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We study primordial fluctuations generated during inflation in a class of models motivated by
the DBI Galileons, which are extensions of the DBI action that yield second order field equations.
This class of models generalises the DBI Galileons in a similar way with K-inflation. We calculate
the primordial non-Gaussianity from the bispectrum of the curvature perturbations at leading order
in the slow-varying approximations. We show that the estimator for the equilateral-type non-
Gaussianity, fequil

NL , can be applied to measure the amplitude of the primordial bispectrum even in
the presence of the Galileon-like term although it gives a slightly different momentum dependence
from K-inflation models. For the DBI Galileons, we find −0.32/c2s < fequil

NL < −0.16/c2s and large
primordial non-Gaussianities can be obtained when cs is much smaller than 1 as in the usual DBI
inflation. In G-inflation models, where a de Sitter solution is obtained without any potentials, the
non-linear parameter is given by fequil

NL = 4.62r−2/3 where r is the tensor to scalar ratio, giving a
stringent constraint on the model.

I. INTRODUCTION

The DBI inflation model [1] is one of the most interesting possibilities to realise large non-Gaussianity of the
Cosmic Microwave Background (CMB) temperature fluctuations. Non-Gaussianity of the curvature perturbation in
DBI inflation has been studied extensively [2–22] (see also [23, 24] for reviews).
Recently, a very interesting extension of the DBI inflation model, so-called “DBI Galileons” was proposed by de

Rham and Tolley [25] (see also [26]). This is based on the relativistic extension of the Galileon model [27–29] (for
studies of cosmology based on the Galileon field, see Refs. [30–40]). The simplest example is a single field model
that arises from a probe brane action in the five-dimensional spacetime. Let’s consider the following four-dimensional
induced action on the probe brane

S =

∫

d4x
√−g

(

λ−M3
5K

)

, (1)

where λ is a tension of the brane, M5 is the five dimensional Planck constant, gµν is the induced metric on the brane,

gµν = ηµν + ∂νπ∂µπ, (2)

and K is a trace of the extrinsic curvature Kµν ,

Kµν = − ∂µ∂νπ
√

1 + (∂π)2
. (3)

Here π is a modulus describing the position of the brane. Using the fact that the inverse metric is given by gµν =
ηµν − γ2∂µπ∂νπ where γ is the Lorentz factor γ = 1/

√

1 + (∂π)2, the brane action is written as

S = −λ

∫

d4x
√

1 + (∂π)2 +M3
5

∫

d4x
(

�π − γ2∂µ∂νπ∂
µπ∂νπ

)

. (4)

By integrating by part and discarding the total derivative terms, this action can be rewritten as

S = −λ

∫

d4x
√

1 + (∂π)2 +
M3

5

2

∫

d4x
(

γ2(∂π)2�π + ∂µ(γ
2)(∂µπ)(∂π)2

)

. (5)

The first term is the usual DBI action. The higher order terms look containing the higher derivatives but the equation
of motion is at most second order in derivatives. In the non-relativistic limit γ → 1, this reduces the Galileon model
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where the action is invariant under the Galileon symmetry ∂µπ → ∂µπ + cµ. It is also possible to include two more
higher order terms in the action but in this paper we focus our attention to the leading order cubic order terms.
Recently, Refs. [41] and [42] considered a generalisation of this model. This generalisation is based on the extension

of DBI inflation to K-inflation. The generalised action is given by

S =

∫

d4x
√−g(P (X,φ)−G(X,φ)�φ) , (6)

where φ is the same degree of the freedom as π, but it is defined so that φ has a dimension of mass and
X = −(1/2)(∂φ)2. In Eq. (6), P (φ,X) and G(φ,X) are arbitrary functions of φ and X . Precisely speaking this
generalisation does not include the action (5). However, in the DBI inflation, the Lorentz factor, γ, varies very slowly
and at leading order in the slow-varying parameters, which is usually used to calculate the leading order contribution
to non-Gaussianity, the last term in (5) does not play a role. Thus the action (6) is general enough to include the
case of the DBI Galileons. Again the equation of motion is at most second order in derivatives.
In this paper, we study primordial fluctuations generated during inflation described by the action (6). We calculate

the power spectrum of the curvature perturbation as well as the bispectrum of the curvature perturbations. Two
examples of the model are considered: one is the DBI Galileons described by the action (5). The other is G-inflation
models proposed by Ref. [42]. This model is based on a specific choice of the functions P (X) and G(X) that realises
a de Sitter solution without any potentials.
This paper is organised as follows. In section II, we introduce a model studied in this paper. The power spectrum

is calculated in section II and the bispectrum is discussed in section III. In section IV, we consider two examples, the
DBI Galileons and G-inflation. Section V is devoted to conclusions.

