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Employing the perturbative treatment of gravitational clustering, we discuss possible effects of
primordial non-Gaussianity on the matter power spectrum. As gravitational clustering develops,
the coupling between different Fourier modes of density perturbations becomes important and the
primordial non-Gaussianity which intrinsically possesses a non-trivial mode-correlation can affect
the late-time evolution of the power spectrum. We quantitatively estimate the non-Gaussian effect
on power spectrum from the perturbation theory. The potential impact on the cosmological param-
eter estimation using the power spectrum are investigated based on the Fisher-matrix formalism.
In addition, on the basis of the local biasing prescription, non-Gaussian effects on the galaxy power
spectrum are considered, showing that the scale-dependent biasing arises from a local-type primor-
dial non-Gaussianity. On the other hand, an equilateral-type non-Gaussianity does not induce such
scale-dependence because of weaker mode-correlations between small and large Fourier modes.

PACS numbers: 98.80.-k

I. INTRODUCTION

Recent observations of cosmic microwave background (CMB) anisotropies as well as density perturbations in the
large-scale structure strongly support the basic predictions of inflationary scenarios, in which primordial adiabatic
fluctuations were produced during the accelerated phase of the cosmic expansion and their statistical properties are
approximately described by Gaussian statistics with a nearly scale-invariant power spectrum (e.g., [33, 68]). Some
specific inflationary models have been ruled out by observations, narrowing the constraints on the early stage of
the universe. With precision measurements from future observations, we will detect clear signals that help us to
discriminate between many candidate of inflationary models.

Amongst several signals accessible in the near future, departure from Gaussianity is an important clue to probe
the generation mechanism for primordial perturbations as well as to discriminate between inflation models. While
the simplest slow-roll inflation with single scalar field predicts a small departure from Gaussianity (e.g., [1, 11, 41]),
models with a non-trivial kinetic term or late-time inflaton decay called curvaton scenario [37, 48] can produce a large
non-Gaussianity (e.g., [8, 38, 55, 58]). There are also viable models motivated by string theory that produce large non-
Gaussianity such as Dirac-Born-Infeld (DBI) inflation [4, 6, 7, 15, 28, 28, 35] and ekyprotic scenario [13, 18, 32, 34, 36].
Although tentative detections of primordial non-Gaussianity have been reported very recently ([47, 69], but see also
[26, 33]) and the result is broadly consistent with the standard prediction of slow-roll inflation, these detections are
at relatively low statistical significance and more precise measurements are necessary for a definite detection of the
non-Gaussian signals. Planned CMB surveys, namely the Planck mission [52], will have much greater sensitivity
and better detect non-Gaussian signals (e.g., [61]). Further, large-scale structure data from future spectroscopic
surveys will uncover the mass density fluctuations up to Giga parsec scales, which preserve the statistical properties
of primordial fluctuations (e.g., [57, 59]). Since these two measurements can probe different scales of primordial
fluctuations, they are, in principle, complementary to each other.

In the present paper, we study the signature of primordial non-Gaussianity imprinted on the large-scale structure,
especially focusing on the matter power spectrum. Naively, we expect that the signature of primordial non-Gaussianity
basically appears in the statistical properties of higher-order quantities such as the bispectrum and trispectrum, and
the power spectrum as a second-order statistic remains unchanged even if large non-Gaussianity has been produced.
However, this is true only when the fluctuations of the mass density field are tiny and well within the linear regime.
As the gravitational clustering develops, the coupling between different Fourier modes becomes important and the
scale-dependent non-linear growth appears due to the mode-coupling effect. In the weakly non-linear regime, the
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strength of this mode-coupling sensitively depends on the initial condition. Since the non-Gaussian density field
intrinsically possesses non-trivial mode-correlations, the evolution of the power spectrum may be altered by the
primordial non-Gaussianity, at least in the weakly non-linear regime.

Here, employing the perturbative calculations, we study the effect of primordial non-Gaussianity on the matter
power spectrum. The effect of non-Gaussianity on the matter power spectrum has been previously investigated by
Ref.[57] using perturbation theory, showing that the magnitude of this effect is roughly at the few percent level in
the weakly non-linear regime. In this paper, adopting the two representative models of primordial non-Gaussianity
described in Sec. II, we quantitatively estimate the non-Gaussian effects on the power spectrum and elucidate their
shape dependence (Sec. III). In particular, we carefully examine the influence of primordial non-Gaussianity on
cosmological parameter estimation, paying particular attention to the primordial spectral indices and the characteristic
scale of the baryon acoustic oscillations as a cosmic standard ruler (Sec. IV). Also, we discuss the non-Gaussian effect
on the galaxy biasing (Sec. V). This issue has been recently studied by several authors in the context of the halo
biasing prescription [2, 19, 42, 46, 62], and local biasing prescription [46]. Here, we adopt the local biasing scheme
and consider the scale-dependent galaxy biasing arising from the primordial non-Gaussianity.

Throughout the paper, we assume a flat Lambda cold dark matter (CDM) model and the fiducial model parameters
are chosen based on the five-year WMAP results (WMAP+BAO+SN ML, see Ref.[33]): Ωbh2 = 0.02263, Ωch

2 =
0.1136, ΩK = 0 (ΩΛ = 0.724), ns = 0.961, τ = 0.080, ∆R(k = 0.002Mpc−1) = 2.42 × 10−9, h = 0.703.

II. PRIMORDIAL NON-GAUSSIANITY

According to the commonly accepted mechanisms to generate the primordial fluctuations, non-Gaussianity would
be imprinted on the primordial curvature perturbation produced during inflation. The curvature perturbation can also
be generated after inflation by a late-time decay of light fields, and this would produce a large non-Gaussianity in the
curvature perturbation. Further, as alternative scenarios to inflation such as ekpyrotic models, nearly scale-invariant
curvature perturbation with large non-Gaussianity could be generated during the collapsing phase of the Universe.

