic field given the density profile. Figure 5.8 shows

that frozen-in flow leads to much less cavitation of the magnetic field from the laser

heated region in all cases. The Nernst effect is particularly dominant for 2T and 4T.

This variation of the relative importance of the Nernst effect and frozen-in flow is

described by the ‘Nernst number’ (analogous to the magnetic Reynolds number):

RN =
vN

C
=

1900

Z lnΛei

Te(keV)3/2

ne(nc)

∂Te(keV)

∂r(µm)

βc
∧

ωτB
(5.10)

Here the temperatures are measured in keV, the distances in microns and the

electron number density in terms of the critical density for 1.054µm light (nc =

1027m−3). The scaling in equation (5.10) shows that frozen-in flow should become

dominant as the magnetic field is increased. Physically, this is due to the suppression

of the heat flow by the magnetic field. In the 2T, 4T and 12T cases the values for

RN (at the point where the heat flow is largest and at t = 440ps) are 8, 3 and 0.3

respectively. If only frozen-in flow is included in the calculation at 2T and 4T the

transport barriers are absent and the peak temperatures are over-estimated – these

features could in principle be measured, giving an experimental verification of the

dominance of the Nernst term. The conditions in this experiment are similar to those

in the gas-fill of an ICF hohlraum. Taking typical values of: the density to be 0.025

times the critical density for 0.33µm light; the temperature to be 5keV and to change

by 1keV over 500µm and the magnetic field to be 1T [7]; then RN is of order one.

Hence the Nernst effect is expected to be at least as important as frozen-in flow in

causing the advection of magnetic fields generated at the hohlraum wall.

5.4.1 The Ettinghausen effect

The radial heat flow in the geometry of the simulations is given by:



122 CHAPTER 5. NON-LOCAL TRANSPORT IN A MAGNETIC FIELD

qr =
−neTeτB
me

κc
⊥
∂Te

∂r
− βc

∧
jθTe

e
(5.11)

In deriving equation (5.10) the Ettinghausen term (the second term on the right-

hand side) has been neglected. To justify this consider an ‘Ettinghausen number’

given by the ratio of the first and second terms on the right-hand side of equation

(5.11) [92].

RE =

(
neTeτB
me

∂Te

∂r
κc
⊥

)(
βc
∧
jθTe

e

)−1

(5.12)

The ratio of this number to the Nernst number yields something which is easy to

calculate:

RE

RN

=
ñeC̃

j̃θ

κc
⊥

(βc
∧)

2ωτB (5.13)

The neglect of the Ettinghausen term should be worst for the B=12T case. A

more magnetized plasma has a larger azimuthal current but a smaller radial heat

flow. RE is of the order of 1, 200 and 3000 in the 12T, 4T and 2T cases. Note

that as the Ettinghausen number, defined in this way, becomes larger the relative

importance of the Ettinghausen term decreases. Thus for large magnetic fields (>12T)

the Ettinghausen term should be included in a calculation of the Nernst number. It

is always included in the simulations.

5.4.2 The Nernst effect and the break-down of classical trans-

port

The time evolution of the magnetic field and the degree of non-locality are strongly

coupled to one another. The effect of the break-down in Braginskii transport has been

shown to significantly affect the magnitude of Nernst advection [85]. Comparison of

the rate of advection of the magnetic field at 250ps (when the 2T and 4T fields have

cavitated by about 50% from the central region) as predicted by Braginskii transport

with that produced by the VFP code shows that the VFP result is markedly reduced

below that predicted classically. This is shown in figure 5.12. In the 2T case it is

found to be five times smaller than predicted, for a 4T imposed field it is 1.3 times

reduced on the laser axis. Thus the degree of non-locality controls the rate of B-field

advection, which in turn controls the B-field strength and so the importance of non-

locality. The classical prediction was made by inserting the current and temperature
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Figure 5.12: The rate of change of the magnetic field after 250ps as calculated from the
curl of the electric field. The solid lines show the prediction of the VFP code, the dashed
those of classical transport.

profiles from the VFP code at 250ps into the classical form of Ohm’s law, i.e. equation

(2.29). A similar method will be used to predict the classical heat flow using equation

(2.30) in the next section.

5.5 Departures from classical transport

It is now appropriate to examine the applicability of Braginskii’s theory to the simula-

tions discussed thus far. Figure 5.13 shows the radial heat flow for each magnetic field

and those calculated from classical transport theory. The radial heat flow is classical

in the 12T case – the agreement with Braginskii’s transport theory gets progressively

worse as the imposed magnetic field strength decreases. Figure 5.14 shows the az-

imuthal (Righi-Leduc) heat flows from the simulations compared to those expected

classically. Note that in the field-free case the heat-flow has no θ-component. Again,

as the magnetic field strength increases the agreement with Braginskii improves. In

the 12T case there is a discrepancy away from classical in the laser-heated region

(from the spot’s centre to 75µm) and well away from it (more than 250µm from the

spot centre). An examination of the distribution function reveals that this is due to

the combined effects of inverse bremsstrahlung heating causing the distribution to
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Figure 5.13: Spatial profile of the radial heat flow (normalised to the free-streaming limit
for the background 20eV plasma) after 440ps at each of the applied B-fields. The solid lines
are those calculated by those VFP code, the dashed are from classical transport theory.

tend to a super-Gaussian (f ∝ e(−v/vT )5) and the rise of non-local transport due to

the expulsion of some the magnetic field from the centre. The increased importance

of non-locality in the central region means that hot electrons from this region can

pre-heat the plasma far away (more than 250 µm from the centre). Although the

azimuthal heat flow is not important in the situation considered here it can play an

important role when there is not such a high degree of symmetry.

Figure 5.15 shows the time evolution of the deviation of the radial heat flow

away from Braginskii for each imposed magnetic field. This is calculated using the

formula ∆qr = (qr − qB
r )/qB

r (qr is the maximum radial heat flow from the VFP code

and qB
r is the maximum as predicted by Braginskii). The discrepancy from classical

theory decreases as the imposed magnetic field is increased; this is as expected. More

surprisingly, the general trend is for the agreement to be poor initially, improve and

then deteriorate with time. The agreement at early times is poor in all cases. Up

to 20ps the transport should still be ‘local’ – the maximum mean free path here is

1.7µm. The break-down of Braginskii theory comes from the IB heating. After 200ps

(for an imposed field of 4T) non-local transport becomes important. In the field-free

and 2T cases classical transport theory never works well although they do exhibit the

same qualitative behaviour in their agreement with Braginskii as with the 4T field.

The general pattern is for IB heating being important early on, non-locality later on;
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Figure 5.14: The radial profile of the azimuthal heat flow (normalised as in figure 5.13).
The solid lines are those calculated by the VFP code, the dashed are those predicted by
classical transport theory.

this is elucidated in section 5.6.3. Although the 12T case behaves more classically up

to 440ps it will later be shown that by 885ps non-locality has re-emerged due to the

magnetic field being cavitated to 1T in the central region.

The importance of the coupling between magnetic field cavitation and non-locality

is illustrated by figures 5.16 and 5.17. Here this coupling has been removed by forcing

the magnetic field to advect by frozen-in flow. In this case the advection velocity

depends on the bulk flow velocity, which is takes longer to be strongly affected by the

degree of non-locality – as a result of the slower response time of the ions. Figures

5.16 and 5.17 show that non-locality plays a much smaller role at 440ps in this case

as the magnetic field has not cavitated at all strongly from the laser heated region.

5.6 The distortion parameter

It has already been mentioned that classical transport can break-down in long-pulse

laser-plasma interactions because of non-locality but also because of the distortion

of the distribution function due to IB heating. The difference between the distribu-

tion function and a Maxwellian distribution can be quantified in order to determine

which of these effects is causing the deviation from classical transport. The distortion
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Figure 5.16: Spatial profile of the radial heat flow when frozen-in flow advects the B-field.
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Figure 5.17: The radial profile of the azimuthal heat flow when frozen-in flow advects the
B-field.

parameter is defined as:

∆ =
〈w̃−2〉
〈w̃−2〉M

(5.14)

Where:

〈w̃m〉 =

∞∫
0

f̃0w̃
m+2dw̃ 〈w̃m〉M =

∞∫
0

f̃mw̃
m+2dw̃

The variables in the above equations are all in normalised form – although this

need not be the case for a dimensionless ratio such as ∆. The w−2 moment was chosen

for simplicity, a generalised form of the distortion parameter is described in appendix

F. The normalised Maxwellian (fm) is the equivalent Maxwellian distribution with

the same temperature and density as the plasma at that point, i.e.:

f̃m =
ñe(

2πT̃e

)3/2
e−w̃2/2T̃e (5.15)

Calculating the integral for a Maxwellian yields:

〈
w̃−2

〉
M

=
ñe

4πT̃e

(5.16)
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Figure 5.18: The distortion parameter calculated after 440ps for each magnetic field using
both inverse bremsstrahlung (IB) and Maxwellian heating (MH).

The integral of f0 must be calculated numerically, this is computed using Simp-

son’s 1/3 rule – where the integral is represented by the sum I = 1
3
∆x (f0 + 4f1 + 2f2 + 4f3 + . . .)

. The distortion parameter calculated using this method is shown in figure 5.18.

5.6.1 The distortion from non-local transport

Figure 5.18 shows that the distortion parameter can be greater than or less than unity

in different regions of the plasma. In the next two sections it will be shown that the

sign of (∆ − 1) can be used to determine the mechanism by which the distribution

function is distorted, i.e. it allows the distinction of regions where IB is dominant

from those where non-locality is most important. To do this it is first necessary

to calculate the distortion parameter analytically using a simple model of non-local

transport.

A non-locally heated region is one with an excess of hot electrons in the tail of

the distribution above that expected for a Maxwellian. This may be modelled by

supposing that a ‘non-local distribution’ can be represented by a two-temperature

Maxwellian – with the ‘cold’ distribution representing the bulk plasma and the ‘hot’

particles arising from the non-local pre-heat. The distribution function in this case

is given by:
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f̃0 = f̃mc + f̃mh =
ñec(

2πT̃ec

)3/2
e−w̃2/2T̃ec +

ñeh(
2πT̃eh

)3/2
e−w̃2/2T̃eh (5.17)

Here ñec and T̃ec are the number density and temperature of the ‘colds’; similarly

ñeh and T̃eh are those for the ‘hots’. This formulation allows analytical calculation of

the moments in equation (5.14), yielding the following expression for ∆:

∆ =
4πT̃e

ñe

(
ñec

4πT̃ec

+
ñeh

4πT̃eh

)
(5.18)

ñec T̃ec and ñeh T̃eh can be related to ñe T̃e.

