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We compute the fourth order action in perturbation theory for scalar and second order tensor
perturbations for a minimally coupled single field inflationary model, where the inflaton’s lagrangian
is a general function of the field’s value and its kinetic energy. We obtain the fourth order action
in two gauges, the comoving gauge and the uniform curvature gauge. Using the comoving gauge
action we calculate the trispectrum at leading order in slow roll, finding agreement with a previously
known result in the literature. We point out that in general to obtain the correct leading order
trispectrum one cannot ignore second order tensor perturbations as previously done by others. The
next-to-leading order corrections may become detectable depending on the shape and we provide
the necessary formalism to calculate them.

I. INTRODUCTION

The theory of slow-roll inflation generically predicts that the observed cosmic microwave background radiation
(CMBR) anisotropies are nearly scale invariant and very gaussian. Indeed, the latest observations of CMBR by
WMAP3 [1] confirm these expectations. This constitutes one of the biggest achievements of modern cosmology.

Despite its successes the theory of inflation still has many open questions. For example, we do not know the origin
of the scalar field whose energy drives inflation, not to mention that we have never detected directly in the laboratory
these kind of particles. The energy scale at which inflation happened is unknown by many orders of magnitude.
There are many models of inflation that give similar predictions for the power spectrum of primordial perturbations,
so which one (if any) is the correct one?

For us to move a step forward in our understanding of the very early universe we have to work in two fronts. First
the observational side. In the next few years, with improved experiments like the Planck satellite, we will measure
the CMBR anisotropies to an incredible resolution. For example the observational bounds on the bispectrum (the
three point correlation function of the primordial curvature perturbation ζ) will shrink from the present WMAP3
value −50 < fNL < 114 [1] to |fNL| <∼ 5 [2], where the parameter fNL parameterizes the size of the bispectrum. It’s
because this parameter is constrained to be small that we say that the CMBR anisotropies are very gaussian. The
observational bounds on the trispectrum (four point function) will also tighten significantly from the rather weak
present constraint of |τNL| < 108 [3, 4] to the future constraint of |τNL| ∼ 560 [5], where τNL denotes the size of the
trispectrum. These previous observational bounds on the non-linearity parameters are for non-gaussianity of the local
type. These bounds change depending on the shape of the wave vectors’ configuration [6]. This is one of the reasons
why it is important to calculate the shape dependence of the non-gaussianity.

In face of these expected observational advances, it is then imperative to push forward our theoretical knowledge of
our theories and calculate more observational consequences of the different inflationary models to make a comparison
with observations possible. One possible direction to be followed by us and many others is to calculate higher order
statistics (like the trispectrum) of the primordial curvature perturbation. These higher order statistics contain much
more information about the inflationary dynamics and if we observe them they will strongly constrain our models.
Because these higher order statistics have a non-trivial momentum dependence (shape) they will help to discriminate
between models that have a similar power spectrum (two point function).

Calculations of the bispectrum for a single field inflationary model were done by Maldacena [7]. He showed that
the primordial bispectrum is too small (of the order of the slow-roll parameters) to be observed even with Planck.
Subsequent work generalized Maldacena’s result to include more fields and more complicated kinetic terms [8, 9, 10].
In [10], Chen et al. have calculated the bispectrum for a quite general model of single field inflation. They showed
that for some models even the next-to-leading order corrections in the slow-roll expansion may be observed.

In this paper, we will focus our attention on the calculation of the trispectrum. In [11], Seery et al. have calculated
the trispectrum for slow-roll multi-field models (with standard kinetic terms) and they showed that at horizon crossing
it is too small to be observed. But there are models of single field inflation, well motivated from more fundamental
theories, that can produce a significant amount of non-gaussianity, such as Dirac-Born-Infeld (DBI) inflation [12, 13].
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In [13] the authors have computed the trispectrum for a model where the inflaton’s lagrangian is a general function
of the field’s kinetic energy and the field’s value, their result was obtained using a simple method [14], that only
gives the correct leading order answer. In this paper we will provide the equations necessary to calculate the next-to-
leading order corrections to the trispectrum. We argue that for some models these corrections might become equally
observable in the future. In fact, we will calculate the fourth order action in the uniform curvature gauge that is exact
in the slow-roll expansion and therefore in principle one could calculate all slow-roll corrections to the trispectrum of
the field perturbations.

We will also compute the exact fourth order action for the curvature perturbation ζ in the comoving gauge. For a
simpler inflation model (with the standard kinetic term) this was recently done in [15]. However [15] did not consider
second order tensor perturbations. We will argue that this is an oversimplification that leads to erroneous results. The
reason simply being that at second order in perturbation theory, scalar degrees of freedom will source second order
tensor perturbations and this will give a non-zero contribution for the fourth order action and hence the trispectrum.

There are other reasons why we will perform the calculation in the comoving gauge. First of all, in doing so we
work all the time with the gauge invariant variable ζ that is directly related with the observational quantities. The
comoving gauge action can also be used other practical purposes. For example, it can be used to calculate loop
effects that can possibly have important observational consequences. It can also be used to calculate the trispectrum
of models where the potential has a “feature” (see [16, 17] for an example of such calculation for the bispectrum).
In the vicinity of the sudden potential “jump” the slow-roll approximation temporarily fails and one might get an
enhancement of the trispectrum. There are well motivated models of brane inflation where the throat’s warp factor
suddenly jumps [18].

This paper is organized as follows. In the next section, we introduce the model under consideration. In section III
we shall study non-linear perturbations. First, we compute the fourth order action in the comoving gauge including
both scalar and second order tensor degrees of freedom. After that we compute the fourth order action in the uniform
curvature gauge. In section IV, we present the formalism needed to calculate the trispectrum. In section V, we
calculate the leading order trispectrum using the comoving gauge action. We comment on previous works and on
the observability of next-to-leading order corrections. Section VI is devoted to conclusions. Finally in Appendix, we
present the second order gauge transformation between the two previous gauges and a way to extract the transverse
and traceless part of a tensor.

II. THE MODEL

In this work, we will consider a fairly general class of models described by the following action

S =
1

2

∫

d4x
√−g

[

M2
PlR+ 2P (X,φ)

]

, (1)

where φ is the inflaton field, MPl is the Planck mass that we will set to unity hereafter, R is the Ricci scalar and
X ≡ − 1

2g
µν∂µφ∂νφ is the inflaton’s kinetic energy. gµν is the metric tensor. We label the inflaton’s lagrangian by P

and we assume that it is a well behaved function of two variables, the inflaton field and its kinetic energy.
This general field lagrangian includes as particular cases the common slow-roll inflation model, DBI-inflation [19]

[12] and K-inflation [20].
We are interested in flat, homogeneous and isotropic Friedmann-Robertson-Walker universes described by the line

element

ds2 = −dt2 + a2(t)δijdx
idxj , (2)

where a(t) is the scale factor. The Friedmann equation and the continuity equation read

3H2 = E, (3)

Ė = −3H (E + P ) , (4)

where the Hubble rate is H = ȧ/a, E is the energy of the inflaton and it is given by

E = 2XP,X − P, (5)

where P,X denotes the derivative of P with respect to X .
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It was shown in [21] that for this model the speed of propagation of scalar perturbations (“speed of sound”) is cs
given by

c2s =
P,X

E,X

=
P,X

P,X + 2XP,XX

. (6)

We define the slow variation parameters, analogues of the slow-roll parameters, as:

ǫ = − Ḣ

H2
=
XP,X

H2
, (7)

η =
ǫ̇

ǫH
, (8)

s =
ċs
csH

. (9)

We should note that these slow variation parameters are more general than the usual slow-roll parameters and that
the smallness of these parameters does not imply that the field in rolling slowly. We assume that the rate of change
of the speed of sound is small (as described by s) but cs is otherwise free to change between zero and one.