Let us denote the primordial curvature perturbation on the uniform density hypersurface and the Bardeen’s cur-
vature potential at super-horizon scales by ζp and ΦH,p, respectively. The primordial density perturbation defined at
an early time of the matter dominated epoch, δ0, is related to these variables through (e.g., [25, 39, 57, 59])

δ0(k) = Mζ(k)ζp(k) =
5

3
Mζ(k)ΦH,p(k), (2.1)

with the function Mζ being

Mζ(k) =
2

5

k2 T (k)

Ωm,0H2
0

, (2.2)

where the function T (k) is the transfer function of matter fluctuations normalized to unity at k → 0. Note that
the curvature potential given in the matter dominated epoch, ΦH,p, is related to the curvature perturbation ζ(k) =
(5/3)ΦH,p(k).

Using the relation (2.1), n-point statistics of the primordial density field are all expressed in terms of respective
correlator of the curvature potential or the curvature perturbation. For the power spectra, we have

P0(k) = M2
ζ (k)Pζ(k), (2.3)

with quantities P0 and Pζ defined by

〈δ0(k)δ0(k
′)〉 = (2π)3δD(k + k

′)P0(k), 〈ζp(k)ζp(k
′)〉 = (2π)3δD(k + k

′)Pζ(k). (2.4)

The bispectrum as the first non-trivial quantity arising from the non-Gaussianity becomes

B0(k1, k2, k3) = Mζ(k1)Mζ(k2)Mζ(k3) Bζ(k1, k2, k3), (2.5)

where we define
〈

δ0(k1)δ0(k2)δ0(k3)
〉

= (2π)3 δD(k1 + k2 + k3)B0(k1, k2, k3),
〈

ζp(k1)ζp(k2)ζp(k3)
〉

= (2π)3 δD(k1 + k2 + k3)Bζ(k1, k2, k3). (2.6)

Details of the functional form of Bζ depend on the generation mechanism of primordial non-Gaussianity. In the
following, we will consider two representative models of non-Gaussianity and give the explicit expressions for the
primordial bispectrum Bζ .
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A. Local model

In the local model of primordial non-Gaussianity, the primordial fluctuation ΦH,p is characterized by the Taylor
expansion of the Gaussian field. Denoting the Gaussian field by ϕ, it is conventionally characterized as:

ΦH,p(x) = ϕ(x) + fNL

{

ϕ2(x) − 〈ϕ2〉
}

+ · · · . (2.7)

The Fourier counterpart of the above equation is given by

ΦH,p(k) = ϕ(k) + fNL

∫

d3q

(2π)3
{ϕ(q)ϕ(k − q) − 〈ϕ(q)ϕ(k − q)〉} + · · · . (2.8)

Alternatively, we can expand ζp as:

ζp(k) = ζG(k) +
3

5
fNL

∫

d3q

(2π)3
{ζG(q)ζG(k − q) − 〈ζG(q)ζG(k − q)〉} + · · · , (2.9)

where ζG is Gaussian field and we have the relation ζG = (5/3)ϕ. For the cases of interest here, deviation from
Gaussianity is generally small and perturbative evaluation of the primordial bispectrum is valid. The leading-order
result becomes

Bζ(k1, k2, k3) ≃
6

5
fNL

[

Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)
]

. (2.10)

In the slow-roll inflation models, fNL is suppressed by the slow-roll parameters and thus it is expected to be very
small. However, in curvaton models or ekpyrotic models, it is possible to generate a large non-Gaussianity of the local
model with fNL ∼ O(102).

B. Equilateral model

As another type of bispectrum configuration, we consider an equilateral model. The DBI inflation is a typical
example where the bispectrum has a maximum amplitude for equilateral configurations. This is in contrast with the
local model where the bispectrum has the largest amplitude for squeezed configurations [9]. The bispectrum in the
equilateral model is approximated by [17]1

Bζ(k1, k2, k3) =
18

5
f eq
NL

(

k̄

kCMB

)−2κ
[

−Pζ(k1)Pζ(k2) − Pζ(k2)Pζ(k3) − Pζ(k3)Pζ(k1)

−2 {Pζ(k1)Pζ(k2)Pζ(k3)}
2/3 +

{

(

Pζ(k1){Pζ(k2)}
2{Pζ(k3)}

3
)1/3

+ (5 perm.)

}

]

, (2.11)

with k̄ = (k1 + k2 + k3)/3. Here, we introduce the slope index κ in order to characterize the scale-dependence of
the non-Gaussianity, which generically appears in the DBI-type inflation models. we set the characteristic scale to
kCMB = 0.04 Mpc−1. Note that the bispectrum in equation (2.11) is normalized in such a way that, for equilateral
configurations (k1 = k2 = k3 = k), it coincides with the local form given in equation (2.10).

