
 
 
 
 

 
 

WORKING PAPERS IN ECONOMICS 
 
 

No 337 
 
 

Does Fertilizer Use Respond to Rainfall Variability?  
Panel Data Evidence from Ethiopia 

 
 
 

Yonas Alem, Mintewab Bezabih, Menale Kassie, and Precious Zikhali 
 
 
 

December 2008 
 
 
 

ISSN 1403-2473 (print) 
ISSN 1403-2465 (online) 

 
 
 
 
 
 
SCHOOL OF BUSINESS, ECONOMICS AND LAW, UNIVERSITY OF GOTHENBURG  
 
Department of Economics 
Visiting adress  Vasagatan 1,  
Postal adress  P.O.Box 640, SE 405 30 Göteborg, Sweden 
Phone + 46 (0)31 786 0000 

                                                                                                                                                                           
                     

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 

Does Fertilizer Use Respond to Rainfall Variability?  
Panel Data Evidence from Ethiopia 

 
 
 

Yonas Alem1, Mintewab Bezabih2, Menale Kassie3, and Precious Zikhali4

 
 
 

Abstract  
In this paper we use farmers' actual experiences with changes in rainfall levels and their 
responses to these changes to assess if patterns of fertilizer use are responsive to 
changes in rainfall patterns. Using plot and farm level panel data from the central 
Highlands of Ethiopia matched with corresponding village level rainfall data; results 
show that both the current year’s decision to adopt and the intensity of fertilizer 
adoption is positively associated with higher rainfall levels experienced in the previous 
year. Furthermore, we find a concave relationship between previous season rainfall 
levels and fertilizer adoption, indicating that too much rainfall discourages adoption. 
Abundant rainfall in the previous year could depict relaxed liquidity constraints and 
increased affordability of fertilizer, which makes rainfall availability critical in severely 
credit constrained environments. In light of similar existing literature, the major 
contribution of the study is its use of plot level panel data, which permits us to 
investigate the importance of plot characteristics in fertilizer adoption decisions. 
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1. Introduction 
Agriculture is inherently risky. Agroclimatic situations condition the performance of 

agricultural activities and determine the type of crops grown and animals reared 

(Downing, 1996; Watson et al., 1996; Reilly 1995; Smit et al. 1996; Risbey et al. 1999) 

and increased inter-annual climate variability accompanying mean climate changes has 

been argued to have a greater effect on crop yields than mean climate changes alone 

(Mearns et al., 1995).  

However, in addition to conditioning production outcomes, uncertainty associated 

with climate variability may also affect investment decisions with upfront cost and 

uncertain outcomes. The use of productivity-enhancing external inputs is one such 

investment. In settings where financial and insurance markets are imperfect, households 

cannot freely borrow to finance external input use nor can they trade away the risk of 

crop failure in the insurance market. As Paxson (1992) finds, rainfall is positively 

correlated to income and rainfall variability -being one aspect of climate variability- 

negatively affects households’ propensity to save. Hence, the decision to apply external 

inputs like fertilizer tends to be associated with climate variability.  

A number of studies have documented the limiting role of resource and credit 

constraints on the use of modern agricultural inputs like fertilizer. In their study of the 

constraints with regards to use of inorganic and organic fertilizers by smallholder 

farmers in South Africa, Odhiambo and Magandini (2008) find that inability to access 

credit significantly limits fertilizer use. Similarly, in Madagascar, adoption of a high 

yielding rice variety-fertilizer package is shown to be hampered by liquidity constraints 

(Moser and Barrett, 2005).  

In addition to financial constraints which impose ex-ante barriers to fertilizer use, 

missing formal insurance markets in developing countries imply that farmers face 

serious constraints in coping with production risks (Murdoch, 1995; Dercon, 2002).  