It is convenient to introduce the following parameters that describe the non-linear dependence of the lagrangian on
the kinetic energy:

Σ = XP,X + 2X2P,XX =
H2ǫ

c2s
, (10)

λ = X2P,XX +
2

3
X3P,XXX , (11)

Π = X3P,XXX +
2

5
X4P,XXXX . (12)

These parameters are related to the size of the bispectrum and trispectrum. The power spectrum of the primordial
quantum fluctuation was first derived in [21] and reads

P ζ
k =

1

36π2

E2

E + P
=

1

8π2

H2

csǫ
, (13)

where it should be evaluated at the time of horizon crossing cs∗k = a∗H∗. The spectral index is

ns − 1 =
d lnP ζ

k

d ln k
= −2ǫ− η − s. (14)

WMAP observations of the perturbations in the CMBR tell us that the previous power spectrum is almost scale
invariant therefore implying that the three slow variation parameters should be small at horizon crossing, roughly of
order 10−2.

III. NON-LINEAR PERTURBATIONS

In this section, we will consider perturbations of the background (2) beyond linear order. There is a vast literature on
second order perturbations that are important when one is interested in calculating three point correlation functions,
see for example [7, 8, 10, 22]. In the present paper, we are interested in non-gaussianities that come from the
trispectrum and so we need to use third order perturbation theory. For that we need to compute the fourth order
in the perturbation action. In this section we will obtain the fourth order action in two different gauges. As a check
on our calculations we will compute the leading order (in slow roll) trispectrum in both gauges. We will follow the
pioneering approach developed by Maldacena [7] and used in several subsequent papers [8, 9, 11, 13].
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For reasons that will become clear later it is convenient to use the ADM metric formalism [23]. The ADM line
element reads

ds2 = −N2dt2 + hij

(

dxi +N idt
) (

dxj +N jdt
)

, (15)

where N is the lapse function, N i is the shift vector and hij is the 3D metric.
The action (1) becomes

S =
1

2

∫

dtd3x
√
hN

(

(3)R+ 2P
)

+
1

2

∫

dtd3x
√
hN−1

(

EijE
ij − E2

)

. (16)

The tensor Eij is defined as

Eij =
1

2

(

ḣij −∇iNj −∇jNi

)

, (17)

and it is related to the extrinsic curvature by Kij = N−1Eij . ∇i is the covariant derivative with respect to hij and
all contra-variant indices in this section are raised with hij unless stated otherwise.

The hamiltonian and momentum constraints are respectively

(3)R+ 2P − 2π2N−2P,X −N−2
(

EijE
ij − E2

)

= 0,

∇j

(

N−1Ej
i

)

−∇i

(

N−1E
)

= πN−1∇iφP,X , (18)

where π is defined as

π ≡ φ̇−N j∇jφ. (19)

We decompose the shift vector N i into scalar and intrinsic vector parts as

Ni = Ñi + ∂iψ, (20)

where ∂iÑ i = 0, here indices are raised with δij .
Before we consider perturbations around our background let us count the number of degrees of freedom (dof) that

we have. There are five scalar functions, the field φ, N , ψ, deth and hij ∼ ∂i∂jH , where H is a scalar function

and deth denotes the determinant of the 3D metric. Also, there are two vector modes Ñ i and hij ∼ ∂iχj , where

χj is an arbitrary vector. Both Ñ i and χj satisfy a divergenceless condition and so carry four dof. Furthermore,
we also have a transverse and traceless tensor mode γij that contains two additional dof. Because our theory is
invariant under change of coordinates we can eliminate some of these dof. For instance, a spatial reparametrization
like xi = x̃i + ∂iǫ̃(x̃, t̃) + ǫi(t)(x̃, t̃), where ǫ̃ and ǫi(t) are arbitrary and ∂iǫ

i
(t) = 0, can be chosen so that it removes one

scalar dof and one vector mode. A time reparametrization would eliminate another scalar dof. Constraints in the
action will eliminate further two scalar dof and a vector mode. In the end we are left with one scalar, zero vector and
one tensor modes that correspond to three physical propagating dof.

In the next subsection we shall use two different gauges that correctly parameterize these dof. Because physical
observables are gauge invariant we know that both gauges have to give the same result for the trispectrum for instance.
It seems then unnecessary to perform the calculation twice in different gauges. In practice, we will see that both gauges
have advantages and disadvantages and one is more suitable for some applications than the other. Furthermore, it
provides a good consistency check on the calculation.

A. Non-linear perturbations in the comoving gauge

In this subsection, we will compute the fourth order action for the general model (1) in the comoving gauge. In
this gauge the scalar degree of freedom is the so-called curvature perturbation ζ that is also gauge invariant. There
are a few works on this subject using this gauge, see e.g. [15], where the authors have calculated the fourth order
action for a standard kinetic term inflation but they neglected second order tensor perturbations. We will show that
this is an oversimplification that may lead to an erroneous result for the four point correlation function.

In the comoving gauge, the inflaton fluctuations vanish and the 3D metric is perturbed as

δφ = 0,

hij = a2e2ζ ĥij , ĥij = δij + γij +
1

2
γikγ

k
j + · · · (21)



5

where detĥ = 1, γij is a tensor perturbation that we assume to be a second order quantity, i. e. γij = O(ζ2). It obeys
the traceless and transverse conditions γi

i = ∂iγij = 0 (indices are raised with δij). ζ is the gauge invariant scalar

perturbation. In (21), we have ignored the first order tensor perturbations (1)γijGW
. This is because any correlation

function involving this tensor mode will be smaller than a correlation function involving only scalars, see results of
[7]. In the literature the second order tensor perturbations are often neglected, however they should be taken into
account. The reason for this is because at second order the scalars will source the tensor perturbations equation.
Later in this section, we will elaborate further on this point. Higher order tensor perturbations, like (3)γij , do not
contribute to the fourth order action.

We expand N and N i in power of the perturbation ζ

N = 1 + α1 + α2 + · · · , (22)

Ñi = Ñi

(1)
+ Ñi

(2)
+ · · · , (23)

ψ = ψ1 + ψ2 + · · · , (24)

where αn, Ñi

(n)
and ψn are of order ζn.

Some useful expressions for the quantities appearing in (18), valid to all orders in perturbations but for γij = 0:

(3)R = −2a−2e−2ζ
(

∂iζ∂
iζ + 2∂i∂

iζ
)

, (25)

EijE
ij − E2 = −6

(

H + ζ̇
)2

+
4H

a2

(

1 +
ζ̇

H

)

e−2ζ
(

∂2ψ + ∂kζ∂kψ + ∂kζÑk

)

+a−4e−4ζ
[1

2
∂iÑj

(

∂iÑ j + ∂jÑ i
)

+ 2∂i∂jψ∂iÑj + ∂i∂jψ∂
i∂jψ − ∂2ψ∂2ψ

−2∂iÑj

(

∂jζÑ i + ∂iζÑ j
)

− 4Ñk∂iζ∂
i∂kψ − 2∂iÑj

(

∂jζ∂iψ + ∂iζ∂jψ
)

−4∂i∂jψ∂
jζ∂iψ + 2∂jζ

(

∂jζÑiÑ
i + 2∂jζÑi∂

iψ + ∂jζ∂iψ∂
iψ
) ]

, (26)

∇j

(

N−1Ej
i

)

−∇i

(

N−1E
)

=

−N−2
[

− 2
(

H + ζ̇
)

∂iN +
a−2e−2ζ

2

(

−∂jN (∂iNj + ∂jNi) + 2∂jN
(

∂jζNi + ∂iζN
j
)

+ 2∂iN∂
2ψ
)

]

+N−1
[

− 2∂iζ̇ + a−2e−2ζ

(

1

2

(

∂jζ∂jÑi − ∂jζ∂iÑ
j
)

+ ∂jζ∂
jζNi − ∂iζ∂

jζNj + ∂i∂
jζNj + ∂2ζNi −

1

2
∂2Ñi

)

]

.

(27)

In the previous equations, indices in the right-hand side are raised with δij while indices in the left-hand side are
raised with hij . In the rest of this section indices will be raised with δij .