III. NON-LINEAR EVOLUTION OF MATTER POWER SPECTRUM FROM PERTURBATION

THEORY

A. Perturbation Theory

Even if the primordial fluctuations are well described by linear theory, the non-linearity of the gravitational dynamics
eventually dominates and we must correctly take into account the non-linear growth of matter fluctuations, which

1 The expression given here is slightly generalized in a sense that we do not necessarily assume a power-law form of the power spectrum,
Pζ(k).
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significantly modifies the matter power spectrum. For the scales of interest here, especially the accessible scales of
future galaxy redshift surveys, the non-linear evolution is rather moderate and perturbative treatment is valid. The
mass density field is described by

δ(k; z) = δ(1)(k; z) + δ(2)(k; z) + δ(3)(k; z) + · · · . (3.1)

In the above, the function δ(1)(k; z) represents the linear fluctuation and it is given by δ(1)(k; z) = D(z)δ0(k), where
D(z) is the linear growth rate. Neglecting the decaying mode of linear perturbation, the solutions for higher-order
quantities are formally expressed as [12]

δ(n)(k; z) = [D(z)]n
∫

d3k1 · · · d
3kn

(2π)3(n−1)
δD(k − k1 − · · · − kn)F (n)

sym(k1, · · · , kn)δ0(k1) · · · δ0(kn), (3.2)

with F
(n)
sym being the symmetrized kernel for the n-th order solution. Then, the power spectrum of the density field,

defined as

〈δ(k; z)δ(k′; z)〉 = (2π)3δD(k + k
′) P (k; z), (3.3)

can be calculated by substituting Eq.(3.2) into the above expression. The resultant expression is summarized as

P (k; z) = D2(z)P0(k) + P (12)(k; z) +
[

P (22)(k; z) + P (13)(k; z)
]

+ · · · , (3.4)

where the terms P (12), P (22) and P (13) are the so-called one-loop power spectra given by

P (12)(k; z) = 2 D3(z)

∫

d3q

(2π)3
F (2)

sym(q, k − q)B0(−k, q, k − q), (3.5)

P (22)(k; z) = 2 D4(z)

∫

d3q

(2π)3
{F (2)

sym(q, k − q) }2 P0(q)P0(|k − q|)

+D4(z)

∫

d3pd3q

(2π)6
F (2)

sym(p, k − p)F (2)
sym(q,−k − q)T0(p, k − p, q,−k − q), (3.6)

P (13)(k; z) = 6 D4(z)

∫

d3q

(2π)3
F (3)

sym(k, q,−q)P0(k)P0(q)

+2 D4(z)

∫

d3pd3q

(2π)6
F (3)

sym(p, q, k − p − q)T0(−k, p, q, k − p − q). (3.7)

These are the most general expressions for the one-loop power spectra in the presence of primordial non-Gaussianity.
The quantity P (12) is the first non-trivial correction associated with the primordial density bispectrum B0(k1, k2, k3).
While the quantities P (22) and P (13) represent the first leading-order corrections in the case of Gaussian initial
conditions, additional contributions originating from the primordial density trispectrum, T0(k1, k3, k3, k4), also arise.
Thus, in general, we need the explicit functional form of the primordial trispectrum as well as primordial bispectrum
in order to compute the one-loop power spectra. However, in most general cases, the primordial trispectrum is of
the order of M4

ζ P 3
0 , which is negligibly smaller than the bispectrum, B0 ∼ M3

ζ P 2
0 . Since the terms including P 3

0

may be regarded as the two-loop order, we can safely neglect the trispectrum contribution. With this treatment, the
terms P (22) and P (13) reduce to nothing but the standard one-loop spectra, and they are explicitly given by (e.g.,
[29, 40, 49, 56])

P (22)(k; z) = D4(z)
k3

(2π)2

∫

∞

0

dxx2P0(kx)

∫ +1

−1

dµ P0

(

k
√

1 + x2 − 2µ x
) 1

2

[

3x + 7µ − 10µ2x

7x(1 + x2 − 2µx)

]2

, (3.8)

P (13)(k; z) = D4(z)
k3

(2π)2
P0(k)

∫ ∞

0

dxx2P0(kx)

×
1

252 x2

[

12

x2
− 158 + 100x2 − 42x4 +

3

x3
(x2 − 1)3(7x2 + 2) ln

∣

∣

∣

∣

x + 1

x − 1

∣

∣

∣

∣

]

. (3.9)

Also, the non-trivial contribution from the primordial bispectrum is expressed in terms of the bispectrum of the
curvature perturbation as

P (12)(k; z) = D3(z)
k3

(2π)2

∫ ∞

0

dxx2

∫ +1

−1

dµ
3x + 7µ − 10µ2 x

7x(1 + x2 − 2µ x)

× Mζ(k)Mζ(kx)Mζ(k
√

1 + x2 − 2µx) Bζ(k, kx, k
√

1 + x2 − 2µx). (3.10)
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FIG. 1: Ratio of the power spectrum to the smoothed reference spectrum for the local model (left) and the equilateral model
with κ = 0 (right), for z = 1. The smooth spectra are obtained from the no-wiggle approximation of the linear transfer function
according to Ref. [20]. The lines from top to bottom respectively indicate fNL = 300 (solid), fNL = 100 (long-dashed), fNL = 0
(dotted), fNL = −100 (short-dashed) and fNL = −300 (dot-dashed).

B. Results

Based on the expressions given above, we now calculate the matter power spectrum, focusing on the scales rel-
evant for future galaxy surveys. Figure 1 plots the ratios of power spectra to the smooth reference spectrum,
P (k)/Pno-wiggle(k), given at z = 1. The reference spectrum Pno-wiggle(k) is the linear power spectra computed
from the no-wiggle approximation of the transfer function given by Ref. [20]. The left panel shows the results for
the local model, and the right panel plots the results for the equilateral model with index κ = 0. The overall be-
havior at higher k is basically dominated by the corrections coming from the standard 1-loop power spectra, P (22)

and P (13), but small variation of the power spectrum amplitudes manifests at higher k. This is the contribution of
primordial non-Gaussianity, P (12), originating from the primordial bispectrum. Depending on the sign of fNL, the
primordial non-Gaussianity enhances or suppresses the non-linear growth of the power spectrum and the deviation
from the Gaussian result (fNL = 0) becomes more significant as |fNL| increases. Although the effect of primordial
non-Gaussianity seems rather mild within the current constrained values of −9 . f local

NL . 111 and −151 . f eq
NL . 253

(95%C.L.)[33], we do not immediately exclude the possibility of significant impact on the cosmological parameter
estimation. We will discuss this issue in the next section.