Indeed, covariate shocks due to climate change and variability e.g. droughts have long-

lasting negative effects on households’ welfare (Dercon, 2004). This implies that 

households have to rely on their limited resources to cope with such risks by reducing 

their vulnerability to such risks. Such risk avoidance strategies have been attributed to 

limited fertiliser use in developing countries (Lamb, 2003). This paper contributes to the 

limited empirical literature that assesses empirically the role of rainfall on farmers’ 

factor demands. It does this by assessing the possible links between rainfall patterns and 

corresponding farmers’ decisions to use fertilizer. As noted earlier, higher rainfall levels 
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are expected to result in increased harvests which in turn are expected to ease the 

liquidity constraints facing households. Relaxation of liquidity constraints could then 

mean that households are more likely to adopt fertilizers.  

The analysis is based on three rounds of representative plot- and farm-level data from 

the Ethiopian Highlands. By focusing on plot-level analysis, our paper builds on Dercon 

and Christiaensen (2007) whose analysis was based only on farm-level analysis. We 

employ random effects estimators which allow us to treat each plot observation within a 

given household as a variable unit thereby controlling for intra-group correlation due to 

unobserved cluster effects in addition to unobserved effects. Our results confirm both at 

plot- and farm-level, that fertilizer adoption by farmers is positively associated with 

rainfall levels in the previous year, supporting the hypothesis that rainfall encourages 

fertilizer adoption by relaxing liquidity constraints. This is also in line with Seo and 

Mendelsohn (2008) and Bezabih et al. (2008) who find that the riskiness of crop 

portfolio over time is influenced by the rainfall patterns, as higher rainfall leads to 

higher harvests, increases liquidity and enhances risk bearing capacity. 

The strength of the analysis therefore is that it is not based on implicit production 

risk.  It deals with actual farmers' experiences with changes in rainfall levels, and their 

responses to these changes relative to other factors which influence their decision to 

apply fertilisers. Inclusion of such adaptive responses is critical to a valid assessment of 

the impacts of climate change and variability, given that such responses result in less or 

more adverse effects than if they are excluded.  

The rest of the paper is organized as follows: section 2 presents the conceptual 

framework underlying the analysis while in section 3 we present the econometric 

framework that forms the basis of the empirical approach used in the paper. The data 

used in the analysis is discussed in section 4 together with a background on fertilizer use 

in Ethiopia. Section 5 presents and discusses the results of the econometric estimation 

and section 6 concludes the paper with policy implications. 

 

2. The conceptual Framework 

Rural farming households in developing countries operate under uncertain production 

environments with imperfect credit and insurance markets implying that liquidity 

constraints are a huge limiting factor in technology adoption decisions such as fertilizer 

adoption decisions. The rationale behind our conceptual framework is that fertilizer is a 
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risky input and is liquidity dependent. It argues that rainfall and in particular, lagged 

average rainfall, determines the level of output in the lag year and thus gives an 

indication of the degree of liquidity constraints faced by the household in the current 

year. Since fertilizer use is determined both by the level of liquidity constraints and the 

degree of uncertainty in the production environment, it responds directly to the lagged 

average rainfall. The conceptual framework we pursue is an adaptation of an 

agricultural household model by Shively (1997), which uses an expected utility 

maximization framework to represent investment decisions made under uncertainty. 

Consider an agricultural household, which is assumed to maximize its expected 

returns from farming, i.e.: 

1
0

Max ( ( ))
T

t
t t

t

E dβ π π −
=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  ,  (1) 

subject to the farm income defined as: 

[ ]1 1 1 1( ( ), ( ), ) ( ( ), ( ))t t t t tA f d x c d x wL Iπ π π ς π π− − − −= − + + , (2) 

 and a household-specific safety-first constraint: 

                            Pr( )  t I tπ α< ≤ ∀ .   (3) 

In equation (1), β is a per-period discount factor; tπ per-period net farm income, and 

{ }0,1d = denotes the decision to adopt fertilizer. The net farm income in the previous 

period is denoted by 1( t )π −  and this is expected to be an indicator of the disposable 

income available to the household to spend on farm inputs. In equation (2), A denotes 

plot sized: 1 1( ( ), ( ), )t tf d xπ π ς− −  is a stochastic production function that depends on the 

decision to adopt fertilizers )(θ , other inputs , and a stochastic shock ()(x )ς ; and 

1( ( ), ( ))t tc d x 1π π− − is a cost function for inputs. Non crop incomes of the agricultural 

household are captured in equation (2) and are combination of nonwage income  and 

labor  supplied at the wage rate . 