II. MODEL

Assuming that φ described by the action (6) is minimally coupled to gravity, we consider a class of models described
by the following action:

S =
1

2

∫

d4x
√−g[M2

plR+ 2P (φ,X)− 2G(φ,X)�φ] , (7)

where Mpl is the Planck mass. In the background, we are interested in flat, homogeneous and isotropic Friedmann-
Robertson-Walker universes described by the line element

ds2 = −dt2 + a2(t)δijdx
idxj , (8)

where a(t) is the scale factor. It can be shown that the energy density and pressure of the field are given by

ρ = 2P,XX − P + 6G,XHφ̇X − 2G,φX , (9)

p = P − 2(G,φ +G,X φ̈)X , (10)

where H = ȧ/a is the Hubble parameter, a dot represents a derivative with respect to cosmic time t and the subscripts

,X and ,φ denote derivatives with respect to X and φ, respectively. The Friedmann equation and the field equation
are given by

3M2
plH

2 = ρ , (11)

P,X(φ̈+ 3Hφ̇) + 2P,XXXφ̈+ 2P,XφX − P,φ − 2G,φ(φ̈+ 3Hφ̇)− 2G,XφX(φ̈− 3Hφ̇)

+6G,X [(HX)· + 3H2X ]− 2G,φφ + 6G,XXHXẊ = 0 . (12)

It is useful to define a slow-varying parameter

ǫ ≡ − Ḣ

H2
=

XP,X + 3G,XHφ̇X

M2
plH

2
, (13)

where for the second equality, we have assumed the quantities |φ̈/(Hφ̇)| and |G,φφ̇/(GH)| are much smaller than 1.
Since we are interested in fluctuations generated during inflation, we will consider the background that satisfies the
slow-varying conditions which are given by |ǫ| ≪ 1, together with |φ̈/(Hφ̇)| ≪ 1 and |G,φφ̇/(GH)| ≪ 1.
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III. POWER SPECTRUM

We are interested in the primordial curvature perturbation on uniform density hypersurfaces, ζ, on large scales,
which is directly related to temperature anisotropies in the Cosmic Microwave Background (CMB). In order to
calculate the statistical quantities of ζ at leading order in the slow-varying approximations, we first calculate the
bispectrum of the fluctuations of inflaton φ in the flat gauge where the three-dimensional metric takes the form
hij = a2δij , and then relate it to that of ζ using the relation obtained from the delta-N formalism [43, 44]

ζ = −H

φ̇
Q . (14)

In Eq. (14), φ is the background value and Q is the perturbation in the flat gauge. In this gauge, at leading order in
the slow-varying approximations, the second-order action is expressed as

S2 =

∫

dtd3xa3
[

P,XδX(2) +
1

2
P,XX

(

δX(1)
)2

−G,XδX(2)
�φ(0) −G,XδX(1)

�φ(1) − 1

2
G,XX

(

δX(1)
)2

�φ(0)

]

, (15)

with

δX(1) = φ̇Q̇ , δX(2) =
1

2
Q̇2 − 1

2a2
∂iQ∂iQ , �φ(0) = −3Hφ̇ , �φ(1) = −Q̈− 3HQ̇+

1

a2
∂i∂iQ . (16)

Introducing the sound speed for the scalar perturbations

c2s =
P,X + 4φ̇HG,X

P,X + 2XP,XX + 6Hφ̇(G,X +XG,XX)
, (17)

and integrating by parts, we can write the second order action as

S2 =

∫

dtd3x
a3

2c2s
(P,X + 4φ̇HG,X)

[

Q̇2 − c2s
a2

∂iQ∂iQ

]

. (18)

The perturbations in the interaction picture are promoted to the quantum operators as