Next we will focus on the shape of the power spectrum. In Figure 2, the ratios of the power spectra to those in
the Gaussian case (fNL = 0), i.e., P (k; fNL 6= 0)/P (k; fNL = 0), are plotted for various redshifts and values of fNL.
Note that in computing the ratio, both the numerator and denominator are calculated from perturbation theory. In
Figures 1 and 2, the vertical arrows labeled by k1% and k3% indicate the maximum wavenumber below which the
precision level of perturbation theory prediction is expected to be better than 1% and 3%, respectively. According to
recent numerical experiments, the maximum wavenumber is empirically determined through [50]

k2

∫ k

0

dq

6π2
D2(z)P0(q) = C, (3.11)

where C = 0.18 (0.3) for k1% (k3%). Solving the above equation with respect to k, we obtain k1% and k3% as
function of redshift. Note that the maximum wave numbers given above have been derived by comparison between
N-body simulations and theoretical predictions, and the resultant convergence range is narrower than those previously
proposed (e.g., [30, 59]). In this sense, Eq.(3.11) may be regarded as a conservative criterion.

Bearing the limitation of perturbation theory in mind, we see that the deviation of the power spectrum from the
Gaussian case also depends on the redshift and scales as well as the model of primordial non-Gaussianity. Monotonic
change of the power spectrum amplitude is broadly consistent with recent N-body simulations in the case of the local
model [23], although the fractional change is typically . 2 − 3%, as expected from Figure 1. Note, however, that
the level of this changes roughly corresponds to the sensitivity achievable with future redshift surveys. As references,
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FIG. 2: Ratios of power spectrum, P (k; fNL 6= 0)/P (k; fNL = 0), for z = 3 (left), 2 (middle) and 1 (right). From top to bottom
panels, the results for the local, equilateral with κ = 0, 0.3, and −0.3 are shown, respectively. In each panel, we plot the
cases with non-Gaussian parameter fNL = +300 (solid), +100 (long-dashed), −100 (short-dashed) and −300 (dot-dashed). The
vertical arrows labeled by k1% and k3% indicate the maximum wave number below which the perturbation theory predictions
are reliable with a precision of 1% and 3% level, respectively, according to the criteria (3.11) [50]. As references, the error bars
limited by the cosmic variance are plotted in the right panel, assuming the survey volume of Vs = 4 (h−1Gpc)3 (thin solid) and
Vs = 102 (h−1Gpc)3 (thick solid).

we plot the error bars in each right panel, which represent the expected 1 − σ errors, ∆P (k), limited by the cosmic-
variance, i.e., ∆P (k)/P (k) = (2/Nk)1/2 with Nk being the number of Fourier modes within a given bin at k. Here,
we specifically consider the two representative cases of Vs = 4 (h−1Gpc)3 (thin) and Vs = 102 (h−1Gpc)3 (thick),
corresponding to the future surveys dedicated for the measurement of baryon acoustic oscillations (BAOs) from the
ground and space, respectively. Naively comparing the error bars to the amplitudes of the non-Gaussian effects,
ground-based BAO surveys with a typical volume of V ∼few h−3Gpc3 will find it difficult to detect the signature of
primordial non-Gaussianity only from the power spectrum. However, idealistic surveys with huge volumes seem to
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show the potential for a definite detection of non-Gaussian effects even with the currently constrained values of fNL.

IV. IMPACT ON COSMOLOGICAL PARAMETER ESTIMATION

A. Fisher-matrix analysis

Apart from primordial non-Gaussianity, there are several parameters that affect the shape of the power spectrum.
Among these, the primordial spectral index ns and running index α ≡ dns/d lnk monotonically change the power
spectrum, which resemble the effect of primordial non-Gaussianity at some wavenumbers. A natural question arises
whether the primordial non-Gaussianity is indeed detectable or not considering the degeneracies and how the non-
negligible effect of non-Gaussianity adversely affects the estimations of primordial spectral index and the running of
the index. On the other hand, for the scales accessible to the future surveys, a measurement of the characteristic scale
of BAOs is an important clue to probe the late-time acceleration of the universe e.g., [27, 43, 60]), and a percent-level
determination of the acoustic scale is required for the determination of the dark energy equation of state [3, 51]. In
this respect, even the small effect of primordial non-Gaussianity may affect the determination of the BAO scale.

Here, we apply the Fisher-matrix method to address these issues and explore the potential impact on cosmological
parameter estimation as well as the determination of the BAO scale. For this purpose, we consider a rather simplified
setup, namely that our observable is the real-space power spectrum free from the redshift-space distortion. Under the
assumption of linear galaxy biasing, the observed power spectrum may be written as (e.g., [30]):

Pobs(k; z) =

(

DV (z)

DV,true(z)

)3

b2
1 Pmass

(

DV,true(z)

DV (z)
k; z

)

, (4.1)

where the power spectrum Pmass is computed from perturbation theory. Here, b1 is the linear biasing parameter, and
DV (z) represents the cosmological distance averaged over three-dimensional space, DV (z) ≡ [D2

A(z)/H(z)]1/3. The
subscript “true” denotes the quantities estimated from the true cosmological model.