)(I

)(L )(w I  is a threshold or critical level of income and 

α denotes a maximum allowable probability of falling below the threshold in equation 

(3).  

The agricultural household should evaluate expected returns in terms of a probability 

distribution for minimum income and that is why the safety-first constraint is introduced 

in the household’s problem.  According to Shively (1997) this distribution will depend 

on the income-earning capacity of the household. Although restrictions could be used to 
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specify a closed form for the conditional probability distribution of returns, a more 

general approach is to re-express the safety-first constraint as: 
1

1( ( )) ( )  t tD F Iππ π α σ−
− t+ ≥ ∀   (3’) 

where is the inverse of the distribution function of returns and πσα )(1−F πσ is a 

measure of spread (Boussard, 1979 cited in Shively, 1997). 

The first order conditions for maximizing equation (1) subject to the constraints 

equations (2) and (3’) leads to an optimum where in each period 
1

( )
f c
D D A D

λ
λ

F −∂ ∂ ∂
= +

∂ ∂ − ∂
   (4)  

where λ  is the Langragean multiplier associated with relaxing the safety constraint. 

Equation 4 above shows the marginal benefit-marginal cost condition for adoption that 

explicitly accounts for the cost of adoption in terms of its impact on the safety-first 

constraint in each period. If this constraint is binding, (i.e., if 0>λ ), adoption decision 

will not be based solely on a comparison of net benefit flows between techniques, but 

will also depend on farm size, non-farm income, and the impact of adoption on the 

probability of income shortfall. Inverting equation (4) results in a demand function for 

fertilizer use of the form: 

{ }1
1( , , , ( ) | , , , )tD A c E F A w L Iπφ π α σ−
−= .  (5) 

In this paper we draw on the established link between rainfall and the household’s 

farm income and the ability to save (Paxson, 1992; Hoddinott, 2006) to posit that 

rainfall variability impacts the safety-first constraint in equation (3’) through the crop 

income in the previous period 1tπ − , which is intuitively expected to affect the 

affordability of fertilizer use by households. Thus the equation the reduced form 

demand function for fertilizer use becomes: 

{ }1
1( , , , ( ) | , , , )tD A W c E F A w L Iπφ α σ−
−= ,  (5’) 

where  denotes the rainfall levels in period (1tW − 1)t − . According to equation (5’), the 

decision regarding fertilizer use will depend on rainfall levels in the pervious period, 

plot size, the cost of inputs, and the shape of the expected probability distribution 

associated with the safety-first constraint. The probability distribution is conditioned on 

the income-earning capacity of the household. Furthermore, by influencing technology 

performance or adoption cost, farm or plot-specific attributes such as land quality or 

slope, socioeconomic characteristics may also influence adoption decisions.   Including 
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the safety-first constraint in the adoption problem underscores the point that when 

technology adoption is costly, it has the potential to push a low-income household 

below its disaster level. As a result, one might expect that adoption decisions will be 

influenced by the productive capacity of the household. We can thus use equation (5’) 

as a basis for the reduced-form empirical model to be investigated in the following 

section. 

 

3. The econometric framework and estimation strategy 

In this section we set up an econometric framework for analyzing the link between 

fertilizer adoption decisions and rainfall patterns. First, we specify the relationships 

between whether or not to adopt fertilizer and determinants of fertilizer adoption, to 

investigate the existence of a significant impact of rainfall patterns on the decision to 

use fertilizer. We then investigate if the quantity of fertilizer applied on a given plot is 

attributable to changes in rainfall patterns by studying the relationships between plot 

level fertilizer use, and yearly average rainfall.  