Now, the strategy is to solve the constraint equations for the lapse function and shift vector in terms of ζ and then
plug in the solutions in the expanded action up to fourth order.

At first order in ζ, a particular solution for equations (18) is [7, 8]:

α1 =
ζ̇

H
, Ñi

(1)
= 0, ψ1 = − ζ

H
+ χ, ∂2χ = a2 ǫ

c2s
ζ̇. (28)

At second order, the constraint equation for the lapse function gives

4H

a2
∂2ψ2 = −2a−2∂iζ

(

∂iζ + 2H∂iψ1

)

− 4α1

(

a−2∂i∂
iζ − 2Σζ

)

− 2α2
1 (Σ + 6λ)

−a−4
(

∂i∂kψ1∂i∂
kψ1 − ∂2ψ1∂

2ψ1

)

+ 4α2

(

Σ − 3H2
)

, (29)

and the equation for the shift vector gives

2H∂iα2 −
1

2
a−2∂2Ñi

(2)
= −a−2

(

∂kα1∂
k∂iψ1 − ∂iα1∂

2ψ1 + ∂2ζ∂iψ1 + ∂i∂
kζ∂kψ1

)

. (30)
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Due to the fact that Ñ i is divergenceless and that any vector can be separated into a incompressible and irrotational

part one can separate the contributions from α2 and Ñi

(2)
in the previous equation. The irrotational part of Eq. (30)

gives

2Hα2 = ∂−2∂iFi, (31)

and the incompressible part gives

1

2a2
Ñi

(2)
= −∂−2Fi + ∂−4∂i∂

kFk, (32)

where Fi is define as the right-hand side of equation (30). The operator ∂−2 is defined by ∂−2(∂2ϕ) = ϕ and in
Fourier space it just bring in a factor of −1/k2.

It was shown in [10] that to compute the effective action of order ζn, within the ADM formalism, one only needs to
use the solution for the Lagrange multipliers N and N i up to order ζn−2. Therefore in order to calculate the fourth
order effective action the knowledge of the Lagrange multipliers up to second order is required. It is given in equations
(28), (31) and (32).

The second order action is

S2 =

∫

dtd3x

[

a3 ǫ

c2s
ζ̇2 − aǫ (∂ζ)

2

]

. (33)

The third order action is [7, 8, 10]

S3 =

∫

dtd3x

[

−ǫaζ (∂ζ)
2 − a3 (Σ + 2λ)

ζ̇3

H3
+

3a3ǫ

c2s
ζζ̇2

+
1

2a

(

3ζ − ζ̇

H

)

(

∂i∂jψ1∂i∂jψ1 − ∂2ψ1∂
2ψ1

)

− 2

a
∂iψ1∂iζ∂

2ψ1

]

. (34)

The scalar fourth order action is

S4 =
1

2

∫

dtd3xa3

[

−a−2ǫζ2 (∂ζ)
2
+ α4

1

(

2Σ + 9λ+
10

3
Π

)

− 6ζα3
1 (Σ + 2λ) + 9ζ2α2

1Σ

−2α2
2

(

Σ − 3H2
)

+ a−4

(

ζ2

2
+ ζα1 + α2

1

)

(

∂kN
(1)
j ∂kN

j(1) − ∂jN
(1)
j ∂kN

(1)
k

)

−2a−4 (ζ + α1) ∂
kN j(1)

(

∂kN
(2)
j − δkj∂

nN (2)
n − 2∂jζN

(1)
k

)

+a−4
(

−4∂kN
(1)
j ∂jζNk(2)

+ 2N
(1)
k ∂jζN

k(1)
∂jζ
)

+
a−4

2
∂kÑ

(2)
j ∂kÑ j(2) − 2a−4∂kN

(2)
j

(

∂jζNk(1)
+ ∂kζN j(1)

)

]

. (35)

Here, no slow-roll approximation has been made. The previous action has to be supplemented with the action
containing terms with one and two tensors

Sγ2 =
1

8

∫

dtd3x
[

a3γ̇ij γ̇
ij − a∂kγij∂

kγij
]

, (36)

Sγζ2 =

∫

dtd3x

[

−2
a

H
γij∂

iζ̇∂jζ − aγij∂
iζ∂jζ − 1

2
a

(

3ζ − ζ̇

H

)

γ̇ij∂
i∂jψ1 +

1

2
a−1∂kγij∂

i∂jψ1∂
kψ1

]

. (37)

1. Canonical variable for quantization ζn

In order to calculate the quantum four point correlation function we follow the standard procedure in quantum
field theory. However there is an important subtlety here. The gauge invariant quantity ζ is not the correct variable
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to be quantized, because it is not a canonical field . The canonical field to be quantized is the field perturbation δφ,
or a convenient parameterization ζn defined by

ζn = −H

φ̇0

δφ, (38)

where φ0 is the background value of the field. We will see that ζ is related to ζn by a non-linear transformation so
for the power spectrum calculation both procedures of quantizing ζ or ζn give the same answer because the difference
between these two variables is a second order quantity. However, for the calculation of higher order correlation
functions (like the bispectrum or trispectrum) ζn is the correct variable to be quantized as it is linear in δφ. For
the trispectrum, quantizing ζ gives different results from quantizing ζn. We will find the relation between ζ and
ζn through the gauge transformation equations from the uniform curvature gauge (discussed in detail in the next
subsection) to the comoving gauge. In the uniform curvature gauge the ansatz is

φ(x, t) = φ0 + δφ(x, t),

hij = a2ĥij , ĥij = δij + γ̃ij +
1

2
γ̃ikγ̃

k
j + · · · (39)

where detĥ = 1 and γ̃ij is a tensor perturbation that we assume to be a second order quantity, i.e., γ̃ij = O(δφ2).
The gauge transformations are

ζ(x) = ζn(x) + F2(ζn(x)) + F3(ζn(x)), (40)

γij = γ̃ij(t) + µij , (41)

where F2(ζn), µij = O(ζ2
n), F3(ζn) = O(ζ3

n) are the terms coming from the second and third order gauge transforma-
tions respectively, they can be found explicitly in Appendix A or in [7, 15].

We now need to find the fourth order action for the variable ζn. Schematically, we write the different contributions
as

Sζn
= S4(ζn) + Sγ2(ζn) + Sγζ2(ζn) + S3(F2(ζn)) + S2(F2(ζn)). (42)

The first three terms come from Eqs. (35-37) when we substitute ζ with ζn and γij with Eq. (41). Due to the
non-linear relation between ζ and ζn, the third order action for ζ, Eq. (34), will after the change of variables give
a contribution to the fourth order action like S3(F2(ζn)). Similarly, the second order action, Eq. (33), will also
contribute with S2(F2(ζn)). In principle, one would also need to compute the third order gauge transformation as

the second order action gives origin to fourth order terms like ζ̇nḞ3(ζn) (where F3(ζn) is the third order piece of the
gauge transformation). Fortunately, terms involving F3 can be shown to be proportional to the first order equations
of motion for ζn, therefore when computing the trispectrum these terms will vanish and we don’t need to calculate
the third order gauge transformation explicitly at this point. It can be easily seen that equations (34), (35), (36),
(37) or their counterparts in terms of ζn, Eq. (42), have terms that are not slow roll suppressed. However, because
in pure de Sitter space ζ is a gauge mode we expect the action (42) to be slow-roll suppressed (of order ǫ). One can
perform many integrations by parts to show that the unsuppressed terms of (42) can be reduced to total derivative
terms and slow-roll suppressed terms given by

Sparts =

∫

dt d3x
{

− 3ǫ

aH2

[1

4

(

∂jζn∂
jζn
)2

+
1

8
ζ2
n∂

2
(

∂jζn∂
jζn
)

+ ∂jζn∂
jζn∂

−2∂l∂k (∂lζn∂kζn)

+2∂i

(

∂kζn∂
iζn
)

∂−2∂l

(

∂kζn∂
lζn
)

+
1

2

(

∂−2∂j∂k

(

∂jζn∂
kζn
))2
]

− 5ǫ

8a3H4

[

∂lζn∂
lζn∂

k∂j (∂kζn∂jζn) − 1

2
∂jζn∂

jζn∂
2
(

∂kζn∂
kζn
)

−1

2
∂k∂j (∂kζn∂jζn) ∂−2∂m∂l (∂mζn∂lζn)

]}

. (43)

For us to be able to obtain the previous result it is crucial to include the contributions from the tensor actions (36)
and (37), otherwise the trispectrum calculated using the O(ǫ0) of (35) does not vanish, giving the wrong leading order
result. Neglecting tensor perturbations (sourced by the scalars) for the calculation of the trispectrum is not consistent
and leads to wrong results. This is one of the results of our work. The contribution from γ̃ij that comes through γij

in (36) and (37) will result in terms that are already slow-roll suppressed and no further integrations by parts are
need on these terms (see Eq. (59) of next subsection). The final action for ζn is then

S4ζn

= S
(ǫ)
ζn

+ Sparts, (44)
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where S
(ǫ)
ζn

denotes the terms of (42) that are suppressed by at least one slow-roll parameter. This final action is
slow-roll suppressed as expected and no slow-roll approximation was made so it is also exact.