Q(τ,x) =
1

(2π)3

∫

d3kQ(τ,k)eik·x , Q(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) , (19)

where a(k) and a†(−k) are the annihilation and creation operator respectively. They satisfy the usual commutation
relations

[

a(k1), a
†(k2)

]

= (2π)3δ(3)(k1 − k2) , [a(k1), a(k2)] =
[

a†(k1), a
†(k2)

]

= 0 . (20)

From the second order action (18), the solution for the mode functions is given by

u(τ,k) =
H

√

2cs(P,X + 4φ̇HG,X)

1

k3/2
(1 + ikcsτ) e

−ikcsτ . (21)

It is convenient to introduce the following parameters

ν ≡ G,X φ̇X

M2
plH

, ǫ̃ ≡ ǫ + ν , (22)

where ǫ̃ coincides with ǫ when there is no Galileon-like term. ǫ̃ is also much smaller than 1 for ν ≪ 1. Then, the
power spectrum of Q and ζ are given by

〈Q(k1)Q(k2)〉 = (2π)3δ(3)(k1 + k2)PQ
2π2

k31
, PQ =

X

4π2M2
plcsǫ̃

, (23)

〈ζ(k1)ζ(k2)〉 = (2π)3δ(3)(k1 + k2)Pζ
2π2

k31
, Pζ =

1

8π2M2
pl

H2

csǫ̃
, (24)
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which are evaluated at the time of the sound horizon exit, csk = aH . It is worth noting that it is ǫ̃ not ǫ which appears
in Eq. (24), which gives the behaviour of the power spectrum that is different from the usual K-inflation model as we
will see below. Defining additional slow-varying parameters

η̃ ≡
˙̃ǫ

ǫ̃H
, s ≡ ċs

csH
, (25)

the spectral index of the primordial power spectrum is given by

ns − 1 =
d lnPζ(k)

d ln k
= −2ǫ− η̃ − s . (26)

We need to require ǫ, η̃, s to be very small in order to realise the almost scale invariant power spectrum. We have
confirmed that this result is consistent with the one obtained in Ref. [42] when the conditions |φ̈/(Hφ̇)| ≪ 1 and

|G,φφ̇/(GH)| ≪ 1 are satisfied. Notice that η̃ is different from the usual η defined by η ≡ ǫ̇/(ǫH).
The power spectrum and spectral index of tensor perturbations are given by the usual expression

PT =
2H2

π2M2
pl

, nT = −2ǫ . (27)

In the usual K-inflation, nT and tensor to scalar ratio r ≡ PT /Pζ are not independent, and there is a so-called
“consistency relation” r = −8csnT [45]. However, it is clear that this relation does not hold in the presence of the
Galileon-like term. Instead, we have

r = −8cs(nT − 2ν) , (28)

where ν is given by Eq. (22).

IV. BISPECTRUM

The third order action can be obtained in the same way as

S3 =

∫

dtd3x
a3

φ̇

[

C1Q̇
3 +

C2

a2
Q̇∂iQ∂iQ+

C3

a4H
∂iQ∂iQ∂j∂jQ+

C4

a2H
Q̇∂iQ̇∂iQ

]

, (29)

where

C1 =
2

3
X2P,XXX +XP,XX + 2Hφ̇X2G,XXX + 5Hφ̇XG,XX +Hφ̇G,X ,

C2 = −
(

XP,XX + 3Hφ̇XG,XX +Hφ̇G,X

)

, C3 =
1

2
Hφ̇G,X , C4 = 2Hφ̇G,X + 2Hφ̇XG,XX . (30)

The vacuum expectation value of the three point operator in the interaction picture is written as [43, 46]

〈Q(t,k1)Q(t,k2)Q(t,k3)〉 = −i

∫ t

t0

dt̃〈
[

Q(t,k1)Q(t,k2)Q(t,k3), HI(t̃)
]

〉 , (31)

where t0 is some early time during inflation when the field’s vacuum fluctuation are deep inside the sound horizon
and t is some time after the sound horizon exit. If one uses a conformal time, it is a good approximation to perform
the integration from −∞ to 0 because τ ≈ −(aH)−1. HI denotes the interaction Hamiltonian and it is given by
HI = −L3, where L3 is the lagrangian obtained from the action (29). Using the solution for the mode function and
the commutation relations for the creation and annihilation operators, we get