Following Refs.[66, 67], the Fisher matrix for the galaxy power spectrum is given by

Fij =
Vs

(2π)2

∫ kmax

kmin

dk k2 ∂ lnP (k; z)

∂θi

∂ lnP (k; z)

∂θj

{

ngal P (k; z)

ngal P (k; z) + 1

}2

, (4.2)

where θi represents one from a set of parameters. The quantity Vs is the survey volume and ngal is the number
density of galaxies. The range of integration [kmin, kmax] should be determined through the survey properties, and in

particular the minimum wave number is limited to 2π/V
1/3
s . Note that the choice of kmin may be crucial for the power

spectrum measurement on large-scales k . 0.01hMpc−1, where the scale-dependent effect of galaxy biasing becomes
prominent through the non-trivial mode-coupling from primordial non-Gaussianity [2, 19, 42, 46, 62]. Here, we fix
kmin = 0.01hMpc−1 and allow kmax to vary. The effect of scale-dependent biasing will be discussed in next section.

In the Fisher-matrix analysis presented below, we include the five parameters given by θi =
{ns, α, DV /DV,true, fNL, b1}. The fiducial values of these parameters are set to ns = 0.961, α = 0, DV /DV,true = 1,
and fNL = 0. We then consider a space-based BAO survey as an idealistically gigantic galaxy survey along the lines
of SPACE and ADEPT ([5, 53, 54], see also Ref. [59]). We adopt the survey parameters of a space-based BAO exper-
iment as follows: z = 1.5, Vs = 100 (h−1Gpc)3, b1 = 3.25, and ngal = 3.25 × 10−4(h−1Mpc)−3 (e.g., [59]). Below, we
mainly focus on the local model of primordial non-Gaussianity. The results for the equilateral model are qualitatively
the same as in the local model and are briefly summarized in Table I.

B. Results

Figure 3 shows the marginalized 1-σ (68%C.L.) errors on the spectral index ns (left), the running of the index α
(middle), and the distance scale DV /DV,true (right) as function of cutoff scale, kmax. Here, the solid lines represent
the results assuming no prior information to these parameters (prior 1, solid). The short- and long-dashed lines
correspond to the results taking account of the priors on ns and α, which are expected to come from the upcoming
Planck CMB experiment : ∆ns = 0.01 (prior 2, short-dashed); ∆ns = 0.01 and ∆α = 0.002 (prior 3, long-dashed).
We assume Gaussian priors for these cases.

Figure 3 indicates that the CMB priors play an important role for the determination of the primordial indices and
distance scales. This has been repeatedly pointed out in the literature, but we emphasize that it is indeed crucial
when we include the non-Gaussian parameter fNL in the analysis of cosmological parameter estimation. To clarify
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FIG. 3: Predicted 1-σ (68%C.L.) errors on the spectral index ns (left), running of the index α (middle), and distance scale
DV /DV,true (right) as function of maximum wavenumber kmax, assuming the survey parameters of z = 1.5, Vs = 100h−3Gpc3,
b1 = 3.25, and ngal = 10−4h3Gpc−3, as an illustrative example of space-based BAO missions. Here, we specifically treat the
local model of primordial non-Gaussianity. The solid (prior 1), short-dashed (prior 2), and long-dashed (prior 3) lines represent
the results under the different priors (see text for details). Thick lines show the one-dimensional errors marginalized over the
four parameters (i.e., ns, α, DV /DV,true, fNL), and thin lines represents the error excluding the non-Gaussian parameter, fNL.

FIG. 4: Two-dimensional joint 68%C.L. constraints on fNL and ns (left), α (middle), and DV /DV,true (right), assuming the
local model of primordial non-Gaussianity. In deriving the constraints, we fix the maximum wavenumber to kmax = k1% ≃

0.155hMpc−1 and adopt the survey parameters of a space-based BAO mission. The different lines indicate the results from
imposing different prior information on ns and α: no priors (solid): ∆ns = 0.01 (short-dashed): ∆ns = 0.01, ∆α = 0.002
(long-dashed).

the influences, we exclude fNL from the Fisher-matrix analysis and evaluate the marginalized errors again. The
results are plotted in thin lines. Comparing thick with thin lines, we see that the inclusion of the extra parameter
fNL significantly worsen the constraints on the primordial index and its running. With strong priors on ns and
α (prior 3), tighter constraints comparable to those ignoring primordial non-Gaussianity would be obtained. By
contrast, the determination of distance scale DV /DV,true is insensitive to primordial non-Gaussianity if we choose
the cutoff wavenumber kmax around k1%, labeled by the vertical arrows. This is partly because the distance scale
is mainly determined through the BAOs at linear scales, where the effect of primordial non-Gaussianity becomes
negligible at z ≃ 1.5. It is interesting to note that all the curves depicted in Figure 3 become almost constant
at k & k1% ≃ 0.155hMpc−1. Since this scale is slightly larger than the one inferred from the mean separation of

galaxies (n
1/3
gal ≃ 0.07hMpc−1), the constancy of the predicted errors implies that the shot-noise contribution becomes

significant at k & k1%.
In Figure 4, we next plot the two-dimensional constraints on the non-Gaussian parameter fNL and one of the free

parameters ns, α and DV /DV,true, marginalizing over the other remaining parameters. In this plot, the cutoff scale
is fixed to kmax = k1%, and the 1-σ (68%C.L.) contours are shown for the three different priors. As expected from
Figure 3, the primordial index ns and its running α without CMB priors (prior 1) exhibit a strong degeneracy with
the fNL parameter, while the degeneracy between fNL and distance scale is very weak. The uncertainty in the fNL

parameter is therefore very large in this case. The errors can be reduced significantly when the strong constraints
on ns and α are obtained (prior 3). However, the uncertainty in fNL is still ∆fNL ∼ 500, which is quite a bit larger
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than other observational techniques using the bispectrum or cluster abundance [39, 57, 59]. The uncertainty may be
reduced if we increase the cutoff scale kmax, although it is generally difficult to accurately predict the power spectrum
at these scales, including the higher-order corrections. Hence, it is difficult to detect the non-Gaussian signals even
from an idealistic large-volume survey.