B. Non-linear perturbations in the uniform curvature gauge

In order to calculate the intrinsic four point correlation function of the field perturbation we need to compute the
action of fourth order in the perturbations. In this subsection we will obtain the fourth order action in the uniform
curvature gauge. In this gauge, the scalar degree of freedom is the inflaton field perturbation δφ(xµ). There are
several works in the literature where the authors also calculate the trispectrum. In [11], Seery et al. calculate the
trispectrum of a multi-field inflation model, however the result is only valid for fields with standard kinetic energies,
i.e. P (X1, . . . , Xn, φ1, . . . , φn) = X1 + · · · + Xn − V , where Xn is the kinetic energy of φn and V is the potential.
In this paper we will generalize their result for an arbitrary function P (X,φ) but for single field only. Recently,
Huang and Shiu have obtained the fourth order action for the model under consideration (1). However the result was
obtained by only perturbing the field lagrangian. This procedure gives the right result as long as we are interested in
the leading order contribution in the small speed of sound limit and in the slow-roll approximation, which was their
case of interest. In the present section we will compute the fourth order action that is valid to all orders in slow roll
and in the sound of speed expansion. To do that we have to perturb the full action (1) up to fourth order in the field
perturbations. The procedure to obtain the fourth order action in this gauge is similar to the one used in subsection
III A.

In this gauge, the inflaton perturbation does not vanish and the 3D metric takes the form

φ(x, t) = φ0 + δφ(x, t),

hij = a2ĥij , ĥij = δij + γ̃ij +
1

2
γ̃ikγ̃

k
j + · · · (45)

where detĥ = 1 and γ̃ij is a tensor perturbation that we assume to be a second order quantity, i.e., γ̃ij = O(δφ2).
It obeys the traceless and transverse conditions γ̃i

i = ∂iγ̃ij = 0 (indices are raised with δij). In the literature the
second order tensor perturbations are often neglected, however based on our results it should be taken into account.
We can always use the gauge freedom at second order to eliminate the trace and the vector perturbations of hij . The
presence of γ̃ij makes the three dimensional hypersurfaces non-flat so using the name uniform curvature gauge might
be misleading. We will continue to use that name because in the literature that is the name given to the gauge where
δφ(x, t) = 0.

We expand N and N i in powers of the perturbation δφ(x, t)

N = 1 + α1 + α2 + · · · , (46)

Ñi = Ñi

(1)
+ Ñi

(2)
+ · · · , (47)

ψ = ψ1 + ψ2 + · · · , (48)

where αn, Ñi

(n)
and ψn are of order δφn and φ0(t) is the background value of the field. At first order in δφ, a

particular solution for equations (18) is [7, 11]:

α1 =
1

2H
φ̇0δφP,X , Ñi

(1)
= 0, ∂2ψ1 =

a2ǫ

c2s

d

dt

(

−H
φ̇
δφ

)

. (49)

At second order, the constraint equation for the lapse function gives

4H

a2
∂2ψ2 =

1

a4

(

∂2ψ1∂
2ψ1 − ∂i∂jψ1∂

i∂jψ1

)

+ 6H2
(

3α2
1 − 2α2

)

+
8Hα1

a2
∂2ψ1 −

(

3φ̇0
2
α2

1 − 2φ̇0
2
α2 + ˙δφ

2 − 4φ̇0
˙δφα1

)

P,X − 1

a2

(

∂iδφ∂
iδφ− 2φ̇0∂iδφ∂

iψ1

)

P,X

+δφ2P,φφ + 2φ̇0δφ
(

φ̇0α1 − ˙δφ
)

P,Xφ

− φ̇0
2

a2

(

−10a2φ̇0
˙δφα1 − 2φ̇0∂iδφ∂

iψ1 + 6a2φ̇0
2
α2

1 − 2φ̇0
2
a2α2 + 4a2 ˙δφ

2 − ∂iδφ∂
iδφ
)

P,XX

−φ̇0
4
(

φ̇0
2
α2

1 + ˙δφ
2 − 2φ̇0

˙δφα1

)

P,XXX + 2φ̇0
3
δφ
(

φ̇0α1 − ˙δφ
)

P,XXφ − φ̇0
2
δφ2P,Xφφ, (50)
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and the equation for the shift vector gives

2H∂iα2 −
1

2
a−2∂2Ñi

(2)
= 4α1H∂iα1 + a−2

(

∂iα1∂
2ψ1 − ∂kα1∂i∂

kψ1

)

+ ∂iδφ
(

˙δφ− φ̇0α1

)

P,X

+∂iδφφ̇0
2
(

˙δφ− φ̇0α1

)

P,XX + ∂iδφφ̇0δφP,Xφ, (51)

where P,φ means derivative of P with respect to φ.

Due to the fact that Ñ i is divergenceless and that any vector can be separated into a incompressible and irrotational

part one can separate the contributions from α2 and Ñi
(2)

in the previous equation. The irrotational part of Eq. (51)
gives

2Hα2 = ∂−2∂iFi, (52)

and the incompressible part gives

1

2a2
Ñi

(2)
= −∂−2Fi + ∂−4∂i∂

kFk, (53)

where Fi is defined as the right-hand side of equation (51).
The scalar fourth order action, where no slow-roll approximation has been made, is

S4 = SA + SB, (54)

where

SA =

∫

dtd3x
[

− aδφ

2

[

a2α1
˙δφ

2
+ 2∂iδφ∂

iψ1

(

˙δφ− α1φ̇0

)

+ 2φ̇0∂
iδφ
(

Ñi

(2)
+ ∂iψ2

)

+ a2φ̇2
0α

3
1 + α1(∂δφ)2

]

P,Xφ

− 1

8a

[

4φ̇4
0a

4α2

(

α2 − 2α2
1

)

+ 3φ̇4
0a

4α4
1 − 18φ̇2

0a
4α2

1
˙δφ

2
+ 8φ̇2

0a
2∂iδφ

(

Ñi

(2)
+ ∂iψ2

)(

˙δφ− φ̇0α1

)

−4φ̇0∂iδφ∂
iψ1

(

(∂δφ)2 − 3φ̇2
0a

2α2
1 + 8φ̇0a

2α1
˙δφ− 3a2 ˙δφ

2
)

+ 12φ̇0a
4α1

˙δφ
3
+ 4φ̇3

0a
4α3

1
˙δφ

−4 φ̇2
0∂iδφ∂

iψ1∂kδφ∂
kψ1 − 2φ̇2

0a
2α2

1(∂δφ)2 − 4α1φ̇0
˙δφa2(∂δφ)2 − a4

(

˙δφ
2 − a−2(∂δφ)2

)2
]

P,XX

+
φ̇2

0a

12

[

6φ̇0∂iδφ∂
iψ1

(

2φ̇0α1
˙δφ− ˙δφ

2 − φ̇2
0α

2
1

)