〈Q(k1)Q(k2)Q(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)
H5

(P,X + 4φ̇HG,X)3φ̇

1

Π3
i=1k

3
i

Aφ , (32)

where

Aφ = 3

(

C1 −
C4

c2s

)

A1 +
C2

2c2s
A2 +

C3

c4s
A3 , (33)
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and C1, C2, C3, C4 and C5 are given by Eq. (30). In Eq. (33), we have introduced the shape functions A1, A2 and
A3 as

A1 =
k21k

2
2k

2
3

K3
, (34)

A2 =
k21k2 · k3

K

(

1 +
k2 + k3

K
+ 2

k2k3
K2

)

+ 2 perms. , (35)

A3 =
k23k1 · k2

K

(

1 +
k1k2 + k2k3 + k3k1

K2
+ 3

k1k2k3
K3

)

+ 2 perms. , (36)

where K = k1 + k2 + k3. The shapes A1 and A2 appear in the usual K-inflation models [7] and their amplitudes can

be measured by the estimator for the equilateral-type non-Gaussianity, fequil
NL [47]. On the other hand, the shape A3

is completely new that arises from the Galileon-like term.
For the bispectrum of ζ, making use of Eqs. (14) and (24), we obtain the following expression:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ(3)(k1 + k2 + k3)(Pζ)
2F (k1, k2, k3) , (37)

where

F (k1, k2, k3) =
(2π)4

Π3
i=1k

3
i

3
∑

j=1

f (j)Aj , (38)

f (1) =
−3(C1c

2
s − C4)

(P,X + 4φ̇HG,X)
, f (2) = − C2

2(P,X + 4φ̇HG,X)
, f (3) = − C3

(P,X + 4φ̇HG,X)c2s
. (39)

In the following, we will study the momentum dependence of the bispectrum. Especially, we will check the validity

of using the estimator for equilateral type non-Gaussianity, fequil
NL , for the bispectrum even in the presence of the new

shape A3. The estimator is defined by

F equil(k1, k2, k3) = (2π)4
(

9

10
fequil
NL

)(

− 1

k31k
3
2

− 1

k31k
3
3

− 1

k32k
3
3

− 2

k21k
2
2k

2
3

+
1

k1k22k
3
3

+ (5 perms.)

)

, (40)

where the permutations act only on the last term in parentheses. This shape is factorisable and it is possible to
construct a fast optimal estimator that can be applied to the CMB map. For this purpose, it is useful to define shape
functions F (i)(k1, k2, k3), i = 1, 2, 3 corresponding to the shapes Ai in Eq. (38). As mentioned before, the shape of
the bispectrum in K-inflation is characterised by the sum of F (1)(k1, k2, k3) and F (2)(k1, k2, k3) with f (1) and f (2)

depending on P (X). For example, in DBI inflation, the relation f (2)/f (1) = −2/3 holds. However, since functions
F (1)(k1, k2, k3) and F (2)(k1, k2, k3) are not factorisable, F equil(k1, k2, k3) is usually used to approximate the shape
functions F (1)(k1, k2, k3) and F (2)(k1, k2, k3).
In Figure 1, we compare F equil(k1, k2, k3) with F (1)(k1, k2, k3), F (2)(k1, k2, k3) and F (3)(k1, k2, k3) with appro-

priate normalisations. From this, we see that not only F (1)(k1, k2, k3) and F (2)(k1, k2, k3), but also the function

F (3)(k1, k2, k3) has a very similar shape with F equil(k1, k2, k3) and it can be expected that fequil
NL provides a good

measure of the bispectrum even in the presence of the new shape function F (3). We can prove this quantitatively by
the following shape correlator C for two different shapes characterised by F and F ′ introduced by Ref. [48] (See also
[49, 50]),

C(F, F ′) =
F(F, F ′)

√

F(F, F )F(F ′, F ′)
, (41)

where the overlap function F is given by

F(F, F ′) =

∫

dVkF (k1, k2, k3)F
′(k1, k2, k3)Π

4
i=1k

4
iwB(k1, k2, k3) . (42)

In Eq. (42) the integration is performed for the region where the triangle condition for (k1, k2, k3) holds and weight
function wB is given by

wB =
1

k1 + k2 + k3
. (43)