Table I summarizes the results of the one-dimensional marginalized errors for various cases with different fiducial
values, including the case of the equilateral model. Here, in addition to the priors on ns and α (prior 3), we further
put a Gaussian prior on κ with ∆κ = 0.5, the reason for which comes from the fact that κ is the slow-roll parameter
and should be restricted to κ ≪ 1. Because of the additional parameter, the resultant errors on fNL significantly
increase for the equilateral model, especially with κ > 0. By contrast, the errors on ns, α and distance scale are
hardly affected.

Finally, as a representative example for a more near-term project, we consider the case of a ground-based BAO
survey. The survey parameters we adopt are z = 1, Vs = 4 (h−1Gpc)3, b1 = 2, and ngal = 10−3 (h−1Mpc)−3 ([5, 22],
see also [59]). Figure 5 shows the expected one-dimensional error on DV /DV,true (left) and the two-dimensional errors
on fNL and DV /DV,true (right). Compared to the large volume of a space-based BAO experiment, the statistical
errors of the measurement of the power spectrum are somewhat larger and thereby the precision of the distance-scale
estimation is rather degraded. Nevertheless, the results are hardly affected by the primordial non-Gaussianity.

In conclusion, the presence of primordial non-Gaussianity potentially affects the estimation of the primordial index
and the running, and the CMB-based priors on these parameters would be crucial, but the distance-scale measurement
is relatively insensitive to it for the appropriate choice of kmax. In the end, the primordial non-Gaussianity is hardly
detectable from galaxy redshift surveys even with idealistically large survey-volume.

V. ON THE LOCAL BIASING PRESCRIPTION FOR GALAXY POWER SPECTRUM

So far, we have mainly dealt with the matter power spectrum and the galaxy power spectrum has been only
considered under the simplified assumption of linear galaxy biasing. In reality, the statistical relation between galaxy
and mass is generally complicated due to the non-linear nature of galaxy formation processes, and the linear biasing
prescription would not hold even at large scales accessible to the future galaxy surveys.

Although the extension of the linear biasing prescription to include non-linear effects is rather non-trivial, a straight-
forward and frequently used prescription for galaxy biasing, coupled to perturbation theory, is the local biasing [21],
in which the galaxy density field δgal at a given position x is described as the local function of mass density field at
the same position, i.e., δgal(x) = f [δ(x)]. On large scales of our interest, this can be expressed as the Taylor series
expansion:

δgal(x|R) = f [δ(x|R)] = b1 δ(x|R) +
b2

2

{

[ δ(x|R) ]2 −
〈

[δ(x|R)]2
〉 }

+
b3

3!

{

[ δ(x|R) ]3 −
〈

[δ(x|R)]3
〉 }

+ · · · , (5.1)

where the quantities δgal(x|R) and δ(x|R) are the galaxy and mass density fields smoothed over the radius R centered
at the position x. In the above expression, the coefficients b2 and b3 describe the non-linearity of galaxy biasing, which

TABLE I: Marginalized one-dimensional errors (68%C.L.) on ns, α, DV /DV,true and non-Gaussian parameters fNL and κ from
Fisher-matrix analysis adopting the survey parameters of a space-based BAO experiment

Fiducial model ∆ns ∆α ∆(DV /DV,true) ∆fNL ∆κ†

Local (fNL = 0) 0.0075 0.0019 0.0026 335 —

Local (fNL = +100) 0.0075 0.0019 0.0026 338 —

Equilateral (fNL = +250, κ = −0.3) 0.0072 0.0019 0.0025 596 0.48 (0.37)

Equilateral (fNL = +250, κ = 0) 0.0086 0.0020 0.0025 1306 0.48 (0.45)

Equilateral (fNL = +250, κ = +0.3) 0.0082 0.0018 0.0025 2774 0.49 (0.49)

Equilateral (fNL = −150, κ = −0.3) 0.0071 0.0019 0.0025 498 0.49 (0.43)

Equilateral (fNL = −150, κ = 0) 0.0085 0.0020 0.0025 1230 0.49 (0.48)

Equilateral (fNL = −150, κ = +0.3) 0.0082 0.0018 0.0025 2753 0.50 (0.50)

† parentheses represent the marginalized 1-σ error when further adopting the Gaussian prior of ∆fNL = 75
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FIG. 5: Expected 1-σ (68%C.L.) error on the distance scale as a function of maximum wavenumber (left) and two-dimensional
joint 68% C.L. constraints on fNL of the local model and DV /DV,true fixing the maximum wavenumber to kmax = k1% ≃

0.131hMpc−1 (right). Here, we specifically adopt the survey parameters of z = 1, Vs = 4 h−3Gpc3, b1 = 2.0, and ngal = 10−3

h3Mpc−3, as a representative example of ground-based BAO surveys. The meaning of the lines are the same as in Figures 3
and 4.

are incorporated into the galaxy power spectrum Pgal(k), through the perturbative calculation of the matter power
spectrum ([24, 45, 63], see also [44, 65] for different parametrization schemes). Although the relation (5.1) is just a
phenomenological prescription, it has been recently applied to the characterization of the BAOs, and the model of
galaxy power spectra has been tested against numerical simulations of halo/galaxy clustering in the case of Gaussian
initial condition [31, 63].

When we consider primordial non-Gaussianity, several non-trivial corrections to the galaxy power spectrum Pgal(k)
appears, which can further alter the shape of the power spectrum on large scales. This has been first pointed out
by McDonald [46]. Here, we rephrase his finding and advocate its observational importance, together with potential
problems.