+ 3(∂δφ)2
(

2φ̇0α1
˙δφ− φ̇2

0α
2
1

)

− 16φ̇0a
2α1

˙δφ
3

+24φ̇2
0a

2α2
1

˙δφ
2 − 12φ̇3

0a
2α3

1
˙δφ+ φ̇4

0a
2α4

1 + 3a2 ˙δφ
2
(

˙δφ
2 − a−2(∂δφ)2

)

]

P,XXX

+
φ̇0aδφ

2

[

a2 ˙δφ
3

+
(

(∂δφ)2 + 2φ̇0∂iδφ∂
iψ1

)(

φ̇0α1 − ˙δφ
)

+ 3φ̇2
0a

2α2
1

˙δφ− 4φ̇0a
2α1

˙δφ
2]
P,XXφ

−aδφ
2

8

[

2(∂δφ)2 − 2a2 ˙δφ
2
+ 4a2α1φ̇0

˙δφ+ 2a2φ̇2
0α

2
1 + 4φ̇0∂iδφ∂

iψ1

]

P,Xφφ

+
1

24
φ̇4

0a
3
[

6φ̇2
0α

2
1

˙δφ
2 − 4φ̇0α1

˙δφ
3 − 4φ̇3

0α
3
1

˙δφ+ φ̇4
0α

4
1 + ˙δφ

4]
P,XXXX

−1

6
φ̇3

0δφa
3
(

− ˙δφ
3
+ 3φ̇0α1

˙δφ
2

+ φ̇3
0α

3
1 − 3φ̇2

0α
2
1

˙δφ
)

P,XXXφ

+
1

4
φ̇2

0δφ
2a3

(

−2α1φ̇0
˙δφ+ ˙δφ

2
+ φ̇2

0α
2
1

)

P,XXφφ − 1

6
φ̇0δφ

3a3
(

α1φ̇0 − ˙δφ
)

P,Xφφφ

]

, (55)

SB =

∫

dtd3x
[

α3
1a

3δφP,φ +
1

2
a3α2

1δφ
2P,φφ +

1

6
a3α1δφ

3P,φφφ +
1

24
a3δφ4P,4φ

− 1

2a

[

− (∂iδφ∂
iψ1)

2 − 2α1
˙δφa2∂iδφ∂

iψ1 + 2a2∂iδφ
(

Ñi

(2)
+ ∂iψ2

)(

˙δφ− α1φ̇0

)

+α2
1a

2(∂δφ)2 + φ̇2
0a

4α2

(

α2 − 2α2
1

) ]

P,X

+
1

4a

[

2∂iÑ j
(2)
∂(iÑj)

(2) − 4α1∂i∂kψ1

(

∂i∂kψ2 + ∂iÑk
(2)
)

+ 12a4H2α2

(

α2 − 2α2
1

)

+ 4α1∂
2ψ1∂

2ψ2

]

]

. (56)

The previous actions should be supplemented with the pure tensor terms and the tensor-scalar coupling terms:

S =
1

8

∫

dtd3x
[

a3 ˙̃γij
˙̃γij − a∂kγ̃ij∂

kγ̃ij
]

, (57)



10

S =

∫

dtd3x

[

aP,X γ̃
ij∂jδφ

(

1

2
∂iδφ+ φ̇0∂iψ1

)]

. (58)

This constitutes the main result of this subsection. It is a good check for our calculation to see that the previous
action (54) reduces in some particular cases to previously know results present in the literature.

For example, if we restrict our model to the standard inflation case, i.e., P (X,φ) = X − V (φ), where V (φ) is the
inflaton potential, then all the terms in the scalar action (55) vanish and the only contribution to the fourth order
action comes from (56). These terms exactly reproduce the result of Seery et al. [11], their equation (36), restricted
to single field. However, in the total fourth order action there are also the tensor contributions (57) and (58). In
general, to proceed one has to calculate the equation of motion for the second order tensor perturbations γ̃ij from
eqs. (57), (58) to get

γ̃′′ij + 2
a′

a
γ̃′ij − ∂2γ̃ij =

(

2P,X∂jδφ∂iδφ+ 4P,X φ̇0∂jδφ∂iψ1

)TT

, (59)

where TT means the transverse and traceless parts of the expression inside the parenthesis (see Appendix B for
details of how to extract the TT parts of a tensor) and then solve this equation to obtain γ̃ij as a function of δφ.
One can immediately see that at second order the scalars will source the tensor perturbation equation as it was
previously shown by others [24, 25]. At this order in perturbation theory, equation (59) should also have a source
term quadratic in the first order tensor perturbations, (1)γ̃ijGW

. We neglect these terms because we expect that any

correlation function where (2)γ̃ijGW
enters, which is sourced by the first order tensor modes squared, must be smaller

than a correlation function with only scalars, see Ref. [7] for an example. In Fourier space, the source term of (59) is
suppressed by k2, where k is the wave number. Once we have the solution of γ̃ij in terms of δφ we can plug back the
result in (57) and (58) to get the total fourth order scalar action.

IV. THE GENERAL FORMALISM TO CALCULATE THE TRISPECTRUM

A. The trispectrum of ζn

Now we shall give the basic equations needed to calculate the trispectrum [7, 26]. First we need to solve the second
order equation of motion for ζn (obtained from (33)). Defining new variables

vk = zuk, z =
a
√

2ǫ

cs
, (60)

where the Fourier mode function uk is given by

uk =

∫

d3xζn(t,x)e−ik·x, (61)

the equation of motion for ζn is

v′′k + c2sk
2vk − z′′

z
vk = 0, (62)

where prime denotes derivative with respect to conformal time τ . This is also known as the Mukhanov equation. The
previous equation can be solved, at leading order in slow roll and if the rate of change of the sound speed is small
[10], to give

uk ≡ u(τ,k) =
iH√

4ǫcsk3
(1 + ikcsτ) e

−ikcsτ . (63)

We do not need to impose any constraints in the sound speed and it can be arbitrary. Only its rate of change is
assumed to be small. The next-to-leading order corrections to the previous solutions are also known and can be found
in [10]. In the general case, we would have to solve Eq. (62) without assuming slow roll. This can be done numerically.

In order to calculate the ζn correlators we follow the standard procedure in quantum field theory. The curvature
perturbation is promoted to an operator that can be expanded in terms of creation and annihilation operator as

ζn(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k). (64)
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The standard commutation relation applies

[

a(k1), a†(k2)
]

= (2π)3δ(3)(k1 − k2). (65)

The vacuum expectation value of the four point operator in the interaction picture (at first order) is [7, 26]

〈Ω|ζn(t,k1)ζn(t,k2)ζn(t,k3)ζn(t,k4)|Ω〉 = −i
∫ t

t0

dt̃〈0|
[

ζn(t,k1)ζn(t,k2)ζn(t,k3)ζn(t,k4), HI(t̃)
]

|0〉, (66)

where t0 is some early time during inflation when the inflaton vacuum fluctuation is deep inside the horizon, t is
some time after horizon exit. |Ω〉 is the interacting vacuum which is different from the free theory vacuum |0〉. If one
uses conformal time, it’s a good approximation to perform the integration from −∞ to 0 because τ ≈ −(aH)−1. HI

denotes the interaction hamiltonian and it is given by HI = πζ̇n − L, where π is defined as π = ∂L

∂ζ̇n

and L is the

lagrangian. In this work, we will only calculate the contribution for the four point function that comes from a part
of the interaction Hamiltonian determined by the 4th order Lagrangian HI = −L4, where L4 is the total lagrangian
obtained from the action (44). We should point out that the other terms that we do not consider here in the fourth
order interaction hamiltonian are indeed important to obtain the full leading order result (see equation (75)) as was
recently shown by [13].

Of course in the end we are interested in the four point correlation function of ζ and not of ζn. At leading order in
slow roll these two correlation functions are equal but they will differ at next-to-leading order.