The premise behind our hypothesis and the specification of the empirical model is 

that fertilizer is a risky input and is liquidity dependent.  Our key decision variable -

lagged average rainfall -by determining the level of output in the lag year- gives an 

indication of the degree of liquidity constraints faced by the household in the current 

year. Since fertilizer use is determined both by the level of liquidity constraints and the 

degree of uncertainty in the production environment, it responds directly to the lagged 

average rainfall. The advantage of using lagged rainfall here is that it is exogenous to 

current choices and as such provides a good proxy for income and consequently the 

ability of the household to afford fertilizer adoption. 

Following the conceptual framework outlined in the preceding section as well as 

previous technology adoption literature (e.g. Dercon and Christiaensen, 2007), our 

empirical investigation is based on the following specifications of household h’s 

fertilizer adoption decisions: 

( 1)( , ,pt pt p t ptd g Z W )ε−= ,   (6)  

where  is the decision by household  to fertilize plot  at time t ;  is the 

average yearly precipitation at time 

ptd h p ( 1)p tW −

( 1)t −   and ptZ  is a vector of other factors derived 
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from economic theory and earlier work on fertilizer adoption. These include 

characteristics such as plot-specific attributes which may influence adoption decisions 

by influencing technology performance or adoption costs. When market imperfections 

are important, inclusion of household characteristics and resource endowments in 

explaining investment decision is important (Pender and Kerr, 1998; Holden et al., 

2001), in addition to other determinants of investment decision. Accordingly we include 

variables to capture the “natural capital” of the plot (biophysical characteristics such as 

soil fertility, slope and soil type); the household’s endowments of physical capital (land, 

livestock); the human capital (education, age, and gender of household head, number of 

female and male adults in the household); and random factors are captured by ptε .  

As the next section describes, not all surveyed plots (and households) were fertilized. 

Given our conceptual framework which considers the decision to adopt fertilizer as a 

binary decision, our econometric strategy is to estimate two models: the first model 

estimates the decision to adopt (a binary decision) and the second model is a censored 

regression model which is used to correct for the fact that not all surveyed parcels were 

fertilized. This allows for the possibility that the decision to adopt fertilizer and the 

intensity of adoption are determined by different factors. We chose this over selection 

models such as the Heckman model due to lack of strong theoretical arguments to guide 

the selection of exclusion variables that determine the decision to adopt fertilizer but not 

the intensity of adoption 

Thus given a latent variable ptK ∗ , that is observed only when fertilizer application 

takes place, the decision by household  to adopt fertilizer use on plot  at time t  is 

such that: 

h p

2
0 1 2 ( 1) 3 ( 1)

1 if 0

  0 otherwise

pt pt p t p t pt

pt pt

K Z W W

d K

β β β β∗
− −

∗

= + + + +

= >

ε

=

,  (7) 

where   is a dummy that denotes the decision by household  to adopt fertilizer on 

plot 

ptd h

p  at time t . Thus the decision to adopt fertilizer is modelled as a binary choice 

model. The parameters to be estimated are 0 1 2, ,  and 3β β β β . It is assumed throughout 

the paper that the error term, ε , is such that ( , ) and ( , ) . .Z W i i dε ε  and 2(0, )N σ . We 

include a quadratic term of lagged rainfall levels to allow for the possibility that there is 
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a threshold level of rainfall above which the marginal benefit associated with fertilizer 

application declines.  

To use the random effects estimator we decompose the error term into two 

components such that 

pt p ptε ϕ μ= + ,   (8) 

where we also assume that . .i i dptμ  and 
2(0, )N σ . pϕ  is assumed to be independent 

random draws from a normal distribution, where we assume 2(0, )p Nϕ σ , as before. 