Table I shows that the shapes F equil(k1, k2, k3) and F (3)(k1, k2, k3) are almost completely anti-correlated, which

means that it is very reasonable to adopt the estimator fequil
NL to measure the amplitude of the bispectrum even in

the presence of the shape F (3)(k1, k2, k3).
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FIG. 1: In this group of figures, we plot the shape functions F (1, k2/k1, k3/k1)(k2/k1)
2(k3/k1)

2 as functions of (k2/k1, k3/k1).
The figures are normalised to have values 1 for equilateral configurations k2/k1 = k3/k1 = 1 and set to zero outside the region

1− k2/k1 ≤ k3/k1 ≤ k2/k1. We plot F (1)(k1, k2, k3), F
(2)(k1, k2, k3), F

(3)(k1, k2, k3) and F equil(k1, k2, k3) for upper left, upper
right, lower left, lower right, respectively.

F (1)(k1, k2, k3) F (2)(k1, k2, k3) F (3)(k1, k2, k3) FDBI(k1, k2, k3)

Overlap 0.936 −0.995 −0.99989 −0.993

TABLE I: Shape correlations between the factorisable equilateral shape F equil(k1, k2, k3) and the shapes of primordial bispec-

tra characterised by functions F (1)(k1, k2, k3), F
(2)(k1, k2, k3) and F (3)(k1, k2, k3). For comparison, we have also shown the

correlation between the equilateral shape and that obtained in DBI inflation which is given by F (1)(k1, k2, k3)+F (2)(k1, k2, k3)

satisfying f (2)/f (1) = −2/3.

Now that the validity of using the estimator for the equilateral-type non-Gaussianity, fequil
NL for the bispectrum

corresponding to the new shape A3 is confirmed, we will obtain fequil
NL for the bispectrum given by Eq. (38). We

match the two different shapes (38) and (40) so that these two shapes have the same amplitudes at the equilateral
configuration k1 = k2 = k3. This gives

fequil
NL =

10

243
f (1) − 85

81
f (2) − 65

81
f (3) . (44)

V. EXAMPLES

A. The DBI Galileons

As a first example, we consider the DBI Galileons [25] described by the action (5). Here we extended the original DBI
Galileon model by introducing V (φ), f(φ) and g(φ) which depend on φ weakly so that the slow-varying parameters
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are sufficiently small.

P (φ,X) = −f(φ)−1
√

1− 2Xf(φ) + f(φ)−1 − V (φ) , G(φ,X) =
g(φ)X

1− 2Xf(φ)
. (45)

It is worth mentioning that only particular choices of the functions f(φ) and g(φ) come from genuine higher
dimensional symmetries, although the equations of motions are still kept to be second order.
In order to analyse this model, it is convenient to define cD ≡ 1/P,X which corresponds to the sound speed in the

DBI model in the absence of the Galileon-like term. Since it is known that fequil
NL ∝ 1/c2D in DBI inflation and we are

interested in the case where the large non-Gaussianity is generated, we consider only the case with cD ≪ 1.
We assume that the inflation is driven by the potential term, that is, V ≫ X/cD, gHφ̇X in Eq. (11) as in usual

DBI inflation. During inflation, the field equation (12) becomes

3

cD
Hφ̇+

18gH2X

c4D
+ V,φ = 0 . (46)

The value of cD is specified from the background equations once V (φ) and f(φ) are given. We assume ˙cD/cDH ≪ 1
so that, at the leading order, cD is constant (it is also possible to construct a model where cD is constant by choosing

a functional form of f(φ) for a given V (φ), see Ref. [51] for the details). We define a parameter bD ≡ gHφ̇/c3D so that
the first two terms in Eq. (46) are comparable when bD is of order 1. It is worth noting that bD can be also expressed
as bD = ν/(ǫ− 3ν). Making use of the concrete forms of P (X,φ) and G(X,φ) in Eq. (45) as well as the definition of
bD, the coefficients C1, C2, C3 and C4 in the third order action (30) are given by

C1 =
1

2c5D
(1 + 24bD) , C2 = − 1

2c3D
(1 + 12bD) , C3 = − 1

2cD
bD , C4 =

4

c3D
bD , (47)

where we have used XP,XX ∼ 1/(2c3D), X
2P,XXX ∼ 3/(4c5D), G,X ∼ g/c4D, XG,XX ∼ 2g/c6D, X