B. The trispectrum of ζ

In this subsection we calculate the relation between the trispectrum of ζ, on large scales, and the trispectrum of ζn
calculated using the formalism of the previous subsection. This relation also involves lower-order correlation functions
of ζn present in the literature. The variables ζ and ζn are related up to third order by

ζ(x) = ζn(x) + F2(ζn(x)) + F3(ζn(x)), (67)

where F2(ζn) = O(ζ2
n), F3(ζn) = O(ζ3

n) are the terms coming from the second and third order gauge transformations
respectively. F2 can be found in Appendix A, it is

F2(ζn) =

(

ǫ

2
+

φ̈0

2Hφ̇0

)

ζ2
n +

1

H
ζnζ̇n + β, (68)

where β is given in Eq. (A6). In the large scale limit (super-horizon scales), we can ignore β as it contains gradient
terms. F3 was calculated in [15] and reads

F3(ζn) =

( ...
φ0

3H2φ̇0

+
ǫφ̈0

Hφ̇0

+
ǫ2

3
+
ǫη

3

)

ζ3
n +

(

3φ̈0

2Hφ̇0

+ 2ǫ

)

ζ̇nζ
2
n

H
+
ζnζ̇

2
n

H2
+
ζ̈nζ

2
n

2H2
+ fa(ζn) + fb(ζn, γ̃ij), (69)

where fa denotes terms that contain gradients (it can be found in [15]). fb is the part of the third order gauge
transformations that contains γ̃ij . The explicit form of fb is to the best of our knowledge still unknown. To find out
the explicit dependence of these terms on ζn one would have to solve the equations of motion for γ̃ij , equation (59).
We do not do this in this work. We believe that these terms will vanish in the large scale limit and therefore do not
contribute to our calculation.

A field redefinition like ζ = ζn + a1ζ
(a)
n ζ

(b)
n + a2ζ

(c)
n ζ

(d)
n , where ζ

(a,b,c,d)
n denote one of ζn, ζ̇n, ζ̈n, gives after using

Wick’s theorem a relation between both trispectrum like

〈ζ(x1)ζ(x2)ζ(x3)ζ(x4)〉c = {T }+ {PB} + {PPP} + O(P ζ
k )4, (70)

where

{T } = 〈ζn(x1)ζn(x2)ζn(x3)ζn(x4)〉, (71)
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{PB} = a1

[

〈ζ(a)
n (x1)ζn(x2)〉〈ζ(b)

n (x1)ζn(x3)ζn(x4)〉 + 〈ζ(a)
n (x1)ζn(x3)〉〈ζ(b)

n (x1)ζn(x2)ζn(x4)〉

+〈ζ(a)
n (x1)ζn(x4)〉〈ζ(b)

n (x1)ζn(x2)ζn(x3)〉 + 〈ζ(b)
n (x1)ζn(x2)〉〈ζ(a)

n (x1)ζn(x3)ζn(x4)〉
+〈ζ(b)

n (x1)ζn(x3)〉〈ζ(a)
n (x1)ζn(x2)ζn(x4)〉 + 〈ζ(b)

n (x1)ζn(x4)〉〈ζ(a)
n (x1)ζn(x2)ζn(x3)〉

+3 perm.
]

+ a2

[

(a→ c, b→ d) + 3 perm.
]

, (72)

{PPP} = a2
1

[

〈ζ(a)
n (x1)ζ

(a)
n (x2)〉

(

〈ζ(b)
n (x1)ζn(x3)〉〈ζ(b)

n (x2)ζn(x4)〉 + 〈ζ(b)
n (x1)ζn(x4)〉〈ζ(b)

n (x2)ζn(x3)〉
)

+〈ζ(a)
n (x1)ζ

(b)
n (x2)〉

(

〈ζ(b)
n (x1)ζn(x3)〉〈ζ(a)

n (x2)ζn(x4)〉 + 〈ζ(b)
n (x1)ζn(x4)〉〈ζ(a)

n (x2)ζn(x3)〉
)

+〈ζ(b)
n (x1)ζ

(a)
n (x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(b)

n (x2)ζn(x4)〉 + 〈ζ(a)
n (x1)ζn(x4)〉〈ζ(b)

n (x2)ζn(x3)〉
)

+〈ζ(b)
n (x1)ζ

(b)
n (x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(a)

n (x2)ζn(x4)〉 + 〈ζ(a)
n (x1)ζn(x4)〉〈ζ(a)

n (x2)ζn(x3)〉
)

+5 perm.
]

+ a2
2

[

(a→ c, b→ d) + 5 perm.
]

+ 2a1a2

[

〈ζ(a)
n (x1)ζ

(c)
n (x2)〉

(

〈ζ(b)
n (x1)ζn(x3)〉〈ζ(d)

n (x2)ζn(x4)〉 + 〈ζ(b)
n (x1)ζn(x4)〉〈ζ(d)

n (x2)ζn(x3)〉
)

+〈ζ(a)
n (x1)ζ

(d)
n (x2)〉

(

〈ζ(b)
n (x1)ζn(x3)〉〈ζ(c)

n (x2)ζn(x4)〉 + 〈ζ(b)
n (x1)ζn(x4)〉〈ζ(c)

n (x2)ζn(x3)〉
)

+〈ζ(b)
n (x1)ζ

(c)
n (x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(d)

n (x2)ζn(x4)〉 + 〈ζ(a)
n (x1)ζn(x4)〉〈ζ(d)

n (x2)ζn(x3)〉
)

+〈ζ(b)
n (x1)ζ

(d)
n (x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(c)

n (x2)ζn(x4)〉 + 〈ζ(a)
n (x1)ζn(x4)〉〈ζ(c)

n (x2)ζn(x3)〉
)

+5 perm.
]

, (73)

where “perm” means the other permutations of the preceding terms and O(P ζ
k )4 denotes terms that are suppressed

by successive powers of the power spectrum. (a → c, b → d) means terms equal to the immediately preceding terms
with a, b replaced by c, d respectively.

If the field redefinition contains third order pieces like ζ = ζn + b1ζ
(a)
n ζ

(b)
n ζ

(c)
n , they contribute with additional terms

as

〈ζ(x1)ζ(x2)ζ(x3)ζ(x4)〉c = 〈ζn(x1)ζn(x2)ζn(x3)ζn(x4)〉
+ b1

[

〈ζ(a)
n (x1)ζn(x2)〉

(

〈ζ(b)
n (x1)ζn(x3)〉〈ζ(c)

n (x1)ζn(x4)〉 + 〈ζ(c)
n (x1)ζn(x3)〉〈ζ(b)

n (x1)ζn(x4)〉
)

+〈ζ(b)
n (x1)ζn(x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(c)

n (x1)ζn(x4)〉 + 〈ζ(c)
n (x1)ζn(x3)〉〈ζ(a)

n (x1)ζn(x4)〉
)

+〈ζ(c)
n (x1)ζn(x2)〉

(

〈ζ(a)
n (x1)ζn(x3)〉〈ζ(b)

n (x1)ζn(x4)〉 + 〈ζ(b)
n (x1)ζn(x3)〉〈ζ(a)

n (x1)ζn(x4)〉
)

+3 perm.
]

+ O(P ζ
k )4. (74)

To the best of our knowledge the expectation values involving operators containing derivatives of ζn have not yet
been calculated in the literature. However, once the mode function equation (62) is solved, one has all the ingredients
needed to calculate these expectation values, including the interaction hamiltonian.