ñe = ñec + ñeh T̃e = T̃ec

(
1 +

T̃eh

T̃ec

ñeh

ñec

)(
1 +

ñeh

ñec

)−1

Substituting these results into equation (5.18) and making the assumption that the

number density of ‘hots’ is much less than the number density of ‘colds’ – neglecting

terms of the order of (ñeh/ñec)
2 and higher – yields:

∆ = 1 +
ñeh

ñec

(
T̃eh − T̃ec

)2

(5.19)

This gives a distortion parameter that is always greater than one. The appro-

priateness of this model is examined in figure 5.19. This shows a comparison of the

isotropic part of the distribution function to a two-temperature Maxwellian and a

single temperature Maxwellian (using least squares fitting) after 440ps with B=0T.

Far from the laser heated region there should be some pre-heat from hot electrons

– thus the two temperature fit shown in figure 5.19 is made 590µm from the spot

centre; this is well in front of the main heat front. The two-temperature distribu-

tion fits the data much better in the tail of the distribution – where the non-local

electrons are important. The number densities and temperatures from the ‘cold’ and

‘hot’ distributions can be extracted from the fit.

nec = 0.95ne0 Tec = 1.04Te0

neh = 2.90× 10−4ne0 Teh = 5.98Te0

Note that ne0 is the background electron number density and Te0 is the background

electron temperature. The assumption that the number of hot electrons is small
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Figure 5.19: A comparison between the isotropic part of the distribution function (f0),
the best fitting Maxwellian (fM ) and two-temperature Maxwellian (fM2). The left-hand
plot indicates the fit to the body of the distribution, the right-hand plot emphasises the
tails. The velocity is localised to the local thermal speed (which may be different from the
background thermal speed) and the distributions are normalised such that f0(w = 0) = 1.

is borne out. From these parameters the distortion parameter is estimated to be

1.01. Figure 5.18 shows that this is a reasonable estimate well outside the laser

heated region, where non-locality is expected to pre-heat the plasma. The residuals

(r =
∑
|f0 − f0fit|2) for the single temperature and two-temperature fits are 1×10−4

and 6× 10−13; the agreement, as quantified in this way, is ten times better using the

two-temperature Maxwellian.

5.6.2 The distortion from inverse bremsstrahlung

The effect of inverse bremsstrahlung heating on the distortion parameter will now

be determined. IB heating results in distribution functions which tend to a Langdon

distribution. When electron-electron collisions are accounted for it is necessary to

work with the more general distribution where m is not 5 (a super-Gaussian distribu-

tion). This was discussed in section 2.4.5. The normalised form of the super-Gaussian

distribution is:

f̃SG
0 = C(m)

ñe

(2T̃e)3/2
e(−w̃/αe(2T̃e)1/2)

m

(5.20)

Here αe = [3Γ(3/m)/2Γ(5/m)]1/2 and C(m) = m/4πα3
eΓ(3/m). Substituting

equation (5.20) into equation (5.14) yields the following result for the distortion pa-
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Figure 5.20: A comparison of the distribution function f0 to the best fitting Maxwellian
fM , Langdon fL and super-Gaussian distribution fSG emphasising the body (left) and the
tail (right). The velocity and distributions are normalised in the same way as in figure 5.19.

rameter:

∆SG =
Γ (5/m) Γ (1/m)

3Γ (3/m)2 (5.21)

In fact in the idealised case of IB heating with no electron-electron collisions

or thermal transport the distribution tends towards a super-Gaussian with m = 5

(Langdon). In this case equation (5.21) yields the following result in terms of gamma

functions:

∆m=5 =
Γ (1/5)

3Γ (3/5)2 = 0.69 (5.22)

Figure 5.18 shows that ∆ never gets as low as this, implying that the distribution

function has 2 < m < 5. The distribution function from the simulation, at the spots

centre, is compared with the best fitting Langdon and super-Gaussian distributions

in figure 5.20 (for an applied B-field of 12T and after 440ps). The m = 5 does not fit

the data well; an m = 3.4 is best – with a residual of 5× 10−10. Such a distribution

gives a ∆ of 0.77. The super-Gaussian fit is good for the bulk of the distribution –

out to eight times the thermal speed – but fails in the tail. This means that the such

a fit may not be able to predict transport quantities which rely on high moments of

the distribution function [78]. This will be dealt with further in chapter 6.

Now the utility of the distortion parameter becomes clear. For a non-locally

pre-heated distribution function it will be greater than unity; for distortions from
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IB heating it will be less than unity. This allows the identification of the spatial

extent of the non-classicality caused by each of these effects. This simple explanation

of the distortion parameter is complicated when one notes that a deficiency of hot

electrons, which occurs in a non-locally cooling region (i.e. the region from which the

hot electrons are flowing), also leads to a value of the distortion parameter which is less

than unity. The distortion parameters for the simulations using Maxwellian heating

illustrate this in figure 5.18. Comparing the distortion when using IB with that using

Maxwellian heating, shows that non-locality has an effect even in the most magnetised

(12T) case. However the distortion due to IB heating is in this case much larger. In

the 0T case non-locality causes most of the distortion in the central region. The 2T

and 4T cases lie somewhere between these limiting cases, i.e. both IB heating and

the deficit of hot electrons distort the distribution function in the central region. The

relative importance of IB heating increases with the applied magnetic field strength.

Non-local pre-heat is the mechanism responsible for the distortion outside this central

region and is suppressed as the strength of the externally magnetic field is increased.

5.6.3 Time evolution of the distortion parameter

The time evolution of the distortion parameter for a 4T imposed magnetic field is

shown in figure 5.21. The dashed lines in this figure show the evolution of the dis-

tortion when Maxwellian heating is used. This shows the increased importance of

non-locality with time which has already been discussed. The solid lines show that

when inverse bremsstrahlung is used there is much more distortion of the distribution

function in the laser heated region. In this case the rate of this distortion in the

centre saturates after 190ps.

5.7 The behaviour of the system after 440ps

5.7.1 A Nernst driven instability

The time limit of 440ps on the simulations in this chapter was due to the growth of

an instability – computational constraints allowed the simulation of the system up to

885ps on a single processor. In figure 5.22 the temperature, magnetic field and heat

flow profiles are shown for the circular heating pattern with a 12T imposed field after

885ps. The magnetic field shows a small departure from circular symmetry and this

leads to a much larger asymmetry observed in the radial heat flow. The instability
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Figure 5.21: The time evolution of the distortion parameter for an imposed field of 4T.

is not dependent on the inclusion of ion motion and gets more severe as the imposed

magnetic field increases.

Is this instability physical? A typical signature of a numerical instability is that

its wavelength tends to be equal to the grid cell size. This does not appear to be

the case in the results shown in figure 5.22. One numerical cause of this instability

may be the attempt to resolve a circular laser spot on a square grid. In order to

rule this possibility out a planar Gaussian heating profile has been simulated with

an imposed sinusoidal heating perturbation with an amplitude of 1% of the laser and

a wavelength one-quarter of the system size. In this simulation a uniform grid may

be used, spanning a 6000λn by 4000λn system with a grid of dimensions 65 × 55.

The velocity space gridding was the same as the simulations already described in this

chapter. The results of these simulations are shown in figure 5.23. They show clearly

that the system is inherently unstable.

For the circular heating profile the instability is less severe. In this case the fact

that the heat fronts are spread over cylindrical surfaces means that any perturbations

in the temperature profile will be stretched as the heat front expands and so their

amplitude will decrease. Another difference between the circular and linear simu-

lations is that in the latter case a one in one hundred perturbation is made to the

temperature – in the former case the perturbation is due to numerical noise. This

noise is enhanced by the non-uniform grid used in the circular simulations; thus the
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Figure 5.24: An illustration of a proposed qualitative mechanism for the Nernst instability.

onset of the instability may be controlled by the enlargement of the cells experienced

by the expanding heat front. Determining the onset of this instability in an experi-

mental situation will require a knowledge of the inhomogeneities inherent in such an

experiment.

As the Nernst effect is dominant in advecting the B-field it is reasonable to sup-

pose that it is the cause of the instability. In fact a similar Nernst-driven instability

has already been discussed with no background magnetic field [93]. Determining the

mechanism of the instability is left as further work. Figure 5.24 gives one possible

qualitative explanation. A perturbed temperature profile is represented by the sinu-

soidal contour, the red region is ‘hot’ and the blues are ‘cold’. A uniform background

magnetic field is applied. The directions of the expected heat flows are shown; as

is the compression or rarefaction of the B-field – ∆B is the change in B and the

magnetic field is always in the z-direction, which is out of the page in the figure. The

magnetic field is expected to be advected out of the hot region by the Nernst effect,

causing it to build up in the ‘cold’ regions. This will limit transport in these regions.

If the plasma is being heated it is then plausible to imagine that this might cause

‘fingers’ of hot plasma to flow between the ‘cold’ regions. The Nernst effect amplifies

the perturbation to the B-field [90,91].

5.7.2 Nernst cooling of the central region

On the condition that the instability described in the previous section is not a nu-

merical effect – the reasons for believing this have been discussed – the simulations

discussed in this chapter may be extended to 885ps. The central (maximum) tem-

perature is plotted against time in figure 5.25. The temperatures in each case seem
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Figure 5.25: The time evolution of the central (maximum) temperature (left) and Hall
parameter (right) for B-fields of 2T, 4T and 12T.

to saturate, the maximum temperature being higher as the imposed magnetic field

strength is increased. The maximum temperature in the centre of the spot depends

upon the balance of heating and thermal conduction. The rate of heating decreases

as the temperature increases. Equation (4.43) shows that this rate is proportional

to T
−3/2
e . This explains the saturation. The rate of thermal conduction decreases as

the imposed field increases thus the saturated temperature gets larger with increasing

B-field. The central temperature decreases between t = 400ps and t = 700ps in the

2T, 4T and 12T cases; this is despite the fact that the laser heats the plasma with

its maximum intensity.

The mechanism for this decrease can be determined by considering the Hall pa-

rameter:

ωτ =
eB

me

1

Y Z2nilnΛei

(
2Te

me

)3/2

= α
B

ne

T 3/2
e α =

23/2e

Y Zm
5/2
e lnΛei

(5.23)

As previously discussed, if frozen-in flow were the dominant mechanism of mag-

netic field advection then B/ne would be a constant. In this case ωτ ∝ T
3/2
e . If this

were true it would be impossible for ωτ to decrease and so the central region could not

cool while the laser were still on at full power. The importance of the Nernst effect,

for all the values of the applied field simulated, means that the magnetic field cavi-

tates from the central region faster than the density does. As a result B/ne decreases
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Figure 5.26: The time evolution of the central (maximum) temperature (left) and Hall
parameter (right) when only frozen-in flow is responsible for the advection of the B-field.

and so does ωτ which causes the central temperature to decrease. Of course there is

electron density dependence in the Coulomb logarithm which has been suppressed.

This dependence is weak and would have a much smaller effect. The time evolution of

the central temperature and Hall parameter when frozen-in flow advects the B-field

are shown in figure 5.26. The temperature does indeed decrease much less rapidly

than when the Nernst effect is included.