2G,XXX ∼ 6g/c8D
and cD ≪ 1.
Then, the parameters f (j) in Eq. (39) become

f (1) = − 3

2c2D

(1 + 20bD)

(1 + 4bD)(1 + 12bD)
, f (2) =

(1 + 12bD)

4(1 + 4bD)c2D
, f (3) = − (1 + 12bD)bD

2(1 + 4bD)2c2D
. (48)

From Eq. (44) we obtain

fequil
NL = − 5

324c2s

(21 + 546bD + 3776b2D + 6048b3D)

(1 + 4bD)(1 + 12bD)2
, (49)

which becomes −0.16/c2s for bD ≫ 1 and −0.32/c2s for bD → 0. To obtain Eq. (49), we have used that cD and cs are
related as

c2D =
(1 + 12bD)

(1 + 4bD)
c2s . (50)

The nonlinear parameter fequil
NL scales as ∝ 1/c2s and can be detectable by future experiments such as PLANCK for

sufficiently small cs.
Especially, in the case of η̃ = s = 0, we find that the following relation holds:

r = 8cs
1 + 4bD
1 + 3bD

(1− ns) . (51)

Combined this with Eqs. (51) and (49), we can express fequil
NL in terms of ns and r as

fequil
NL ≃ −20

(1− ns)
2

r2
, (52)

where the coefficient is almost independent of bD for this set up. This relation suggests that these Galileon-like terms
do not help embed the DBI inflation into string theory [52, 53].
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B. G-inflation

The second example is recently proposed G-inflation where an exact de Sitter solution is realised without introducing
a potential [42]. In this model the functions P (X) and G(X) are chosen as

P (X) = −X +
X2

2M3µ
, G(X) =

1

M3
X . (53)

The de Sitter solution is obtained when P,X + 3Hφ̇/M3 = 0 is satisfied in Eq. (11). The solutions are obtained as

X = µM3x , H2 =
M3

18µ

(1− x)2

x
, where

1− x

x
√

1− x/2
=

√
6

µ

Mpl
. (54)

Here as in Ref. [42], we only consider simple cases where µ ≪ Mpl. In this situation, (1− x) ≃
√
3µ/Mpl ≪ 1 and µ

is related with Mpl, M , H as µ = 6M2
plH

2/M3.

Then, making use of the concrete forms of P (X,φ) and G(X,φ) in Eq. (53), the fine-tuning condition P,X +

3Hφ̇/M3 = 0 and Eq. (54), the primordial power spectrum and tensor to scalar ratio are given by

Pζ =

√
6H2

16π2M2
pl

1

(1− x)3/2
, r =

16
√
6

3
(1− x)3/2 , (55)

where we neglected the correction to the tensor to scalar ratio, r = 16csǫ̃, that arises if we allow a small deviation
from the pure de Sitter inflation. As was pointed by Ref. [42], r becomes nonzero even in the pure de Sitter solution,
i.e. for ǫ = 0. On the other hand, ns − 1 becomes 0 for the pure de Sitter inflation, but again if we allow a small
deviation for it parameterised by the slow-varying parameters, ns is given by Eq. (26).
For the primordial bispectrum, the parameters f (j) in Eq. (39) become

f (1) =
9

2
, f (2) =

3

2(1− x)
, f (3) = − 3

(1− x)
, (56)

where we have set x = 1 unless it appears in the form of 1− x. Then from Eq. (44) we obtain

fequil
NL =

5

6(1− x)
. (57)

Especially, from Eq. (55) and assuming the pure de Sitter inflation, ǫ = 0, fequil
NL is related with r as

fequil
NL = 4.62

1

r2/3
, (58)

which gives a strong constraint on this model. For example if r = 0.17, which can be detected by the PLANCK satellite

[54], fequil
NL = 15.1. Therefore, a detection or non-detection of the tensor mode and equilateral type non-Gaussianity

by PLANCK will tightly constrain the model.