Let us focus on the scales larger than the characteristic scale of BAOs, above which the higher-order perturbations
can be safely neglected. Collecting the relevant terms in the expansion (5.1), the power spectrum of the galaxy density
fields smoothed over the radius R may be expressed as

Pgal(k; z|R) = b2
1

{

D2(z)P0(k) + P (12)(k; z)
}

W 2(kR) + b1b2 F (k; z, fNL|R) + · · · , (5.2)

up to the third-order in mass density field, i.e., O(δ3
0). Here, W (x) is the filter function defined in Fourier space.

In equation (5.2), there are two types of non-Gaussian contributions. One is the term P (12)(k; z) coming from the
matter power spectrum, and the other is the function F (k; z, fNL) arising from the non-linear mapping of the galaxy
biasing. The explicit expression of the function F is

F (k; z, fNL|R) = D3(z)

∫

d3q

(2π)3
Mζ(k)Mζ(q)Mζ(|k − q|)

× W (kR)W (qR)W (|k − q|R)Bζ(−k, q, k − q). (5.3)

The functional form of F is clearly different from the perturbative corrections of the matter power spectrum, P (12)

(Eq.(3.5) or (3.8) ). Hence, the presence of this term potentially leads to the scale-dependent galaxy biasing, relative
to the matter power spectrum.

Before continuing, we note that the quantity Pgal(k; z|R) manifestly depends on the smoothing radius R. In the
usual sense, Pgal(k; z|R) would not be directly related to the power spectrum derived from the unfiltered observations.
It has been put forward in Ref. [63] that the unfiltered galaxy power spectrum Pgal(k; z) can be recovered through
the simple operation:

Pgal(k; z) =
Pgal(k; z|R)

W 2(kR)
. (5.4)
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While the above definition still includes the smoothing radius, we regard equation (5.4) as a direct observable and
evaluate it with the appropriate smoothing radius to see what happens. Below, we will separately treat the galaxy
power spectra for the local and equilateral models of primordial non-Gaussianity.

FIG. 6: Ratio of biasing factor, b(k; z)/bG(k; z) given at z = 1, in the case of the local model. Gaussian smoothing is adopted
in order to compute the biased power spectra. R = 1h−1Mpc (left); R = 5h−1Mpc (middle); R = 10h−1Mpc (right)

FIG. 7: Ratio of biasing factor, b(k; z)/bG(k; z), given at z = 1 in the case of the equilateral model. In this plot, we do not
consider Gaussian smoothing. κ = 0 (left); κ = 0.3 (middle); κ = −0.3 (right).

A. Local model

Figures 6 plots the ratio of the biasing factor, b(k; z)/bG(k; z), plotted against the wavenumber, in the case of local
model. Here, the biasing factor b(k; z) is defined by

b(k; z) ≡

{

Pgal(k; z)

Pmass(k; z)

}1/2

. (5.5)
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The function bG(k; z) is similarly defined as above, but with fNL = 0. For illustrative purposes, we specifically set the
biasing coefficients to b1 = 2 and b2 = 0.5, and the results for z = 1 are shown for different values of non-Gaussian
parameter fNL. Three different panels show the dependence of the smoothing radius, adopting Gaussian smoothing,
W (x) = exp(−x2/2), with radii R = 1h−1Mpc (left), 5h−1Mpc (middle), and 10h−1Mpc (right).

Clearly, the ratios of the biasing factor exhibit a strong scale-dependence, especially at k . 0.01hMpc−1. Note that
the function F logarithmically diverges unless we introduce a large smoothing radius R. Accordingly, the strength of
the scale-dependence sensitively depends on R as well as fNL. The origin of this scale-dependence can be deduced
from a simple manipulation as follows. Substituting the bispectrum of the local model (2.10) into the expression (5.2),
we take the limit k → 0. The correction P (12)(k) becomes negligibly small, and the term including the function F is
the only dominant contribution to the galaxy power spectrum. We have

F (k; z, fNL|R) ≃
12

5
fNL D3(z)P0(k)

W (kR)σ2(R)

Mζ(k)
; σ2(R) =

∫

d3q

(2π)3
W 2(qR)P0(q), (5.6)

where we used the fact that the function Mζ(k) defined in equation (2.2) asymptotically behaves like Mζ ∝ k2 (k0) in
the limit of k → 0 (k → ∞). Here, the quantity σ(R) represents the rms amplitude of the linear density fluctuation
δ0. Then, from (5.4) and (5.5), we obtain

b(k; z) ≃ b1

[

1 +
12

5
fNL

b2

b1
D(z)

σ2(R)

Mζ(k)W (kR)

]1/2

. (5.7)

The expression (5.7) contains a term inversely proportional to Mζ(k), which leads to the strong scale-dependence at
k → 0. Now, we recognize the fact that the scale-dependence of the biasing factor depends not only on R and fNL,
but also on the ratio of biasing coefficients, b2/b1, and redshift, z.

It is interesting to note that similar kinds of behavior can be found in the halo biasing prescription [2, 19, 42, 62].
While the halo biasing describes the clustering properties of virialized objects based on the Press-Schechter theory,
the origin of the scale-dependence is qualitatively the same as that of the local biasing mentioned above. In this sense,
the scale-dependent biasing may be a unique character of the local model of primordial non-Gaussianity and it would
be an important observable of the large-scale structure.

Note, however, that the scale-dependent biasing factor in the local biasing seems problematic because of the loga-
rithmic divergence at R → 0, which originates from the rms amplitude σ(R) in the case of a CDM power spectrum.
Further, the biasing factor b(k; z) can be ill-defined for the negative fNL or b2 and it eventually becomes complex
at k → 0. McDonald [46] proposed a renormalization treatment to remove these difficulties by adding a non-local
counter term to the relation (5.1). Although the addition of a counter term might be a possible solution, uniqueness
of this treatment seems is unclear, and thus the physical reason for the non-local counter term is unclear. In fact,
as shown in next subsection, the scale-dependence of the biasing factor turns out to be model-dependent, and the
logarithmic divergence disappears when we consider the equilateral model of primordial non-Gaussianity.