5.8 Summary

Magnetic field cavitation and the re-emergence of non-local transport

In the presence of magnetic fields large enough to significantly reduce the mobility of

the hot electrons (12T) it was shown that the cross-field transport of heat could still

deviate from classical – this was manifested most readily in the azimuthal component

of this transport. Not all of this deviation was due to non-locality, IB heating also

distorted the distribution function away from Maxwellian. Further deviation away

from Braginskii heat transport occurred as the externally applied B-field was reduced

from 12T to 4T, then to 2T. This was due to the increasing importance of non-

local effects. In the field-free case Braginskii gave a radial heat flow which was two

orders of magnitude too large. The situation was complicated by the fact that the

Nernst effect lead to much more advection of the magnetic field than that predicted by

frozen-in flow alone (previous modelling used ideal MHD [12]). For externally applied

B-fields of 2T and 4T the magnetic field at the centre was completely cavitated after
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440ps; in the 12T case it was reduced to 1T after 885ps. The relative importance of

frozen-in flow and the Nernst effect was quantified by the ‘Nernst number’ which was

defined to be the ratio of the Nernst velocity to the hydrodynamic flow velocity. This

showed that the importance of the Nernst effect decreased with increasing magnetic

field strength; it was 8, 5 and 0.3 in the 2T, 4T and 12T cases respectively. Nernst

advection lead to the accumulation of the B-field away from the laser-heated region.

This then formed a transport barrier.

Non-locality and Nernst advection were shown to be closely coupled to one an-

other. Nernst advection lead to cavitation of the imposed magnetic field from the

laser heated region, and thus an increase in the importance of non-local transport.

On the other hand the degree of non-locality determined the rate of Nernst advection

and so affected the amount of B-field cavitation – the rate of Nernst was found to be

up to five times reduced by non-locality. As a result of Nernst causing depletion of

the B-field classical theory only approximated the transport well in the 12T case after

440ps; even in this case the field was low enough at 1ns (1T) for the re-emergence of

non-locality.

Decoupling non-classical IB effects from non-local transport

A parameter was defined (the ‘distortion parameter’) which was used to distinguish

regions of the plasma where IB was the most important from those where non-locality

was dominant. Additionally IMPACT has the ability to heat the plasma without dis-

torting f0. This has allowed the definitive demonstration that although non-locality

is suppressed by a large magnetic field, the distribution function can still be heavily

distorted by IB. If a 12T field was applied the distribution tended towards a super-

Gaussian distribution with m = 3.4.

A Nernst driven instability & Nernst cooling

Previous simulations of laser heating using an azimuthally symmetric laser heating

profile have been one dimensional [12]. This would seem to be justified. It has been

shown that strong laser heating of a plasma where the Nernst effect is important for

B-field advection is an inherently unstable situation. The higher the magnetic field

the more unstable the system is. The instability breaks the azimuthal symmetry of

the system, necessitating a two-dimensional treatment.

On using late time data from the simulations, another interesting effect is appar-

ent. The systems where an external B-field was imposed began to cool after 300ps,
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even though the laser was still supplying its full power to the plasma. This was a

result of the importance of the Nernst effect. The temperature gradient, and so the

maximum temperature, which the plasma could support was dependent on the mag-

netic field strength. The larger the B-field, the greater the reduction in the thermal

conductivity and so the higher the peak temperature. The rapid decrease in the

magnetic field as a result of Nernst advection lead to a large decrease in the Hall

parameter. This reduced the temperature which could be supported in the centre;

this region subsequently cooled.



Chapter 6

Transport theory for a

super-Gaussian distribution

In the previous chapter the effects of magnetic fields on the break-down of classical

transport were elucidated in the context the interaction of a long-pulse laser beam

with a nitrogen gas jet. It was shown that magnetic fields can suppress non-locality.

However, the distortion of the distribution function caused by IB heating is not neces-

sarily suppressed; as was shown with the aid of the distortion parameter. This effect

has been considered theoretically and experimentally in the context of laser-plasmas,

but the effects of B-fields have not been considered [73, 74, 77, 94]. Numerical work

has been done considering IB heating and magnetic fields by Kho & Haines, but no

transport theory was derived [85]. Here a transport theory for a plasma being heated

by IB in the presence of magnetic fields will be derived. Similar work has also been

done with regards to the theory of turbulence in plasmas [72, 95], which can lead

to the same distorted distribution as IB heating. In this case magnetic fields were

included and the transport derivation of Braginskii followed [23]. In this chapter a

different approach will be taken. The derivation of Epperlein will be followed [24].

This involves a direct numerical solution for the transport coefficients instead of the

use of polynomial expansions and so is more accurate; additionally, the method of

Braginskii produces the wrong asymptotic behavior for some coefficients. We give

results which are much more amenable to transport calculations by giving rational

polynomial fits to the coefficients. These fits allow the transport in MHD codes to be

corrected to account for the new effects. Additionally, the new transport coefficients

will be validated by IMPACT. The new theory will then be applied to Froula’s ex-

periment. Non-locality modifies the effect that IB has on transport as was shown be

Epperlein & Short [96]. Therefore, comparisons to the new theory will be made when

141
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non-locality is not important, i.e. early on in the simulations of Froula’s experiment

and for the largest applied field (12T).

6.1 Deriving the transport theory

In order to derive useful expressions for transport the method used by Epperlein is

followed [24] – as was done when deriving the expression for Ohm’s law including

hydrodynamic flows in section 3.4.4. Again, it is necessary to start from a reduced

form of the f1 equation (2.23).

−v∇f0 + ω × f1 +
e

me

E
∂f0

∂v
=

f1
τei

(6.1)

Where τei is the electron-ion collision time for electrons moving with speed v. The

variables are expressed in the following dimensionless forms:

W =
w

wT

D = λT∇ Ω =
ω

νT

F =
4πw3

T

ne

f

ε =
eE

mewTνT

J =
j

neewT

Q =
q

nemew3
T

Substitution of the super-Gaussian distribution – given by equation (5.20) – into

equation (6.1) and expressing the variables in dimensionless form yields the following

expressions for the components of F1:

Fx =
F0

1 + Ω2W 6
{−W 4

[
Dxne

ne

− 3

2

DxTe

Te

+
m

2

(
W

αe

)m
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]
+W 7Ω

[
Dyne
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2

DyTe

Te

+
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2

(
W
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)m
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− mεx
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e
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(6.2)
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e
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(6.3)

Ohm’s law and the heat flow equation may then be derived by taking the third

and fifth moments respectively, i.e. multiplying by W 3 and W 5 and integrating over
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velocity. Taking these integrals results in equations for the current and the heat flow.

J = −1

3

∫ ∞

0

F1W
3dW Q =

1

6

∫ ∞

0

F1W
5dW +

5

4
J (6.4)

On rearranging these moment equations the resulting transport equations are:

ε = −γc · DPe

2Pe

+ J× Ω +
4

3
√
π
αc · J− βc · DTe

2Te

(6.5)

Q = −3
√
π

8
κc · DTe

2Te

− ψc · J
2
− 3

√
π

8
φc · DPe

2Pe

(6.6)

The forms of the transport coefficients are explicitly given in appendix G. Note

that similar transport coefficients were expressed using a different approach by Dum

[95]. Two important points should be noted. Firstly, if the distribution function is

non-Maxwellian then Onsager symmetry breaks down [97]. In this case the trans-

port coefficients appearing in the terms proportional to the temperature gradient are

different in equations (6.5) and (6.6). In classical transport theory – when the dis-

tribution is Maxwellian – they are the same and denoted by β. There is also the

need to introduce two completely new transport coefficients (γ and φ). These result

in the heat flow being dependent on the pressure (and so number density) gradient

and in a more complicated dependence of the electric field on the pressure gradient.

The new coefficients are expressed in dimensionless form according to: γ = γc and

φ = TeτBφ
c/me. These transport coefficients introduce new effects, such as heat

flowing up density gradients in the absence of temperature gradients, which have not

been discussed before.

Equations (6.5) and (6.6) are more usefully expressed in a ‘dimensional’ form:

eneE = −γ · ∇Pe + j×B−
α · j
nee

− neβ · ∇Te (6.7)

qe = −κ · ∇Te − ψ · jTe

e
− φ · ∇Pe (6.8)

6.1.1 The transport coefficients for a Langdon distribution

The plots of the transport coefficients against ωτB in figures 6.1 and 6.2 show several

important features. Firstly, note that all the ‘old’ coefficients (αc, βc and κc) mostly

have the same functional dependence on Hall parameter as those for a Maxwellian in

the high and low ωτB cases. However the coefficients can differ by large numerical
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Figure 6.1: The ‘old’ transport coefficients for a Maxwellian and a Langdon distribution.
The asymptotic fits of Braginskii are shown by the dashed lines.
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Figure 6.2: The newly introduced transport coefficients for a Maxwellian and a Langdon
distribution.
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factors (up to an order of magnitude). The functional forms of αc
∧ and ψc

⊥ are different

in the limit of high B-field. The forms of κc
⊥ and κc

∧ show the interesting result

that the Langdon distribution does not dramatically affect the heat flow if the Hall

parameter is sufficiently large (ωτB > 1). The break down in Onsager symmetry is

clearly shown. For a Maxwellian β and ψ are identical, for a Langdon distribution

they diverge widely from one-another.

The new transport coefficients are plotted in figure 6.2. The components γc
⊥ and

φc
⊥ have the same general variation with Hall parameter, as do γc

∧ and φc
∧. The

former – the ‘perpendicular’ components – are identical to the Maxwellian values in

the limit of high ωτB. The difference at low Hall parameter is particularly interesting

in the case of φc
⊥. This can lead to heat flowing up density gradients in the absence

of temperature gradients. The ‘cross’ components (γc
∧ and φc

∧) yield the interesting

result that heat flows and electric fields generated by a density gradient are not

parallel to this gradient.

It may be shown that the dependence of all of the transport coefficients on ωτB,

in the limit of high Hall parameter, are identical to those of Epperlein and Haines

except for αc
∧ and ψc

⊥; these agree with Braginskii’s scaling laws (αc
∧ ∝ (ωτB)−1 and

ψc
⊥ ∝ (ωτB)−2) [23]. Epperlein & Haines’s scalings for these are: αc

∧ ∝ (ωτB)−2/3

and βc
⊥ ∝ (ωτB)−5/3. The asymptotic scalings for the remaining transport coefficients

as ωτB tends to infinity are: βc
⊥ ∝ (ωτB)−5/3, βc

∧ ∝ (ωτB)−1, κc
⊥ ∝ (ωτB)−2, κc

∧ ∝
(ωτB)−1. It is interesting to note that βc

⊥ for the Langdon distribution follows the

dependency of Epperlein & Haines, while the corresponding thermoelectric term in

the heat flow equation ψc
⊥ follows Braginskii. This is explained further in appendix

G.