V. CALCULATION OF THE LEADING ORDER TRISPECTRUM

In this section, we will use the formalism of the previous section and the fourth order exact interaction hamiltonian
of subsection III A to calculate the leading order trispectrum, under the assumption that the “slow-roll” parameters
(7-9) are always small until the end of inflation.
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A. The leading order trispectrum of ζn

To calculate the leading order trispectrum of ζn in slow roll, we need to evaluate Eq. (66) where HI is read from
the order ǫ terms of the action (44). The interaction hamiltonian we get contains terms with γ̃ij . Fortunately it can
be shown that to compute the leading order trispectrum we don’t need to know the solution for γ̃ij and the knowledge
of its equation of motion (Eq. (59)) is sufficient. At this order we use the solution for the mode functions Eq. (63).
The integrals in Eq. (66) can then be performed analytically to give

〈Ω|ζn(k1)ζn(k2)ζn(k3)ζn(k4)|Ω〉 = (2π)3δ3(k1 + k2 + k3 + k4)
H6

ǫ3c3s

1

Πik3
i

[

3

4
(10Π + 3λ)

c2s
H2ǫ

A1 −
1

26

(

3λ− H2ǫ

c2s
+H2ǫ

)

1

H2ǫ
A2 −

1

28

c2s − 1

c4s
A3

]

,

(75)

where the momentum dependent functions Ai are defined as

A1 =
Πik

2
i

K5
,

A2 =
k2
1k

2
2(k3 · k4)

K3

(

1 +
3(k3 + k4)

K
+

12k3k4

K2

)

+ perm.,

A3 =
(k1 · k2)(k3 · k4)

K

[

1 +

∑

i<j kikj

K2
+

3k1k2k3k4

K3

(

∑

i

1

ki

)

+ 12
k1k2k3k4

K4

]

+ perm., (76)

and “perm.” refers to the 24 permutations of the four momenta. Note that the quantities of Eq. (75) are evaluated at

the moment τ∗ at which the total wave number K =
∑4

i=1 ki exits the horizon, i.e., when Kcs∗ = a∗H∗. This leading
order result that comes from the 4th order Lagrangian agrees with the result of Huang and Shiu [13] 1 that did their
calculation in the uniform curvature gauge and using a simpler method that is only valid to calculate the leading
order contribution for models with cs ≪ 1. In fact, we can compare our uniform curvature gauge result (54) with the
result of Huang and Shiu [13]. We see that the last terms of the fourth, sixth and ninth lines of equation (55) are
exactly the ones obtained by [13], their equation (15), using the method of just expanding the field lagrangian as in
[14, 27]. For a model with a general field lagrangian these terms are the ones that give the leading order contribution
for the trispectrum, in the small sound speed limit, equation (75). The contribution coming from the tensor part will
be of next-to-leading order in this case.

For standard kinetic term inflation, Π = λ = 0 and cs = 1 and Eq. (75) vanishes, the leading order is then given
by the next order in slow roll.

B. The leading order trispectrum of ζ

It is well known that if the slow-roll conditions are satisfied until the end of inflation and we can ignore gradient terms
then the gauge invariant curvature perturbation ζ remains constant on super-horizon scales to all order in perturbation
theory. In this subsection, we will see that this fact greatly simplifies the relation between the trispectrum of ζ and
ζn.

In the large scales limit, Eq. (67) simplifies to give

ζ = ζn + aζ2
n +

1

H
ζnζ̇n + O(ζ3

n), (77)

where a is defined as

a =
ǫ

2
+

φ̈0

2Hφ̇0

. (78)

1 The full leading order result for the four point function can be found in the revised version of [13] which takes into account all the
contributions for the fourth order interaction hamiltonian.
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Using the fact that ζ̇ = 0 on super-horizon scales and the equation resulting from a time derivative of Eq. (77) one
can show that

ζ̇n = −ȧζ2
n + O(ζ3

n). (79)

This equation has a simple interpretation. The variable ζn is not constant outside the horizon, only the gauge invariant
quantity ζ is. This is the reason why the term 1

H
ζnζ̇n in the second order gauge transformation cannot be ignored

when one is calculating the trispectrum of ζ. Substituting Eq. (79) in Eq. (67) and taking the large scale limit we
get

ζ = ζn + aζ2
n + bζ3

n + · · · (80)

where · · · means cubic terms that contain at least one time derivative of ζn and that will only give a contribution to
the five point function. The variable b is defined as

b =

...
φ0

3H2φ̇0

+
ǫφ̈0

Hφ̇0

+
ǫ2

3
+
ǫη

3
− ȧ

H

= −
...
φ0

6H2φ̇0

+
ǫφ̈2

0

2Hφ̇0

+
φ̈2

0

2H2φ̇2
0

+
ǫ2

3
− ηǫ

6
. (81)

We shall now compare (80) with the result given by the δN formalism [28, 29, 30, 31]. In the δN approach ζ is
expanded in series in terms of the field perturbation as

ζ = N ′δφ+
1

2
N ′′δφ2 +

1

6
N ′′′δφ3 + O(δφ)4, (82)

where N is the number of e-folds and a prime denotes derivative with respect to φ. Now comparing Eq. (80) with
the previous equation and observing that ζn = − H

φ̇0

δφ we expect

N ′′

2
=
H2

φ̇2
0

a,
N ′′′

6
= −H

3

φ̇3
0

b. (83)

We verified that this is indeed the case.
Using Wick’s theorem one can now relate the connected part of the four point correlation function of ζ with the

four point correlation function of ζn calculated in the previous section [32, 33]. This relation also involves lower order
correlation functions of ζn, like the bispectrum 〈ζn(x1)ζn(x2)ζn(x3)〉 (the leading and next-to-leading order in slow
roll bispectrum was previously calculated in [10]). The relation is

〈ζ(x1)ζ(x2)ζ(x3)ζ(x4)〉c = 〈ζn(x1)ζn(x2)ζn(x3)ζn(x4)〉
+ 2a

[

〈ζn(x1)ζn(x2)〉〈ζn(x1)ζn(x3)ζn(x4)〉 + 〈ζn(x1)ζn(x3)〉〈ζn(x1)ζn(x2)ζn(x4)〉

+〈ζn(x1)ζn(x4)〉〈ζn(x1)ζn(x2)ζn(x3)〉 + 3 perm
]

+ 4a2
[

〈ζn(x1)ζn(x2)〉〈ζn(x1)ζn(x3)〉〈ζn(x2)ζn(x4)〉

+〈ζn(x1)ζn(x2)〉〈ζn(x1)ζn(x4)〉〈ζn(x2)ζn(x3)〉 + 5 perm
]

+ 6b
[

〈ζn(x1)ζn(x2)〉〈ζn(x1)ζn(x3)〉〈ζn(x1)ζn(x4)〉 + 3 perm
]

+ O(P ζ
k )4, (84)

where “perm” means the other permutations of the preceding terms and O(P ζ
k )4 denotes terms that are suppressed

by successive powers of the power spectrum. Now, one can easily see that at leading order in slow roll the trispectrum
for ζ and ζn are equal, this is because the constants a and b are slow-roll suppressed. These terms will only contribute
to the next-to-leading order corrections.

C. The next-to-leading order corrections for the trispectrum

In subsection VA, we showed that for standard kinetic term inflation the leading order result, equation (75),
vanishes and in fact in this case the leading order of the trispectrum of ζn is of order ǫ−2 (the next-to-leading order
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is the leading order). To obtain these leading order contributions it is easier to perform the calculation using the
uniform curvature gauge action Eq. (55)-(58). Eq. (55) vanishes exactly for standard kinetic term inflation. The
action (56) is exact in the slow-roll approximation but it is instructive to determine the slow-roll order of the different
terms. One can see that the leading order contribution comes from terms of order O(ǫ0), as pointed out in [11]. If we
take P (X,φ) = X −V (φ) then the leading order (in slow roll) source of Eq. (59) will be of order O(ǫ0). We therefore
don’t expect γ̃ij to be slow-roll suppressed and the actions (57), (58) will contain unsuppressed terms of the same
order as the leading order term of the action (56). These tensor contributions were absent in the analysis of [11] and
we have shown that they are of the same order as the fourth order action considered in [11], our Eq. (56). It is still
an open question how these new contributions will change the trispectrum result of Seery et al..