VI. CONCLUSION

The DBI inflation model [1] has been extensively studied recently for both theoretical and phenomenological reasons.
Especially, it is well known that the DBI inflation model can give large non-Gaussianity of the Cosmic Microwave
Background (CMB) temperature fluctuations. Recently, de Rham and Tolley [25] proposed a new model so called the
DBI Galileons based on a probe brane action in the higher-dimensional space time. Interestingly, this model naturally
provides a connection between the DBI model and the relativistic generalisation of the Galileon model [27] where the
equation of motion is at most second order in derivatives due to the Galileon symmetry ∂µπ → ∂µπ + cµ. Since the
DBI inflation is supposed to be driven by the dynamics of the brane in the higher dimensional bulk, it is interesting
to study the effect of the Galileon-like terms in DBI inflation
In this paper, motivated by the DBI Galileons, we studied primordial fluctuations generated during inflation de-

scribed by the action (6) which is obtained by generalising the action of the DBI Galileons. This generalisation is done
in a similar way to the extension of the DBI inflation to the K-inflation. In order to calculate the statistical quantities
of ζ, the curvature perturbation on uniform density hypersurfaces on large scales, at leading order in the slow-varying
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approximations, we have adopted the simple procedure [44] to first calculate the bispectrum of the fluctuations of
inflaton φ in the flat gauge then relate it to that of ζ using the delta-N formalism (14).
For the linear perturbations, we have confirmed that, owing to the Galileon-like term, the expression of the sound

speed cs for the scalar perturbations is modified from the usual K-inflation model (Eq. (17)). We also provided
general expressions for the power spectrum Pζ , spectral index ns and tensor to scalar ratio r at leading order in the

slow-varying approximations. In these expressions, ǫ̃ defined by Eq. (22), not ǫ ≡ −Ḣ/H2, plays an important role
(Eqs. (24), (26) and (28)). Due to this, the consistency relation between the tensor to scalar ratio and the tensor
spectrum index is broken if there exists the Galileon-like term.
We calculated the bispectrum at the leading order in the slow-varying variables. The Galileon-like term gives a new

shape A3 in addition to the shapes A1 and A2 which arise in the usual K-inflation (Eqs. (34), (35) and (36)). For the

new shape A3, we checked the validity of using the estimator for the equilateral-type Non-Gaussianity, fequil
NL , based

on the shape correlator introduced by Ref. [48] and showed that the overlap is at about 99.99% level, which justifies
the use of this estimator to measure the amplitude of the bispectrum even in the presence of the Galileon-like term.
we obtained the general expression for the amplitude of the bispectrum in Eq. (44).
For the concrete examples, we have considered two models: one is the DBI Galileons described by the action (5).

The other is G-inflation model proposed by Ref. [42]. For the DBI Galileons, in the small sound speed limit, fequil
NL

is given by Eq. (49) and written in terms of the sound speed cs and bD that is related to the amplitude of the

Galileon-like term. Since it scales as fequil
NL ∝ 1/c2s, large primordial non-Gaussianities can be obtained when cs is

much smaller than 1, similar to the usual DBI inflation. It is worth mentioning that for a given cs, the bD-dependence

of fequil
NL is weak and we obtained −0.32/c2s < fequil

NL < −0.16/c2s. For G-inflation where an exact de Sitter solution is

obtained without any potential terms, we found fequil
NL and the tensor to scalar ratio was related as fequil

NL = 4.62r−2/3.
Although a small deviation from the de Sitter solution could give a correction to the tensor to scalar ratio, this relation
gives a stringent constraint on the model by a detection or non-detection of the equilateral type non-Gaussianity and
the tensor to scalar ratio.
In this paper, we considered the cubic order interaction in the Galileon theory and its relativistic generalisation. As

is shown in [25], it is possible to add two more higher order interactions which again arise from the probe brane action
in a five-dimensional spacetime with the Gauss-Bonnet term. It is also possible to generalise these terms in the same
way as generalising Eq. (5) to Eq. (6). It would be interesting to study phenomenology of this generalisation. The
single field model arises from a probe brane action in the five-dimensional spacetime. If the DBI Galileons have some
connections to string theory, the DBI Galileons should be naturally a multi-field model as in the DBI inflation where
the position of the brane in each compact direction is described by a scalar field. The multi-field Galileon model has
been extensively studied recently [55–60] and the relativistic extension of the model has been proposed [55]. We leave
the study of multi-field DBI Galileons, the relativistic generalisation of the multi-field Galileon, for a forthcoming
paper.
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