Finally, the dotted lines labeled ‘VFP’ in figures 6.1 and 6.2 are the values of the

transport coefficients, for low B-fields, as calculated using the VFP code IMPACTA;

this was developed by A. G. R. Thomas. This new version of IMPACT allows the

distribution function to be clamped as an arbitrary function; in this case a Langdon

distribution. The agreement between the code and the analytical theory is very good

– the disagreement is never larger than 4%.

6.1.2 Polynomial fits to the new transport coefficients

As an aid to performing transport calculations using the new theory, rational polyno-

mials have been fitted to the transport coefficients. The forms of these polynomials

closely follow those used by Epperlein & Haines [24] and are as follows:
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αc
⊥: α0 = 0.0311 α1 = 0.0618 a0 = 0.251 a1 = 0.609 a2 = 0.445
αc
∧: α′0 = 0.145 α′1 = 0.190 a′0 = 0.602 a′1 = 1.68 a′2 = 4.28
βc
⊥: β0 = 54.7 β1 = 2.53 b0 = 76.7 b1 = 159 b2 = 48.6
βc
∧: β′0 = 0.743 β′1 = 1.29 b′0 = 0.281 b′1 = 0.893 b′2 = 3.30
ψc
⊥: δ0 = 0.455 δ1 = 0.408 d0 = 1.10 d1 = 2.76 d2 = 5.32
ψc
∧: δ′0 = 0.0137 δ′1 = 0.233 d′0 = 0.0110 d′1 = 0.163 d′2 = 0.754

κc
⊥: κ0 = 2.02 κ1 = 2.72 k0 = 0.458 k1 = 1.35 k2 = 4.00
κc
∧: κ′0 = 0.124 κ′1 = 1.99 k′0 = 0.00788 k′1 = 0.112 k′2 = 0.578
γc
⊥: γ0 = 0.0689 γ1 = 0.139 c0 = 0.248 c1 = 0.608 N/A
γc
∧: γ′0 = 0.326 γ′1 = 0.426 c′0 = 0.602 c′1 = 1.68 c′2 = 4.28
φc
⊥: φ0 = 0.902 φ1 = 0.809 p0 = 1.101 p1 = 2.76 p2 = 5.32
φc
∧: φ′0 = 0.0153 φ′1 = 0.261 p′0 = 0.0109 p′1 = 0.163 p′2 = 0.754

Table 6.1: Tabulated constants for the rational polynomial fits to the transport coefficients.

αc
⊥ = a2 −

α1ωτB + α0

ωτ 2
B + a1ωτB + a0

αc
∧ =

ωτB(α′1ωτB + α′0)

ωτ 3
B + a′2ωτ

2
B + a′1ωτB + a′0

(6.9)

βc
⊥ =

β1ωτB + β0

(ωτ 3
B + b2ωτ 2

B + b1ωτB + b0)8/9
βc
∧ =

ωτB(β′1ωτB + β′0)

ωτ 3
B + b′2ωτ

2
B + b′1ωτB + b′0

(6.10)

ψc
⊥ =

δ1ωτB + δ0
ωτ 3

B + d2ωτ 2
B + d1ωτB + d0

ψc
∧ =

ωτB(δ′1ωτB + δ′0)

ωτ 3
B + d′2ωτ

2
B + d′1ωτB + d′0

(6.11)

κc
⊥ =

κ1ωτB + κ0

ωτ 3
B + k2ωτ 2

B + k1ωτB + k0

κc
∧ =

ωτB(κ′1ωτB + κ′0)

ωτ 3
B + k′2ωτ

2
B + k′1ωτB + k′0

(6.12)

γc
⊥ = 1− γ1ωτB + γ0

ωτ 2
B + c1ωτB + c0

γc
∧ = − ωτB(γ′1ωτB + γ′0)

ωτ 3
B + c′2ωτ

2
B + c′1ωτB + c′0

(6.13)

φc
⊥ = − φ1ωτB + φ0

ωτ 3
B + p2ωτ 2

B + p1ωτB + p0

φc
∧ = − ωτB(φ′1ωτB + φ′0)

ωτ 3
B + p′2ωτ

2
B + p′1ωτB + p′0

(6.14)

Using the constants in table 6.1 these polynomials fit the transport coefficients

with a maximum error of 3%. Note that the fits are achieved by minimizing the

difference between the logarithm (to base 10) of the fit and the relevant transport

coefficient.

6.2 Kinetic simulations

6.2.1 The effect of IB on the heat flow

In order to determine if the theory derived thus far is of significance to current long-

pulse LPI experiments the recent experiment conducted by Froula et al [12] will be
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Figure 6.3: A comparison between the azimuthal heat flows from the VFP code, from
classical transport theory and from the new theory derived here with the best fitting m at
the centre (labeled ‘SG’).

considered. This experiment was discussed in depth in the previous chapter. The

discrepancy between the radial heat flow as produced by the VFP code compared to

that predicted by Braginskii decreased as the imposed magnetic field was increased; as

the magnetic field strength got larger non-locality was increasingly suppressed. In the

case of the largest magnetic field (12T) non-locality should not be important at early

times, yet the transport still disagreed markedly from Braginskii’s theory. Therefore,

the breakdown of Braginskii early on, with a large imposed field, is expected to be

almost entirely caused by the inverse bremsstrahlung heating. The heat-flow for the

12T imposed field at t = 63ps will be considered in detail here. At this moment the

largest electron-ion mean-free path, for electrons moving at twice the thermal speed,

is 144µm but the largest Larmor radius is 8µm; meaning that the B-field ensures

that non-locality should not yet be very important (recall that the temperature scale-

length was of the order of 100µm).

Figure 6.3 shows that the new theory predicts the azimuthal heat flow (after 63ps

for B=12T) much better than classical transport theory. The azimuthal heat flow

has been chosen for this comparison as it is more sensitive to the distortion of the
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Figure 6.4: A comparison of the distribution function f0 to the best fitting Maxwellian fM ,
Langdon fL and super-Gaussian distribution fSG after 63ps (for a 12T imposed B-field).
The left plot emphasises the body of the distribution and the right the tail. The velocity
is normalised to the local thermal velocity and the distributions are normalised such that
f0(w = 0) = 1.

distribution away from Maxwellian than the radial heat flow (as shown in figure 6.1).

The curve labeled ‘SG’ is the heat flow predicted from the new theory with a value

of m = 3.3. This is the best fitting super-Gaussian at the centre of the laser spot at

that time; this predicts qθ close to the spot much better than classical theory (which

is out by a factor of two). The classical theory can be seen to work well away from

the laser spot, where the distribution is Maxwellian. Using the transport coefficients

with 2 ≤ m ≤ 3.3 will allow a smooth transition in the heat flow between these two

extremes. Note that in order to apply this new theory as a ‘fix’ in an MHD code,

which could then be used to simulate Froula’s experiment, a way of determining m

from the macroscopic plasma properties is required. Such a formula was given in

equation (2.67). Determining how effective this formula is in predicting m in the

presence of magnetic fields and transport is left as further work; as is fitting the

transport coefficients with both free parameters ωτ and m.

6.2.2 How good a fit is the super-Gaussian distribution?

The relevance of the transport theory derived so far depends crucially on a super-

Gaussian distribution being a good fit to f0. It has been shown that although IB

heating causes the distribution to tend towards a super-Gaussian, the reduced colli-
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sionality of the hot electrons (λei ∝ v4) can lead to f0 developing a ‘Maxwellian tail’

(as discussed by Brunner & Valeo [78]). In this section it will be shown that although

the Maxwellian tail is indeed present, the error in the super-Gaussian fit to f0 leads

to a small error in the transport quantities (<5% in this case). f0 from the simulation

is compared with the best fitting Langdon and super-Gaussian distributions in figure

6.4. The Langdon distribution does not fit the data well; an m of 3.3 is best – with a

least-squares residual of 1×10−8 (compared to 7×10−6 and 3×10−5 for the Langdon

and Maxwellian respectively). The data used to get this fit was taken from the centre

of the laser spot after 63ps with an imposed field of 12T. The super-Gaussian fit is

good for the bulk of the distribution – out to 2.5 times the thermal speed – but fails

in the tail, just as predicted by Brunner & Valeo [78].

If truncating the integrals used to calculate the transport quantities in equations

(6.5) and (6.6) at a velocity of 2.5 times the thermal speed does not introduce an

unacceptable amount of error then the transport theory derived is entirely applicable

to the early stages of Froula’s experiment. Consider truncating such an integral at a

critical speed wc:

〈W n〉approx =

∫ wc

0

F0W
n+2

1 + Ω2W 6
dW (6.15)

If the magnetic field is zero this can be expressed in terms of the lower incomplete

gamma-function:

〈W n〉approx =
4πCαn+3

e

m
Γinc

(
n+ 3

m
,wm

c

)
(6.16)

The error in the moment – from truncating the integral – can be expressed as:

δ =
〈W n〉 − 〈W n〉approx

〈W n〉
= 1−

Γinc

(
n+3
m
, wm

c

)
Γ
(

n+3
m

) (6.17)

The error is worst for higher n. The highest moment in the calculation of the

transport coefficients is the n = 12 moment. Figure 6.4 also shows a super-Gaussian

distribution with m = 2.7; this distribution always weights the tail more than f0

from the code does (out to the point where numerical error in f0 obscures the low

electron densities in the far tail) and so overestimates any error made by truncation.

On calculating the error from equation (6.17) for a super-Gaussian with m = 2.7 we

find that the error introduced by truncating the distribution at wc = 2.5 is less than

5%.

Here it should be noted that the effects of f2 have been neglected in the determi-
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nation of m. It was shown by Mora & Yahi that higher order terms in the expansion

of the distribution function may modify m [73]. The ratio of the mean free path to the

scale-length (λT/L) in the simulations was very small (its minimum value after 63ps

was 1/25). The relative importance of f2 compared to f0 in calculating the transport

goes as (λT/L)2 – for the portion of the distribution which dominates the calculation

of the relevant velocity moments; for velocities less than 2.5vT – and so its effects on

the transport should be small. However, it should be included in a calculation of the

rate of IB heating. This may affect the value of m for the best-fitting super-Gaussian,

but not the transport theory (provided the laser is circularly polarised – otherwise

anisotropic effects must be included).

6.2.3 Distinguishing IB from non-locality

The super-Gaussian fits in figure 6.4 were considered only in the case of the 12T

B-field because this is the applied B-field at which non-locality is not significant.