This treatment lends itself to a random effects estimator whereby we treat each plot 

observation within a given household as a variable unit. This means that in addition to 

controlling for unobserved effects we are also control for intra-household correlation 

due to unobserved cluster effects (Wooldridge, 2002) such as features of microclimates. 

Thus in accordance with the foregoing discussion, our estimation of the decision to 

adopt fertilizer on a given plot, applies the panel-data random effects estimator model 

with the dependent variable being observed across three time periods, and the weather 

variable is observed with lagged time.  

Given that not all plots were fertilized, estimating the intensity of fertilizer requires 

the use of econometric models that correct for this censoring of the dependent variable, 

since the use of Ordinary Least Squares (OLS) on the whole sample will give 

inconsistent estimates (Wooldridge, 2002). Accordingly a censored regression model is 

used. Specifically we estimate a random effects Tobit model on the intensity of fertilizer 

use.  A censored regression model is such that: 
2

0 1 2 ( 1) 3 ( 1)

2
0 1 2 ( 1) 3 ( 1)

 if 0

  0 otherwise
max(0,  )

pt pt p t p t pt

pt pt pt

pt pt p t p t pt

K Z W W

K K K

K Z W W

β β β β ε

β β β β ε

∗
− −

∗ ∗

− −

= + + + +

= >

=

⇒ = + + + +

, (9) 

where ptK  is the observed intensity of fertilizer application i.e. the amount of fertilizer 

used per hectare, in kilograms. Assuming the error term is independently, identically 

and normally distributed with zero mean and constant variance leads to a Tobit model, 

originally developed by Tobin (1958). Decomposing the error term according to 

equation (8) makes it possible for us to estimate a random effects Tobit model thus 

allowing us to control for intra-group correlation due to unobserved cluster effects in 

addition to unobserved effects. 
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4. The data and fertilizer use in Ethiopia 

The data 

To estimate the models we use plot-level panel data from the Highlands of Ethiopia. 

The dataset contains rich information on plot and farm characteristics, cropping 

patterns, the traditional and modern inputs used in each period, as well as 

socioeconomic characteristics of a total of 1500 rural households. The data were 

collected from rural households in two districts of the Amhara National Regional State 

by the Environmental Economic Policy Forum for Ethiopia and Addis Ababa 

University, Department of Economics. The regional state comprises part of the northern 

and central Highlands of Ethiopia. The data collection was done in three waves which 

covered the years 2002, 2004 and 2007. Given little intra- and inter-village migration, 

not much attrition is experienced in forming the panel. In the few cases where 

respondents are missing in the succeeding waves of the survey, the households were 

dropped out of the sample. We match this data set with longitudinal annual rainfall data 

collected from local stations by the Ethiopian Metrology Authority. Monthly rainfall 

data was collected from four meteorological stations close to the twelve study sites. 

These monthly figures are then used to compute the annual figures, which we use in this 

analysis. 

Summary statistics of all the variables used in the ensuing analysis are presented in 

Table 1 below. Our variable of interest is Lagged  rainfall which increases productivity 

in the previous year, thereby easing liquidity constraints faced by households in 

adoption decisions. Though difficult to verify given data limitations, Lagged  rainfall 

could be correlated with the levels of rainfall households anticipate in the current year 

which could intuitively influence their fertilizer adoption decisions, with higher 

anticipated rainfall levels encouraging adoption of fertilizer since use of fertilizers in dry 

years will burns seeds and thus increase the risk of low harvests. The average Lagged  

rainfall over the period of analysis is around 1205mm while the intensity of plot-level 

fertilizer use is 156kg and 65kg at farm-level. The mean plot size is approximately 

0.22ha while the mean farm-size is 1.04ha. Around 87% of the households are male-

headed. The number of times the household has experienced land changes by the 

government; Frequency of land change, is considered an indicator of tenure security. 
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Table 1: Definition of variables and descriptive statistics 