B. Equilateral model

In Figure 7, we plot the ratio of the biasing factor, b(k; z)/bG(k; z), in the equilateral model. Here, instead of
showing the dependence of smoothing radius, we neglect the effect of smoothing (i.e., R → 0) and just examine the
effect of scale-dependent non-Gaussianity by changing κ to 0 (left), −0.3 (middle) and 0.3 (right).

In marked contrast to the local model, it turns out that the biasing factors b(k; z) in the equilateral model are almost
constant on large scales, and the linear deterministic biasing, Pgal(k) = b2

1Pmass(k), is an excellent approximation to
the galaxy power spectrum on large scales. These features are irrespective of the values of κ, and can be deduced
from the asymptotic behavior of the function F . In the k → 0 limit, we have

F (k; z, fNL|R = 0) ≃
18

5
fNL D3(z)Mζ(k)

×

∫

d3q

(2π)3

(

2q/3

kCMB

)−2κ

{Mζ(q)}
2

[

2
{

Pζ(k)P 5
ζ (q)

}1/3
− {Pζ(q)}

2
]

. (5.8)

Recalling the power-law nature of the primordial spectrum Pζ(q) ∝ qns−4, the integral in the above equation converges
if ns ∼ 1 and |κ| . 0.3. As a result, the function F scales as F (k; z, fNL|R = 0) ∝ Mζ(k) ∝ k2 and the non-Gaussian
contribution becomes negligibly smaller than the linear biasing term, b2

1Pmass(k; z).
Therefore, as long as the equilateral model of primordial non-Gaussianity is concerned, it is hard to constrain fNL

through the scale-dependent biasing factor. Although this conclusion comes from the assumption of the local biasing
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prescription, this would generally hold for other biasing schemes, including the halo biasing prescription. On the
other hand, a big difference in the scale-dependent biasing factor between the local and equilateral models implies
that the galaxy biasing is very sensitive to the shape of the primordial bispectrum. An essential reason for having
a scale-dependent biasing only for the local-type primordial non-Gaussianity is that the amplitude of the primordial
bispectrum with squeezed configuration, i.e., Bζ(−k, q, k − q) with |k| ≪ |q|, is greater than that of the equilateral
case (see Eq.(5.3)). The local-type primordial non-Gaussianity has fairly strong mode-correlations between small and
large Fourier modes, and thereby the biasing, as a small-scale phenomenon, affects the power spectrum on very large
scales. This generic feature might be very helpful to discriminate between the types of primordial non-Gaussianity.
The detection of scale-dependent biasing may have interesting implication for the inflationary model, according to the
single-field consistency relation [16]. The consistency relation states that as long as the inflation dynamics is driven
by a single scalar field, the primordial bispectrum in squeezed configuration becomes very small, irrespective of the
type of non-Gaussianity. Thus, single-field inflation generically predicts scale-independent biasing on large scales.
Therefore, if the presence of scale-dependent biasing on large scales is observationally verified, this strongly disproves
the consistency relation, and the inflation dynamics may not be simply characterized by the single scalar field.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have comprehensively studied the effect of primordial non-Gaussianity on the power spectrum of
large-scale structure. Using perturbation theory, we calculate the leading-order non-Gaussian corrections to the matter
power spectrum through the non-linear mode coupling of the gravitational evolution. In the weakly non-linear regime,
the signature of primordial non-Gaussianity in the matter power spectrum can be characterized by the primordial
bispectrum. Adopting two representative models of the bispectrum (local and equilateral), we quantitatively estimate
the non-Gaussian signals on the matter power spectrum. The primordial non-Gaussianity systematically enhances or
suppresses the non-linear growth of the power spectrum amplitude at the . 1-2% level.

We then explore the potential impact on the cosmological parameter estimations from future dedicated surveys
for BAO measurement. Under the assumption of scale-independent linear biasing, the Fisher-matrix analysis reveals
that while it is hard to detect the primordial non-Gaussianity to the level of current constraints, the inclusion of
the non-Gaussian parameter fNL significantly degrades the constraints on the primordial spectral index ns and the
running of the index α. In this respect, the CMB prior information for ns and α as well as the non-Gaussian parameter
is very crucial. On the other hand, determination of the distance scale DA(z) is rather insensitive to the presence or
absence of primordial non-Gaussianity, and thus the characteristic scale of BAOs is a robust standard ruler.

We have also considered the effects of primordial non-Gaussianity on the galaxy biasing. In the framework of local
galaxy biasing, in which the number density of galaxies is described by a local function of the mass density field, we
found that the non-linear mapping of galaxy biasing can modulate the power spectrum and this sensitively depends
on the shape of non-Gaussianity. In the local model of primordial non-Gaussianity, mode-correlations between large
scales and small scales are fairly strong, and the non-Gaussian correction induces the strong scale-dependent biasing
on large-scales, while the scale-independent linear biasing is preserved to a good accuracy in the equilateral model.
These remarkable properties may be very helpful in discriminating between the types of primordial non-Gaussianity,
especially in connection with the single-field consistency relation. However, the biasing factor in the local model
exhibits an apparent divergence, suggesting that the local biasing prescription may be incompatible with the local
model of primordial non-Gaussianity. Indeed, the local biasing scheme is just a phenomenological parametrization
and the validity of this prescription itself has not yet been tested enough in the presence of non-Gaussianity. Further
study using simulations is necessary for quantitative prediction of the non-Gaussian signature on galaxy biasing.
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