When no magnetic field is applied the effects of non-locality on transport are much

more important than those of IB heating; this is reflected in the much larger discrep-

ancy between Braginskii transport and IMPACT in the B = 0T case – as shown in

figure 5.15. The large degree of suppression of non-locality in Froula’s experiment

is shown by repeating the simulations with a heating operator which heats f0 as a

Maxwellian. This removes the distortion of f0 by IB but not non-locality. In this case

f0 remains close to a Maxwellian for the first 63ps of the interaction; the best-fitting

super-Gaussian distribution has m = 2.02 after 63ps. This means that the system

is behaving according to Braginskii’s transport theory and non-locality is not impor-

tant. This demonstrates that IB heating is responsible for distorting the distribution

at early times for a large imposed B-field.

Non-local transport can distort f0 away from a super-Gaussian by leading to an

enhancement in the distribution’s energetic tail. In this case transport may not be

well described by the theory expounded here. Addressing this issue, the method by

which the transport theory was derived here could be applied when the distribution

is not Maxwellian due to non-locality. For example one could apply this approach

to the non-locally pre-heated region by re-deriving the theory for a two-temperature

Maxwellian fit to f0.
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6.3 Summary

A transport theory has been derived for a super-Gaussian distribution in the presence

of magnetic fields. This theory is significantly different from the classical theory

of transport (where the distribution is assumed to be close to Maxwellian) in that

the existing transport coefficients are modified and new ones must be introduced.

Using VFP simulations it has been shown that a super-Gaussian is a good fit to the

isotropic part of the distribution function in a recent long-pulse LPI experiment (early

in time and for large imposed B-fields); the new transport theory is applicable in this

case. Furthermore, any instabilities dependent on the transport (Tidman-Shanny for

example [98]) will also be affected by the change in the transport coefficients.

The new theory places a second bound on the transport coefficients – as well as

highlighting some new effects which become important when the distribution is non-

Maxwellian, the breaking of Onsager symmetry for example. The limiting case on f0

under the influence of strong laser heating is a Langdon distribution. On the other

hand, the equilibrium distribution is Maxwellian; we have shown that the intermediate

case is sometimes described well by a super-Gaussian. Note that in the more general

case a Maxwellian tail on the distribution should be accounted for. In either case,

the transport coefficients are expected to lie between the extremes of the Maxwellian

and the Langdon; deriving the second bounding solution is therefore essential. An

interesting result produced in deriving this bounding solution is that the transport

coefficients αc
∧ and ψc

⊥ follow the Braginskii scalings in the high Hall parameter limit,

not those of Epperlein & Haines. These scalings are therefore appropriate when IB

heating is significant (after being shown to be incorrect in the Maxwellian case [25]).
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Figure 7.1: The ellipti-

cal heating profile

So far it has been demonstrated that Braginskii’s theory fails

to describe transport when non-locality or IB are important.

This leads to a discrepancy in the rate of magnetic field ad-

vection as predicted by the classical theory which is particu-

larly bad if non-locality is crucial to determining the heat flow

and the advection is dominated by the Nernst effect. The ad-

vection velocity is in this case proportional to the heat flow,

which can be different from Braginskii’s theory by up to a fac-

tor of 100. In order to further show the crucial importance

of modelling long-pulse LPI kinetically, the generation of B-

fields by the commonly considered thermoelectric mechanism

will now be shown to be dependent on non-locality.

The non-local generation of B-fields has been discussed

previously [63], but has yet to be applied to experimentally

relevant situations. To investigate how the breakdown of

classical transport affects B-field generation the experimen-

tal setup of Froula et al is not useful. Classical and non-local

theories predict that a circular spot such as the one studied in

chapter 5 will not generate B-fields. The symmetry of this situation must be relaxed.

This will be done by investigating an elliptical laser spot. Thermoelectric magnetic

field generation would be expected to produce B-fields in this case – the addition

of hydrodynamic ion-motion to IMPACT will allow it to be definitively shown that

the field from the elliptical spot is not due to this mechanism. The limitation of

153



154 CHAPTER 7. NON-CLASSICAL MAGNETIC FIELD GENERATION

this investigation is that the effects of f
2

are not considered. It has been shown that

anisotropic pressure (which is the result of a non-zero f
2
) can generate B-fields larger

than those seen in this chapter [38]. However, for the long scale-lengths studied here

(> 4000λn) the approximation that the pressure is isotropic is a good one. However,

the non-local mechanism is affected by f
2

[99] and so this should really be accounted

for. This is left as further work.

7.1 The elliptical spot

The elliptical heating profile is given by:

∂T̃e

∂t̃
=

(
∂T̃e

∂t̃

)
MAG

exp

[
−
(
x̃2

ã2
+
ỹ2

b̃2

)
1

λ̃2

]
(7.1)

Figure 7.1 illustrates this. The plasma conditions are the same as those simulated

in the last chapter. As for the laser parameters: vosc doubles, but the area of the spot

has also changed. The ellipse is chosen with a = 3 and b = 1 so its area (πab/4) is

three times larger than in the previous case – meaning the laser delivers 600J in 1ns.

A non-uniform grid is again required in order to resolve the laser spot adequately and

give enough buffer space for the non-local electrons to propagate as far as is possible

without hitting the boundary. The spatial gridding is such that 75 grid-cells span a

distance of 3500 electron-ion mean free paths (for the 20eV background plasma) in

the x-direction, 55 span 2000 λn in the y-direction. The ratio of smallest to largest

spatial cell is chosen to be 3:1. The velocity grid and temporal resolution are the same

as those used in chapter 5. The background plasma temperature is 20eV and again,

a fully ionised nitrogen plasma is simulated. In order to achieve better resolution

of the laser spot reflective boundary conditions are used, allowing the simulation of

one-quarter of the spot only. Note that there is no initial magnetic field and the

plasma density is uniform initially.

7.1.1 Self-generated magnetic fields

The evolution of the magnetic field generated by the elliptical spot (in the z-direction)

is shown in figure 7.2. The peak field generated under these conditions after 885ps is

1.36T. The peak magnetisation is reached at 440ps and is 0.63; a consideration of the

transport coefficients in figure 2.5 shows that such a magnetisation will affect them all.

It is important to determine that this magnetic field is not caused by numerical errors



7.1. THE ELLIPTICAL SPOT 155

X!Distance/Microns

Y!
D

is
ta

nc
e/

M
ic

ro
ns

0 100 200 300
0

100

200

300

400

500

X!Distance/Microns
Y!

D
is

ta
nc

e/
M

ic
ro

ns

0 100 200 300
0

100

200

300

400

500

X!Distance/Microns

Y!
D

is
ta

nc
e/

M
ic

ro
ns

0 100 200 300
0

100

200

300

400

500

X!Distance/Microns

Y!
D

is
ta

nc
e/

M
ic

ro
ns

0 100 200 300
0

100

200

300

400

500

!0.2

!0.15

!0.1

!0.05

0

!0.4

!0.3

!0.2

!0.1

0

!0.6

!0.4

!0.2

0

!1

!0.5

0

Magnetic Field/T

Magnetic Field/TMagnetic Field/T

Magnetic Field/T

Figure 7.2: Magnetic field generated by the elliptical spot. These snapshots are taken
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and to quantify any such errors. In order to do this the spatial and velocity grids

were altered. The fields are well resolved spatially, the resolution in velocity space

will shown to be crucial to the generated fields (they will be shown to be generated

by a non-local mechanism which is very sensitive to velocity-gridding [71]). When

the number of velocity grid cells is increased from 45 to 75 the maximum variation

in the field is found to be only 0.02%.

7.1.2 The thermoelectric mechanism

On the relaxation of the cylindrical symmetry of the system, but retention of the

constraint that the magnetic field is perpendicular to the gradients of the physical

variables, classical Ohm’s law gives the following equation for the evolution of the

z-component of the magnetic field (the other two components are always zero):

∂B

∂t
+∇ · [(C + vN)B]−∇ ·

(
η⊥
µ0

∇B
)

=
1

ene

{[
∇Te +

1

ne

∇
(
B2

2µ0

)]
×∇ne

}
z

+
1

e

{
∇
(
B2

2µ0

)
×∇α1 +∇β1 ×∇Te

}
z

(7.2)

where

α1 =
1

neωeτe

(
αc
∧ −

βc
∧β

c
⊥

κc
⊥

)
(7.3)

β1 = βc
⊥ +

βc
∧κ

c
∧

κc
⊥

(7.4)

The terms on the left-hand side of equation (7.2) are the advection (frozen-in

flow, Nernst effect) and resistive diffusion terms. Those on the right-hand side are

responsible for magnetic field generation. Equation (7.2) may be simplified by ne-

glecting resistive diffusion and some generation effects. The first generation term can

be re-written as:

1

ene

[
∇Te +

1

ne

∇
(
B2

2µ0

)]
=

1

en2
e

∇
(
Pe +

B2

2µ0

)
=

1

en2
e

∇
[
Pe

(
1 +

1

2β

)]
(7.5)

In the limit where β >> 1 the magnetic pressure may be neglected. The minimum
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Figure 7.3: The electron number density (left) and temperature (right) after heating with
the elliptical laser profile for 440ps.

value β may take is where the B-field is maximum – this is 590µm from the spot’s

centre. Here β is 600 after 885ps, thus the magnetic pressure is indeed negligible. In

this case this term becomes that on the right-hand side of equation (7.7). The term

in α1 is the collisional correction to the Hall term. It can be shown that for Z = 7

the maximum value of this correction is 6%, therefore it is neglected [33] . The term

in β1 can be written:

∇β1 ×
∇Te

e
=
dβ1

dωτ
∇(ωτ)× ∇Te

e
(7.6)

It has been shown that β1 is very weakly dependent on ωτ – varying by 4% over

four orders of magnitude of ωτ [33]. When this term is compared to the ‘∇ne×∇Te’

term, for the conditions considered here, it is found to be a factor of 106 smaller.

Therefore the equation for the evolution of the magnetic field becomes:

∂B

∂t
+∇ · [(C + vN)B] =

1

ene

[∇Te ×∇ne]z (7.7)

The generation mechanism which survives this series of assumptions is the ther-

moelectric mechanism. The shape of the B-field generated by this may be understood

by figure 7.3. The gradients of the temperature and density profiles are no longer

parallel; the density profile, which has been driven out by hydrodynamic expansion

from the laser-heated region, exhibits variation in the azimuthal direction. The po-

larity of field that this mechanism would generate is given in figure 7.4. Here a plot of

the rate of change of the magnetisation with time is plotted, this mechanism should

produce the observed quadrupole; note that the non-local mechanism (discussed in
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Figure 7.4: The theoretically predicted rate of change of the B-field caused by the ther-
moelectric mechanism (left) and the non-local mechanism (right) after 440ps.

section 2.4.4) gives the same polarity and so this cannot be used to determine which

is dominant.

So far the discussion of the role of the thermoelectric mechanism in generating

the B-field has been qualitative, its quantitative importance may be understood by

comparing simulations of the elliptical spot with and without hydrodynamic plasma

response. In figure 7.5 the difference between the maximum values of the magnetic

field generated with and without hydrodynamic ion motion is plotted against time.