Variable Description Mean  Std. Error 
Fertilizer Use 
Plot-level adoption Whether any fertilizer was applied on the plot (1=yes, 0=no) 0.20 0.40
Plot-level intensity Fertilizer application per hectare, in kilograms 155.82 7369.8
Farm-level adoption Whether any fertilizer was applied on the farm (1=yes, 0=no) 0.40 0.49
Farm-level intensity Fertilizer application per hectare, in kilograms 65.14 759.0
Rainfall 
Lagged rainfall Lagged rainfall levels/1000, in mm 1.205 0.223
Socioeconomic characteristics 
Gender Gender of household head (1=male, 0=female) 0.87 0.34
Age Age of household head 48.73 15.34
Education Level of education of household head 1.92 0.96
Formal farmer training Household head received some formal farmer training (1=yes, 0=no) 0.17 0.37
Male adults Number of male adults in the household 3.03 1.65
Female adults Number of female adults in the household 2.79 1.40
Oxen Number of oxen owned and used by the household 2.12 27.53
Frequency of land 
change Frequency of land change 0.71 1.06
Plot and farm characteristics 
Plot distance Distance from homestead to the plot, in minutes 14.53 21.46
Plot size Size of the plot, in hectares 0.23 0.24
Average distance Average distance from homestead to each plot, in minutes 1. 49 16.86
Farm size Size of the farm,  in hectares 1.04 0.90
Fertile Proportion of plot that is perceived as fertile 0.41 0.37
Moderately fertile Proportion of plot that is perceived as moderately fertile 0.39 0.35
Flat slope Proportion of plot that is of flat slope 0.67 0.33
Moderate slope Proportion of plot that is of moderate slope 0.28 0.31

Source: Authors’ own calculation. 

 

Inorganic fertilizer use in Ethiopia 

According to FAO (1995) fertilizer was first introduced to Ethiopia in 1967 following 

four years of trial carried out by the Imperial Government with the assistance of FAO. 

Fertilizer adoption by the peasant sector, which was 14,000 metric tons in the year 

1974/75, reached about 50,000 metric tons in 1979/80 and 200,000 metric tons in 

1993/1994. About 80 percent of the fertilizer used is for cereals and 45 to 50 percent of 

it is applied on the major staple, teff where as the remaining on wheat, barley, maize and 

sorghum. Only about one-third of the farmers in highlands apply fertilizer and their rate 

of application is much lower than 50kg/ha on average (FAO, 1995). Demeke et al. 

(1998) documented that it is recommended to use 200 kg (100kg Urea and 100 kg Di-

Ammonium phosphate (DAP)) per ha for all cereal crops in most areas of Ethiopia. The 

current intensity of fertilizer use is therefore quite lower than recommended. Table 2 
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gives a year-by-year breakdown of fertilizer adoption and intensity of use in the sample 

we analyze.  

 

Table 2: Fertilizer use in the Highlands of Ethiopia, 2002-2007 
Year Farmers using fertilizer (%) Application rate per ha (kg) 
 Plot-Level Farm-Level Plot-level Farm-Level 
2002 23.68 53.05 42.092 35.123 
2004 18.46 36.65 51.3889 69.269 
2007 17.45 30.57 348.7999 89.769 

   Source: Authors’ own calculation. 

 
Table 2 indicates that approximately 53 percent of the farmers in the sample areas 

applied fertilizer on their farms in the year 2002. This figure declined to about 37 and 31 

percent in the years 2004 and 2007. Consistent with all the previous studies, table 2 also 

shows that intensity of fertilizer use is still very low in the Highlands of Ethiopia.  In the 

year 2000, an average of about 35 kg fertilizer was applied per ha and this figure 

increased to 69 and 89 kg per ha in the years 2004 and 2007. Although the number of 

farmers adopting fertilizer is declining, intensity among farmers choosing to use 

fertilizer has been improving. However, the intensity of fertilizer use is still lower than 

the recommended rate of 200 kg per ha. Dercon and Christiaensen (2007) also 

documented that both adoption rates and intensity of fertilizer use are relatively low; 

with only 22 percent of all households in the sample using fertilizer in each period and 

only about 30 kg per ha being used, far below the recommended application rate of 200 

kg per ha. Thus the main objective of the study is to examine factors explaining this low 

adoption rates and subsequent intensity of adoption, with a focus on how rainfall 

impacts adoption decisions.  