For the general lagrangian case, the leading order trispectrum was given in the previous subsection and in [13].
Contrary to the method of [13], our method of obtaining the fourth order action (54) does not rely on any approxi-
mation and therefore the action (54) is valid to all orders in slow roll and in the sound speed expansion and it can
be used to study the next-to-leading order corrections. Depending on the momentum shape of these next-to-leading
terms they might become big enough to be observed in the next generation of experiments. A similar argument
applies for the next-to-leading order corrections for the bispectrum, as it was shown in [10]. For example, for DBI
inflation, [13] showed that the leading order non-gaussianity parameters τNL scales like τNL ∼ 0.1/c4s (for a specific
momentum configuration) and fNL ∼ 1/c2s. They argue that if cs ∼ 0.1 then fNL is still inside the value range allowed
by observations but τNL ∼ 103 could be detected with the Planck satellite CMBR experiment. Therefore, assuming
that the slow-roll parameter ǫ is of order ǫ ∼ 0.01 (at horizon crossing) these next-to-leading order corrections for
the trispectrum could possible be observed with the Planck satellite. A more careful and systematic study of the
momentum dependence of these new terms is required and it is left for future work.

VI. CONCLUSION

We have computed the fourth order action for scalar and second order tensor perturbations in the comoving gauge.
Our result is exact in the slow-roll (SR) expansion but practically it is useful to study the SR suppression of the
different terms. We were able to show that after many integrations by parts the unsuppressed terms contained in
the previous action can be reduced to total derivatives terms plus corrections that are SR suppressed. The resulting
action has the correct order in SR. It is suppressed by ǫ as it should be, because in pure de Sitter space the curvature
perturbation is a pure gauge mode. An important lesson from our work is that in order to obtain the correct SR order
for the action, the second order tensor perturbations cannot be ignored as assumed in previous works [11] and [15].
We found the explicit form of these tensor perturbations in the comoving gauge by using the gauge transformations
from the uniform curvature gauge. Fortunately, for a general inflation model like (1), we showed that we do not
need to solve the equations of motion for the tensor perturbations if we are interested in calculating the leading order
trispectrum. However, to calculate the next-to-leading order corrections to that result, or to calculate the leading
order trispectrum for standard kinetic term inflation, we do need to solve explicitly the equations of motion for the
tensor perturbations. This will be left for future work.

Using the comoving gauge action we have calculated the leading order in SR trispectrum of ζ. We compared our
result with the result of [13], obtained using the uniform curvature gauge, and we found an agreement.

For the uniform curvature gauge action, that is also exact in the SR expansion, we identified the terms that will
contribute to the next-to-leading order corrections to the trispectrum. We pointed out that depending on the model
and on the momentum configuration, some of these corrections might be observable with the Planck satellite. After
taking particular limits, the previous action nicely reduces to previously know results [11], [13] with the caveat that
the above mentioned works ignore tensor contributions.

Finally we have obtained the relations between the trispectrum of ζ and δφ (on large scales) using the third order
gauge transformations and compared the result with the δN formalism.

To conclude, we have provided the necessary equations (fourth order action and the relation between ζ and δφ) to
calculate the trispectrum for a fairly general model of inflation that are also valid for models where SR is temporarily
interrupted, i.e., around a “step” in the inflaton’s lagrangian [18]. In this case, it is impossible to apply the δN
approach and it is required to evaluate the n-point functions numerically [16] (see [34] for a different approach). We
leave this more practical application of our results for future work.
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APPENDIX A: GAUGE TRANSFORMATIONS UP TO SECOND ORDER

In this Appendix we will find the change of variables that one needs to perform to go from the uniform curvature
gauge (45) to the comoving gauge (21). A similar result can be found in [7]. In order to go from the gauge (45)
where the field fluctuation is not zero to the gauge (21) where δφ = 0 we need a change of variables that satisfy
φ(t+ T (t)) + δφ(t+ T (t)) = φ(t).

At first order in perturbation theory we only need to do a time reparametrization. Let t and t̃ be the time coordinates
in the gauges (21) and (45) respectively. The time reparametrization is t̃ = t+ T . At first order

T = −δφ
φ̇0

=
ζ

H
, ζ = −H

φ̇0

δφ. (A1)

At second order the time reparametrization is

T = −δφ
φ̇0

− φ̈0δφ
2

2φ̇0
3 +

˙δφδφ

φ̇2
. (A2)

At this order we also need to perform a spatial reparametrization given by x̃i = xi + ǫi(x, t), where ǫi is of second
order in the perturbations. The metric in the gauge (21) becomes

hij = − ∂T

∂xi

∂T

∂xj
+N

(1)
j

∂T

∂xi
+N

(1)
i

∂T

∂xj
+ a2T ˙̃γij + a2

(

∂ǫj
∂xi

+
∂ǫi
∂xj

)

+ a2e2HT+ḢT 2

(

δij + γ̃ij(t) +
1

2
γ̃ikγ̃

k
j

)

, (A3)

where N
(1)
i is the first order shift vector in the gauge (45). If the vector ǫi obeys the equation

a−2δhij +
∂ǫj
∂xi

+
∂ǫi
∂xj

= 2βδij + µij , (A4)

with µij being a transverse and traceless tensor and δhij being defined as the first four terms of Eq. (A3), then the
gauge transformation equations are given by

ζ = HT +
ḢT 2

2
+ β,

γij = γ̃ij(t) + µij . (A5)

To obtain the quantities β and µij it proves to be useful to decompose ǫi in ǫi = ∂iǫ̃+ ǫit with ∂iǫ
i
t = 0. After a few

mathematical manipulations of equation (A4) one can obtain

β =
a−2

4

(

δhi
i − ∂−2∂i∂jδhij

)

, (A6)

µij = a−2

(

δhij −
1

2
δijδh

k
k − ∂−2∂i∂

kδhkj − ∂−2∂j∂
kδhki +

1

2
δij∂

−2∂l∂kδhlk +
1

2
∂−2∂i∂jδh

k
k +

1

2
∂−4∂i∂j∂

l∂kδhlk

)

,

(A7)
where δhij can be written explicitly as

δhij = − 1

H2
∂iζn∂jζn +

1

H
(∂iζn∂jψ1 + ∂jζn∂iψ1) +

a2

H
ζn ˙̃γij , (A8)

where ψ1 is from the uniform curvature gauge and we have used the variable ζn introduced before, Eq. (38). As γ̃ij

is of second order now, the term ζn ˙̃γij is of third order. We kept it in Eq. (A3) for the sake of comparison with the
result of [7]. For ζ we have

ζ = ζn +
ǫ

2
ζ2
n +

φ̈0

2φ̇0H
ζ2
n +

1

H
ζnζ̇n + β. (A9)
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APPENDIX B: EXTRACTION OF TT PART OF A TENSOR

Let Tij to be a given 3D symmetric tensor, as it is the case for the source of equation (59). Then it can be
decomposed into a trace part and a traceless part as

Tij =
T

3
δij + T̃ij . (B1)

The traceless part (5 degrees of freedom) can be written like

T̃ij = Dijχ+ ∂iχj + ∂jχi + χij , (B2)

with Dij ≡ ∂i∂j − 1
3δij∂

2, ∂iχi = 0 and ∂iχij = 0 = χi
i, where indices are raised by δij . The equation ∂iTij =

1
3∂jT + 2

3∂j∂
2χ+ ∂2χj can be solved using a similar method as the one we used to solve the second order momentum

constraint previously. We then find

χ =
3

2
∂−4∂jFj , χj = ∂−2Fj − ∂j∂

i∂−4Fi, (B3)

where Fi ≡ ∂jTij − 1
3∂iT . And

χij = Tij −
T

3
δij −Dijχ− ∂iχj − ∂jχi. (B4)

In conclusion, given a tensor Tij , Eq. (B4) defines its transverse and traceless part.
Let us see how this works at the action level for the particular case of the tensor perturbations described in the

main text. In the action (58), the source for γ̃ij is of the form

S =

∫

dtd3xγ̃ijTij . (B5)

with Tij being quadratic in δφ. We can see that because γ̃ij is transverse and traceless we are allowed to replace
Tij in the previous action with χij defined in (B4). If we calculate the equations of motion by varying the resulting
action we get as a source χij and not simply Tij (see Eq. (59)), ensuring that both sides of the equations of motion
are transverse and traceless.
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