The effect of hydrodynamics is seen to get stronger with time – the thermoelectric

mechanism plays more of a role at later times. Figure 7.6 shows a two-dimensional

snapshot of the difference between these simulations. The difference in the magnetic

fields in both figures is less than 5% of the field strength generated. It is clear that

the thermoelectric mechanism is not the dominant process even though it predicts

the correct field polarity. Another mechanism must be responsible for the magnetic

field generation. This is postulated to be the non-local mechanism. In addition, the

fact that the magnetic field produced by the elliptical spot is the same regardless of

whether ion-motion is included shows that the advection of the generated B-field is

dominated by the Nernst effect. This will not behave classically. The work in the

previous chapter clearly demonstrates that a magnetic field of 1.36T is not enough to

localise the transport.
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7.1.3 The non-local mechanism

In section 2.4.4 the generation of magnetic fields in the non-classical regime was dis-

cussed. The analytical theory presented here will now be used to provide further

evidence that the B-field generated by the elliptical spot is due to a non-local mech-

anism. The early time model shows that a magnetic field can be generated without

density gradients according to the following equation:

ω̃τ̄ = −1

2

(
t̃

τ̄ei

)2 ∇̃T̃e

T̃e

×

[
154

∇̃(∇̃2T̃e)

T̃e

+ 620
|∇T̃e|2

T̃e
2

]
λ̄4

ei

6π
√

2
(7.8)

This model only works if the plasma’s temperature is approximately constant

over the time considered – this is why it is only valid for early times. To ascertain

whether such a mechanism could be responsible for the magnetic field generated in

the case of the elliptical laser spot, the B-field from a slowly cooling elliptical hot spot

was compared to the early-time model (ETM). The difference between the maximum

temperature of the cooling hot spot and the background had to be chosen to be small

in order to retard the rate of cooling sufficiently – the maximum temperature was

therefore set to be 20.2eV (the elliptical laser spot will reach this temperature after

only 70fs). Figure 7.7 shows a comparison of the magnetic field generated by this

hot spot with the ETM. The agreement is good until 2ps – beyond this the early
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time assumption breaks down. The error bars in this figure are an expression of the

fact that the magnetic field generated in the simulation is crucially dependent on the

velocity space gridding. The B-field from the ETM is derived from the equation:

∂ω̃

∂t̃
=
∇̃ (ñe〈w̃5〉)× ∇̃ (ñe〈w̃3〉)

6 (ñe〈w̃3〉)2 (7.9)

The dependence of this field on high moments of the distribution function (e.g.

〈w̃5〉) requires the resolution of very small changes to the tail of the distribution

function. If this is not resolved well enough numerical errors will swamp the very small

early time field. The numerical field had a different polarity from that generated by

non-locality (an octupole compared to the quadrupole); this made numerical errors

easy to distinguish. To minimise the error a finely resolved velocity grid was used –

170 cells divided up a domain that was bounded at seven times the thermal speed

of the background plasma. The relative size of the numerical error (as compared to

the early-time B-field) decreased with time, this is reflected in the error bars in figure

7.7. Electron-electron collisions were included in the simulations but had no effect

on such a short time-scale; although the ETM does not include these collisions but

the agreement was still good. The ETM cannot be applied to the fields shown in

figure 7.2, the heating is too rapid. However, the slowly cooling system studied here

gives a very early time snapshot of the rapidly heating system valid over a very short

time window and so the results support the suggestion that the B-field generated by

an elliptical laser spot is due to the non-local mechanism described. For conclusive

proof a non-local model which works over long time-scales and for strong heating is

required, to develop such a model would be very difficult.

7.2 Summary

The effect of non-locality on B-field generation under experimentally realisable con-

ditions was studied. To do this the circular symmetry of the simulations in chapter

5 was relaxed. It was shown that this makes magnetic field generation possible. An

elliptical laser-spot was considered (with an aspect ratio of 3:1). If the laser deliv-

ered 600J in 1ns this was found to generate a maximum B-field of 1.36T. One might

naively expect the field to be generated by the classical thermoelectric mechanism.

This was shown not to be the case. A non-classical mechanism derived from a gen-

eralised non-local Ohm’s law was postulated to be responsible. This was tested by

comparing a slowly cooling elliptical hotspot, under the same conditions as the heated
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case, to the non-local early time model. These were found to be in good agreement if

the velocity-space grid resolution was sufficiently high. However, the non-local model

should be developed to include the effect of f
2
.



Chapter 8

Conclusions

8.1 Summary of results

In order to study the recent experiment of Froula et al the first 2D VFP code with

self-consistent B-fields and the ability to run over nanosecond time-scales was up-

graded to include ion-motion. This allowed the definitive demonstration that in the

interaction of a long-pulse laser with a gas-jet plasma under the influence of an (ini-

tially uniform) externally applied B-field the Nernst effect dominated the magnetic

field dynamics; frozen-in flow was the only advection mechanism previously consid-

ered in this interaction. The fact that the Nernst advection velocity is proportional

to the heat flow then lead to a strong coupling between the magnetic field advection

and the degree of non-locality. The B-field and so the Nernst velocity determined

the importance of non-locality, which directly affected the heat flow which deter-

mined the Nernst velocity. The rapid advection of the imposed B-field, which was

initially sufficiently strong to suppress non-locality, lead to the re-emergence of non-

local transport after a relatively short time – 500ps into the simulation of Froula’s

experiment, whose duration was longer than 2ns. The dominance of the Nernst effect

could be demonstrated experimentally in such experiments as those of Froula et al by

measuring a cooling of the plasma in the central region while the laser is still heating

the plasma. This is a result of the enhanced magnetic field advection leading to a

decrease in the central Hall parameter and so enhancing heat transport out of this

region. As well as dominating advection, it was determined that, for conditions simi-

lar to Froula’s experiment, a non-local mechanism was likely responsible for magnetic

field generation.

The break-down of classical theory in Froula’s experiment has been discussed here

and previously in terms of non-locality [12]. However IB heating can also cause this to
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happen. Both non-locality and IB cause the distribution function to be distorted away

from Maxwellian; this causes the break-down of the classical theory. The distortion of

the distribution has been quantified using the ‘distortion parameter’. This parameter

allowed the discrimination of regions of the plasma where IB heating was the dominant

cause of the distortion from those where non-locality was responsible. It was found

that both effects were significant unless the magnetic field was very large; for the

imposed field of 12T IB heating was dominant early in time – later on magnetic field

cavitation lead to the re-emergence of non-locality. To quantify the effect of IB heating

on transport a transport theory was developed for a super-Gaussian distribution (the

analytical solution for the distribution function with strong IB heating). In this case

the new theory explained the early-time heat flow for B=12T better than the classical

theory. IB heating was found to affect thermal transport less than non-locality; the

heat flow was different by a factor of two as a result of IB compared to two orders of

magnitude for the B=0T case where non-locality was dominant.

8.2 Conclusions

The importance of both non-local transport and B-fields in ICF hohlraums were sep-

arately discussed in the introduction to this thesis. The possible coupling between

these effects elucidated in chapter 5 means that extra care must be taken when mod-

elling the transport in such a situation. The enhanced dynamics of the magnetic

field given by Nernst advection, above that expected from frozen-in flow, can lead to

the unexpected breakdown of Braginskii’s transport theory (if the B-field is expelled

from the region of plasma being examined). Although the results presented here only

definitively demonstrate that the Nernst effect is important near the laser entrance

hole of a hohlraum, it was possible to estimate (using the Nernst number) that it

should be included in any simulation throughout the gas-fill. Both non-locality and

Nernst effect must be included in hohlraum modelling.

The question of how strong a B-field is required to re-localise transport has not

only been answered for the conditions simulated here, but the need to extend the

question has been discussed for the first time. It has been shown that even very

strong fields can be rapidly advected away from the laser heated region mitigating

the re-localisation there. The importance of non-locality in a given LPI needs to

be considered as dynamically varying with time. Furthermore, the Nernst effect has

some important consequences other than its effect on non-locality. The fact that it

may lead to an instability has ramifications for any situation where there are strong
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heat flows in the presence of a large B-field. This effect is included in classical theory,

but should be modified by non-locality (as non-locality significantly affects the rate

of Nernst advection). In recent experiments examining magnetic reconnection in the

high energy-density regime an instability has been observed [80]. Investigating if this

could be driven by Nernst is left as further work.

Furthermore it must be noted that although B-fields suppress non-locality, they

do not prevent the distortion of the distribution function by IB heating. Determining

the effect of IB on transport in the presence of B-fields is important in long-pulse

LPI – where this is the main heating mechanism. The modification by IB to the

transport coefficients predicted in this thesis should have important consequences

such as changing the Nernst velocity and the rate of instabilities (Tidman-Shanny).

The ability of classical theory to predict the rate of magnetic field generation

under typical experimental conditions has been called into question. Non-locality has

been shown to significantly modify the generation rate [63]. Non-locality significantly

affects ‘∇ne×∇Te’ field generation – this is the main mechanism in long-pulse laser-

solid interactions (and so in hohlraums). Therefore a kinetic treatment of long-pulse

LPI is required to correctly determine the heat flow, magnetic field advection and

magnetic field generation; all of these are crucial to accurate modeling of the laser-

plasma interaction.

Finally, the new version of IMPACT with hydrodynamic ions should be applied to

many more aspects of ICF simulation. The results presented in this thesis lead us to

conclude that to study the generation and advection of magnetic fields during direct

drive implosions one should employ a kinetic treatment. The new version of IMPACT

would provide an excellent tool for determining whether kinetic effects modified the

implosion velocity in this situation. Similarly the new code could provide insight into

the generation of B-fields in the interaction of a laser with the wall of a hohlraum.