With the exception of Dercon and Christiaensen (2007), studies examining factors 

determining fertilizer adoption decisions of farmers in rural Ethiopia have tended to 

ignore risk factors associated with rainfall variability, probably due to data 

unavailability. Accordingly the main contribution of this paper lies in employing plot-

level panel data collected from about 1,500 rural households in the Highlands of 

Ethiopia to investigate whether households, faced with imperfect insurance and credit 

markets, use risk avoidance as a strategy to cope with threats to harvests (which is 

directly related to income) due to climate change and variability. The main 

improvement to Dercon and Christiaensen (2007) is our use of both plot- and farm level 
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data whereas their analysis is based only on farm-level data. This way we are able to 

investigate the significance of plot characteristics in fertilizer adoption decisions. 

 

5. Empirical results and discussion 

Table 3 below presents the random effects Probit results for the decision to adopt 

fertilizer and random effects Tobit results for the intensity of adoption, both at plot-

level. The coefficient rho basically represents the proportion of the observed total 

variance of the error term due to random effects. Thus the test for the null hypothesis 

that rho=0 is rejected justifying the use of a random effects estimator. This demonstrates 

the importance of intra-household correlation due to unobserved cluster effects in 

fertilizer adoption decisions.  

We also estimate both the random effects Probit and Tobit at farm-level. However, 

since this analysis focuses mainly on plot-level analysis we report the results from the 

farm-level analysis in Table A1 in the appendix. The results have similar implications to 

plot-level results presented and discussed here. 
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Table 3: Random Effects Probit and Tobit on Plot-Level Fertilizer Adoption 

  Random Effects Probit Random EffectsTobit 
Variable Coeff. Std. Error Coeff. Std. Error 
Rainfall  
Lagged rainfall 9.739*** 2.576 45.390*** 12.155 
Lagged rainfall squared -0.004*** 0.001 -0.018*** 0.005 
Socioeconomic characteristics  
Gender 0.476*** 0.167 2.374*** 0.792 
Age  -0.012*** 0.004 -0.060*** 0.017 
Education 0.017 0.053 0.020 0.253 
Formal farmer training -0.183 0.119 -0.913 0.565 
Male adults 0.002 0.033 0.009 0.158 
Female adults -0.089** 0.036 -0.458*** 0.174 
Oxen 0.203*** 0.054 0.969*** 0.252 
Farm size 0.124** 0.061 0.633** 0.260 
Frequency of land change -0.112 0.084 -0.491 0.390 
Plot characteristics  
Plot distance 0.000 0.002 0.003 0.008 
Plot size 0.283* 0.145     
Fertile -0.579*** 0.165 -2.800*** 0.773 
Moderately fertile -0.580*** 0.161 -2.809*** 0.752 
Flat slope -1.129*** 0.239 -5.810*** 1.127 
Moderate slope -0.613** 0.253 -3.379*** 1.182 
Constant -6.141*** 1.590 -27.237*** 7.472 
Rho 0.472 0.037 0.458 0.034 
LR test of Rho=0: p-value 0.000    
Wald chi2 126.73 120.28 
Log-likelihood -1494.508 -3147.713 
Observations 3648 3646 
Number of household id 914 914 

 Note: * significant at 10%; ** significant at 5%; *** significant at 1% 

 