An alternative application of the work presented here has recently been suggested (by

Froula et al). The interaction of a de-focussed laser with a gas jet could be used to

create density channels by expulsion of the plasma from the laser-heated region; the

long-pulse beam would then be followed by a short pulse beam which would accelerate

electrons by the method of wakefield acceleration [100]. The density channel acts as a

waveguide and allows the accelerated electrons to acquire more energy. An applied B-

field parallel to the laser could be used to taylor the shape of these channels (which is

advantageous). To conclude, the applications of the new code are much more diverse

than those presented in this thesis and there is much interesting work still to be done

using it.
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Appendix A

Polynomial fits to the transport

coefficients

In section 2.3.1 it was stated that the most convenient way to calculate the classical

transport coefficients is to use the polynomial fits of Epperlein & Haines [33]. These

are given below:

αc
‖ = α0 αc

⊥ = 1− α′1ωτB + α′0
(ωτB)2 + a′1ωτB + a′0

αc
∧ =

ωτB(α′′1ωτB + α′′0)

[(ωτB)3 + a′′2(ωτB)2 + a′′1ωτB + a′′0]
8/9

βc
‖ = β0 βc

⊥ =
β′1ωτB + β′0

[(ωτB)3 + b′2(ωτB)2 + b′1ωτB + b′0]
8/9

βc
∧ =

ωτB(β′′1ωτB + β′′0 )

(ωτB)3 + b′′2(ωτB)2 + b′′1ωτB + b′′0

κc
‖ = γ0 κc

⊥ =
γ′1ωτB + γ′0

(ωτB)3 + c′2(ωτB)2 + c′1ωτB + c′0
κc
∧ =

ωτB(γ′′1ωτB + γ′′0 )

(ωτB)3 + c′′2(ωτB)2 + c′′1ωτB + c′′0
(A.1)

The values of the constants depend on Z and were tabulated by Epperlein &

Haines [25]. Since the plasmas of interest in this thesis had an ionic charge of 7, the

constants are given for this value.
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α0 0.3454 α′0 1.82 α′1 3.12 α′′0 794 α′′1 2.53

a′0 2.79 a′1 6.26 a′′0 3250 a′′1 11700 a′′2 793

β0 1.218 β′0 1730 β′1 6.33 β′′0 2.92 β′′1 1.5

b′0 3530 b′1 11300 b′′0 0.629 b′′1 3.33 b′′2 7.68

γ0 8.685 γ′0 8.84 γ′1 3.49 γ′′0 0.268 γ′′1 2.5

c′0 1.02 c′1 5.19 c′′0 0.00461 c′′1 0.0465 c′′2 0.539



Appendix B

A more general Ohm’s law with

flows

In section 3.4.4 a form of Ohm’s law including the effects of hydrodynamic ion flow

was derived. In this derivation terms of O(C2) or O(Cif1j) were neglected. Here

these terms have been included. Previously it was shown that Ohm’s law could be

derived from the following equations:

−(Ã + B̃)W 4Fm +W 3Ω× F1 = F1 (B.1)

Ãj =

(
Djne

ne

− 3

2

DjTe

Te

+W 2DjTe

Te

)
(B.2)

B̃j = 2

(
εj − [Ω×C]j −

∂C̃

∂τ

)
(B.3)

As usual the tildes denote normalised units – these will be dropped for brevity –

the magnetic field is in the z-direction. Retaining all the terms in equations (B.1) -

(B.3), the following expressions may then be derived for the normalised components

of f1:

Fx =
Fm

1 +W 6Ω2

[
W 7Ω (Ay +By) + γΩW 6Tcy −W 4 (Ax +Bx) + γW 3Tcx

]
(B.4)

Fy = − Fm

1 +W 6Ω2

[
W 4 (Ay +By) + γΩW 6Tcx +W 7Ω (Ax +Bx) + γW 3Tcy

]
(B.5)

where γ = 4w3
T/πneνT . Ohm’s law is obtained from the first moment of equations

(B.4) and (B.5). This yields:
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ε− ∂C

∂τ
−C · ∇C + C×Ω = −DPe

2Pe

+ J×Ω +
4

3
√
π
αc · J− βc · DTe

2Te

+ δc · ê (B.6)

The differences are that: on the left-hand side the convective derivative is now

included; on the right-hand side a new transport coefficient (δc) has been introduced.

This is given by:

δc =
γ

8π

(
M4

x ΩM7
y

ΩM7
x M4

y

)
Mn

j =

∫
wnTcjFm

1 + Ω2w6
d3w ê =

(
1

1

)
(B.7)

The moments Mn
j must be calculated numerically as they are moments of com-

plicated combinations of Fm and F1. This was ignored previously as these terms are

expected to be small.



Appendix C

Improving the ion fluid model

C.1 The relaxation of Ti = 0

It is possible to relax the assumption that the ions are cold. In order to do this the

ion’s energy equation must be solved for the ion pressure Pi.

∂ρEi

∂t
+∇ · (ρiEiC + PiC) = ∆Eie (C.1)

Ei is the total energy of the ion fluid and given by the sum of the ion fluids kinetic

energy and it’s internal energy εi. The internal energy is given by the equation of

state.

Ei =
1

2
ρC2 + εi Pi = (γ − 1)ρεi (C.2)

γ is the same as in an ideal gas (γ = 5/3). The term ∆Eie expresses the energy

exchange between the ions and the electrons. The way in which this term is treated

is the main challenge to including the ion pressure in the model.

C.2 A two-species model

In order to describe higher frequency phenomena resulting from charge separation

or Maxwell’s displacement current it would not only be necessary to solve the full

equation for the fluid momentum – but also to introduce a two species description.

The ion continuity equation would need to be solved for the ion density:

∂ni

∂t
+∇ · (niC) = 0 (C.3)

171



172 APPENDIX C. IMPROVING THE ION FLUID MODEL

As stated previously, when considering high frequency phenomena, the displace-

ment current needs to be included in the Ampere-Maxwell equation. The ion mo-

mentum equation which must be solved is then equation (3.77).



Appendix D

The simulation of shocks

The finite difference scheme used in the ion-model will become unstable when the

gradients of the physical variables become too steep – for example when a shock

starts to form. In this case a more robust hydrodynamics algorithm will be required

[101,102]. To simulate this the fluid scheme must be upgraded to make use of second

order Van Leer advection [103]. The shock scale-length cannot be resolved without

the inclusion of ion kinetics. An artificially high viscosity must be included in order

to dissipate the strength of the shock such that it is spread over several grid cells.

D.1 The artificial viscosity

The addition of viscosity modifies the ion’s momentum and internal energy equations

in the following way [101,104]:

∂ (ρC)

∂t
+∇ · (ρCC) = ∇ (PT + q) (D.1)

∂(ρεi)

∂t
+∇ · (ρεiC) = − (PT + q)∇ ·C (D.2)

To a first approximation ion temperature has been neglected – to correctly model

shocks this assumption must be relaxed and both of the above equations solved. The

artificial viscosity – required on the cell boundaries – is generally given by:
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qi+1/2,j =αρi+1/2,j(xi+1 − xi)
2[(Cx)i,j − (Cx)i+1,j]

2+

βρi+1/2,j(xi+1 − xi)
2(Cm)i+1/2,j[(Cx)i,j − (Cx)i+1,j] (D.3)

qi,j+1/2 =αρi,j+1/2(yj+1 − yj)
2[(Cy)i,j − (Cy)i,j+1]

2+

βρi,j+1/2(yj+1 − yj)
2(Cm)i,j+1/2[(Cy)i,j − (Cy)i,j+1] (D.4)

Where Cm is the magnetosonic speed. The first term in each equation is known

as the non-linear term and the second as the linear term; the coefficients α and β

determine the amount of each used and need to be set arbitrarily to suit the problem

simulated.

The inclusion of q in the ion’s momentum and energy equations acts to smear

out any discontinuities in these quantities caused by the shock. The same must be

done for the electrons. In equations D.1 and D.2 the artificial viscosity acts on the

terms responsible for the acceleration due to pressure gradients and compressional

heating. This can be achieved by adding q into the terms in the f0 and f1 equations

responsible for these effects. In the f0 equation the artificial viscosity term must

be added to the compressional heating term – equation (D.2) shows that the effect

of viscosity is simply to augment this term. Compressional heating is given by the

second moment of the following term:

TCH =
w

3

∂f0

∂w
∇r ·C =⇒

∫
TCHmew

2d3w = Pe∇r ·C (D.5)

Augmenting this term to include artificial viscosity is simply a matter of replacing

it with:

TCH =

(
1 +

q

Pe

)
w

3

∂f0

∂w
∇r ·C =⇒

∫
TCHmew

2d3w = (Pe + q)∇r ·C (D.6)

The term in the f1 equation that is responsible for pressure-gradient acceleration

should be replaced by:

Tpg = w∇r

[
f0

(
1 +

q

Pe

)]
=⇒

∫
Tpgmewd3w = ∇r(Pe + q) (D.7)
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D.2 Second-order Van Leer advection

The form of Van Leer’s algorithm described here was originally proposed by Youngs

and best described by Town [103]. This technique will be described in one-dimension

for the sake of simplicity; it can readily be extended to two-dimensions. In the

second-order Van Leer advection scheme, the flow velocity is approximated by:

Cx = (Cx)
n
i+1/2 +

(
∂Cx

∂x

)n

i+1/2

x (D.8)

The finite difference approximation to the derivative of Cx in the above equation

uses the simplest method possible:(
∂Cx

∂x

)n

i+1/2

=⇒
(Cx)

n
i+1 − (Cx)

n
i

xi+1 + xi

This gives the following equation for the momentum transfer across the cell bound-

ary at xi+1/2:

V ρn+1
i (Cx)

n+1
i = −

(
(Cx)

n
i +

1

2
(1− η) D̄i+1/2)

)
Ai+1/2∆M

n
i+1/2 +(

(Cx)
n
i−1 −

1

2
(1− η) D̄i+1/2

)
(1− Ai+1/2)∆M

n
i+1/2 (D.9)

V is the volume of the cell, ∆Mi+1/2 is the amount of mass transferred across the

cell face. The variable A expresses the direction of the flow at the cell faces.

Ai+1/2 = 1 if fluid flows into cell i across face i+ 1/2

= 0 if fluid flows out of cell i across face i+ 1/2

η and Di+1/2 are given by:

η =
(Cx)

n
i+1/2∆t

xi+1 − xi

Di+1/2 = (Cx)
n
i+1 − (Cx)

n
i (D.10)

The Van Leer algorithm, as given so far, would suffer from spurious oscillations in

the solution. This is prevented by employing a non-linear cut-off [103]. This technique

detects when such oscillation begins and damps it out by reverting to a lower-order

accurate scheme (donor-cell advection) – the large numerical diffusion inherent in this

method provides the required dissipation. Using this non-linear cut-off means that D̄
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must be employed in equation D.9 instead of D.

D̄i+1/2 = S
[
Min

(
| Di+1/2 | , 2 | (Cx)

n
i − (Cx)

n
i−1 |

)]
(D.11)

Where

S =

{
Sign

[
(Cx)

n
i+1 − (Cx)

n
i

]
: Sign

[
(Cx)

n
i+1 − (Cx)

n
i

]
= Sign

[
(Cx)

n
i − (Cx)

n
i−1

]
0 : Sign

[
(Cx)

n
i+1 − (Cx)

n
i

]
6= Sign

[
(Cx)

n
i − (Cx)

n
i−1

]
(D.12)

The operators Sign and Min return the sign and the minimum value of the brack-

eted quantities respectively. The cut-off is activated in two situations: (1) when the

signs of the gradients of the fluid quantity at each cell edge are different, this indicates

a spurious oscillation may be occurring with wavelength equal to the mesh length;

(2) if the modulus of the gradient at one cell edge is larger than twice the modulus of

the gradient at the other, this indicates a shocked region – it is in these regions that

spurious oscillations usually appear. The Van Leer scheme is much more complicated

than the simple centred-difference scheme currently employed.



Appendix E

The Maxwellian heating operator

As seen in section 4.3.5 the Maxwellian heating operator is (in normalised units):(
∂f̃0

∂t̃

)
MH

=
1

Ẑ2w̃2

∂

∂w̃

(
D0w̃

2∂f̃0

∂w̃

)
(E.1)

The form of this heating term can be understood by noting that Maxwellian

heating is implemented by augmenting the Rosenbluth ‘D’ coefficient in the Fokker-

Planck collision operator – introduced in the f0 equation (2.22). This is modified by

the addition of a term proportional to w2, i.e. [89]:

D̄(w) = D(w) +D0w
2 (E.2)

The reasoning behind this is made clear by a consideration of the effect of the

heating term given above on f0 (in un-normalised units):(
∂f0

∂t

)
MH

=
meYeeD0

w2

∂

∂w

(
w2∂f0

∂w

)
(E.3)

The solution to this equation is of the form:

f0 ∝

(
ne

v
3/2
T

)
e(−w2/v2

T ) vT (t) =

√
1 +

4meYeeD0

v2
T0

(E.4)

Thus the solution to the form of the heating operator given in equation (E.1) is

always a Maxwellian.
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Appendix F

The generalised distortion

parameter

Is it possible to use a different moment in the distortion parameter? To answer this

consider the general case (∆G):

∆G =
〈wm〉
〈wm〉M

(F.1)

Analytical progress may be made by evaluating the denominator.

〈wm〉M =

∞∫
0

fmw
2+mdw = A

∞∫
0

e−aw2

w2+mdw (F.2)

Where the constants have been subsumed into A and a for brevity. This integra-

tion yields:

〈wm〉M =
A

2
a−(m+3)/2Γ

(
3 +m

2

)
(F.3)

In figure F.1 the gamma function is plotted against it’s argument. If n is zero

or a negative integer then Γ(n) is discontinuous. This limits the choice of m in

equation (F.2). Aesthetically one might want m to be an integer – although there

is no mathematical reason why it should be. The simplest integral to evaluate is

that where m = −2 as this causes the velocity to disappear from the integral while

allowing the velocity moment to converge. The choice of m determines which velocity

is weighted the most in the integral used to calculate ∆G. Using a larger m will

produce a result which is more sensitive to distortion of the distribution in the tail

than in the body. Therefore ∆G may be tuned to study distortion of different parts
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Figure F.1: The gamma function - the vertical dashed lines denote discontinuities.
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the tail of the distribution more strongly.
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of the distribution. This is illustrated in figure F.2; here the effect of increasing m on

the integrand in equation ∆G is illustrated for a Maxwellian distribution.
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Appendix G

Super-Gaussian transport

coefficients

The components of the transport coefficients are in given terms of the following inte-

gral:

〈W n〉 =

∫ ∞

0

F0W
n+2

1 + Ω2W 6
dW (G.1)

The components of the ‘old’ transport coefficients (α, β, κ) when f0 is a super-

Gaussian are:

αc
⊥ =

9
√
π

4δ∆〈Wm+3〉
(G.2)

αc
∧ =

3
√
πΩ

4

(
3〈〈Wm+6

m+3 〉〉
δ∆〈Wm+3〉

− 1

)
(G.3)

βc
⊥ =

1

∆

[
〈〈Wm+5

m+3 〉〉+ Ω2〈〈Wm+6
m+3 〉〉〈〈Wm+8

m+3 〉〉 −
5

δ
〈〈W 5

m+3〉〉 −
5Ω2

δ
〈〈Wm+6

m+3 〉〉〈〈W 8
m+3〉〉

]
(G.4)
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βc
∧ =

Ω

∆

[
〈〈Wm+8

m+3 〉〉 − 〈〈Wm+6
m+3 〉〉〈〈Wm+5

m+3 〉〉+
5

δ
〈〈Wm+6

m+3 〉〉〈〈W 5
m+3〉〉 −

5

δ
〈〈W 8

m+3〉〉
]

(G.5)

κc
⊥ =

8

9
√
π
[δ
2
〈Wm+7〉 − 5

2
〈W 7〉+

Ω2〈Wm+8〉
2∆

(
δ〈〈Wm+8

m+3 〉〉 − δ〈〈Wm+6
m+3 〉〉〈〈Wm+5

m+3 〉〉
)

+
Ω2〈Wm+8〉

2∆

(
5〈〈Wm+6

m+3 〉〉〈〈W 5
m+3〉〉 − 5〈〈W 8

m+3〉〉
)

−〈W
m+5〉

2∆

(
δ〈〈Wm+5

m+3 〉〉+ Ω2δ〈〈Wm+6
m+3 〉〉〈〈Wm+8

m+3 〉〉
)

+
〈Wm+5〉

2∆

(
5〈〈W 5

m+3〉〉+ 5Ω2〈〈Wm+6
m+3 〉〉〈〈W 8

m+3〉〉
) ]

(G.6)

κc
∧ =

8Ω

9
√
π
[δ
2
〈Wm+10〉 − 5

2
〈W 10〉 − 〈Wm+8〉

2∆

(
δ〈〈Wm+5

m+3 〉〉+ δΩ2〈〈Wm+6
m+3 〉〉〈〈Wm+8

m+3 〉〉
)

+
〈Wm+8〉

2∆

(
5Ω2〈〈Wm+6

m+3 〉〉〈〈W 8
m+3〉〉+ 5〈〈W 5

m+3〉〉
)

−〈W
m+5〉

2∆

(
δ〈〈Wm+8

m+3 〉〉 − δ〈〈Wm+6
m+3 〉〉〈〈Wm+5

m+3 〉〉
)

+
〈Wm+5〉

2∆

(
5〈〈W 8

m+3〉〉 − 5〈〈Wm+6
m+3 〉〉〈〈W 5

m+3〉〉
) ]

(G.7)

The following variables used in these equations are defined as:

δ =
2m/2m

αm
e

〈〈W p
q 〉〉 =

〈W p〉
〈W q〉

∆ = 1 + Ω2〈〈Wm+6
m+3 〉〉2 (G.8)

The ‘new’ transport coefficients are given by:

ψc
⊥ =

1

∆
(〈〈Wm+5

m+3 〉+ Ω2〈〈Wm+8
m+3 〉〉〈〈Wm+6

m+3 〉〉)−
5

2
(G.9)

ψc
∧ =

Ω

∆
(〈〈Wm+8

m+3 〉〉 − 〈〈Wm+5
m+3 〉〉〈〈Wm+6

m+3 〉〉) (G.10)

γc
⊥ =

2

δ∆
(〈〈W 5

m+3〉〉+ Ω2〈〈Wm+6
m+3 〉〉〈〈W 8

m+3〉〉) (G.11)
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γc
∧ =

2Ω

δ∆
(〈〈W 8

m+3〉〉 − 〈〈Wm+6
m+3 〉〉〈〈W 5

m+3〉〉) (G.12)

φc
⊥ =

√
π

4
[〈W 7〉+

Ω2〈Wm+8〉
∆

(
〈〈W 8

m+3〉〉 − 〈〈Wm+6
m+3 〉〉〈〈W 5

m+3〉〉
)

−〈W
m+5〉
∆

(
〈〈W 5

m+3〉〉+ Ω2〈〈Wm+6
m+3 〉〉〈〈W 8

m+3〉〉
) ] (G.13)

φc
∧ =

√
πΩ

4
[〈W 10〉 − 〈Wm+8〉

∆

(
〈〈W 5

m+3〉〉+ Ω2〈〈Wm+6
m+3 〉〉〈〈W 8

m+3〉〉
)

+
〈Wm+5〉

∆

(
〈〈Wm+6

m+3 〉〉〈〈W 5
m+3〉〉 − 〈〈W 8

m+3〉〉
) ] (G.14)

By numerically evaluating the integrals in the expressions for the transport coeffi-

cients (using Simpson’s one-third rule) plots such as those in figures 6.1 and 6.2 may

be produced.

The high and low Hall parameter asymptotes of the transport coefficients may be

derived by considering the following integral at ωτ approaches zero and infinity:

〈W n〉 =

∫ ∞

0

F0W
n+2

1 + Ω2W 6
dW (G.15)

The case where Ω = 0 can be evaluated straightforwardly; in this case the integral

is represented by a gamma function. The high Hall parameter limit is more difficult

to find. As shown by Epperlein & Haines, the first term in the denominator may not

be neglected for all values of n if ωτ is very large [25]. This is because the lower limit

of the integral is zero – no matter how large Ω is there will be some W for which

Ω2W 6 is not large. It is necessary to split up the integral as follows:

〈W n〉
Φ

=
1

2α′6e Ω2
Γ

(
n− 3

m

)
− m

2
(α′3e Ω)−(3+n)/3

∫ (α′3e Ω)m/3(m+6)

0

dx
xn−4

1 + x6

[
1−

(
x

α′eΩ
1/3

)m

+ . . .

]
− 1

2α′12
e Ω4

∫ ∞

(α′3e Ω)−2m/(m+6)

dxe−xx(n−m−9)/m

[
1−

(
1

α′3e Ωx3/m

)2

+ . . .

]
(G.16)

Where Φ = 8πα′3e C(m)/m. The integrals above may be determined using the same

standard integrals as in Epperlein & Haines [25]. The integrals used to determine the

anomalous transport coefficients (αc
∧,ψ

c
⊥), for m = 5, are then given by:
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〈W 8〉
Φ

=
1

2α′3e Ω2
− 5π

6

1

(α′3e Ω)11/3
+ . . . (G.17)

〈W 11〉
Φ

=
1

2α′6e Ω2
Γ

(
8

5

)
− 1

2α′12e Ω4
Γ

(
2

5

)
+ . . . (G.18)

〈W 13〉
Φ

=
1

2α′6e Ω2
− 1

2α′12e Ω4
Γ

(
4

5

)
+ . . . (G.19)

The reason for the recovery of Braginskii’s asymptotes for a Langdon distribution

and the difference between those of βc
⊥ and ψc

⊥ may now be understood. Braginskii’s

asymptotes are correct if the second term in the series for the relevant integrals is

proportional to Ω−4. This is not the case for the n = 8 integral. The term in Ω−11/3

comes from the first integral in equation (G.16) which is a result the contribution of

the low velocity electrons to the integral – as the moment gets higher this eventually

becomes neglidgible. In the Maxwellian case this term is important for αc
∧ and βc

⊥

and so in these cases the Braginskii asymptotes are incorrect. When f0 is a Langdon

distribution the integrals which are important for calculating αc
∧ and ψc

⊥ (as ωτ gets

very large) are those with n = 11 and n = 13, so the Braginskii scalings are correct.

However, the n = 8 moment is important for βc
⊥ and so the Epperlein and Haines

scalings should be used for this coefficient.
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