Climate variability and fertilizer adoption 

The primary objective of this paper has been to analyze the link between rainfall levels 

and farmers’ fertilizer adoption decisions, our hypothesis being that higher previous 

season rainfall levels will lead to increased fertilizer adoption. This is because abundant 

rainfall in the previous year translates into good harvests which could in turn relax 

liquidity constraints and consequently lead to increased probability of applying fertilizer 

as well as the intensity of fertilizer application.   Our results suggest that both the 

decision to adopt fertilizer and the intensity of adoption in a given year is positively 

affected by previous year’s rainfall levels, in line with a priori hypothesis. Furthermore 

we find a concave relationship between previous season rainfall levels and fertilizer 
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adoption. This suggests for a threshold level of rainfall after which the marginal impact 

of rainfall on fertilizer use starts to decline. This result is also confirmed at farm-level 

(see Table A1 in the appendix) indicating that even at the farm level both the decision to 

adopt fertilizers and the intensity of adoption in a given year is positively affected by 

previous year’s rainfall levels. 

This result demonstrates the poverty implication of climate variability and change. 

Climate variability and change, via its direct impact on crop income, is expected to 

worsen poverty levels by lowering incomes of better off farmers while those who are 

already poor will remain trapped in poverty as adverse weather patterns will negatively 

impact on their income prospects. The link between rainfall levels and crop or farm 

income is well established (Hoddinott, 2006). Furthermore, rainfall variability 

negatively affects households’ propensity to save (Paxson, 1992). Moreover, existing 

literature has established that poverty, being an indicator of vulnerability due to its 

direct association with income or access to resources, significantly constraints 

households in coping with impacts of extreme weather changes (Adger, 1999). This 

informs policies that seek to mitigate or adapt to climate variability and change to 

explicitly factor in the impact of poverty on the ability to cope with such changes. A 

plausible policy is to provide credit and insurance in as far as its provision might ease 

the constraints households face when they try to invest in farm inputs. One possibility is 

to develop index-based crop insurance schemes whereby indemnity payments are made 

when an agreed upon condition, in this case when recorded rainfall at a particular station 

falls below a certain threshold. The advantage with such insurance schemes is that they 

are based on conditions that are independent from both farmers and insurers’ influence 

thereby minimizing moral hazard and adverse selection problems.  Such mechanisms 

might ease the households’ vulnerability to crop failure which might constraint the 

ability to invest in farm inputs. 

Another possible explanation to our finding is that anticipated weather changes are 

informed by current weather patterns i.e. anticipation about next year’s rainfall patterns 

are influenced by current year rainfall patterns5. Thus given the anticipated rainfall 

patterns, households use opportunities within their means to shield themselves against 

                                                 
5 Anecdotal evidence shows that farmers anticipate bad weather once in four years. The survey years and 
the rainfall observation years all correspond to the ‘good weather’ years according to this anecdotal 
evidence. Hence, farmers in the study area may have expectations that current rainfall is close to previous 
rainfall in pattern.  
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crop failure; in this case they either abandon or reduce fertilizer use given that they 

anticipate lower rainfall levels, in line with Fufa and Hassan (2006). Higher anticipated 

rainfall levels signal reduced anticipated risk of fertilizer use, since applying fertilizers 

under dry conditions could simple burn seeds and increase the probability of crop 

failure. In this way reducing fertilizer application can serve as a relevant strategy in 

coping with production risks associated with climate variability, with the expectation 

being that higher rainfall levels will be associated with increased adoption of fertilizers 

and vice versa. This is also supported by findings by Smit et al. (1996) and Hucq et al. 

(2000) who find evidence that farmer alter the intensity of input use to reduce the risks 

associated with climate change. 

 

Other correlates of fertilizer adoption 

Existence of gender differences in technology adoption is confirmed, with male-headed 

households being more likely to adopt fertilisers. This lends support to the contention 

that women are generally discriminated against in terms of access to productive inputs 

(Dey, 1981; Doss, 1999). Given the demonstrated contribution of fertilisers to raising 

agricultural yields and land productivity in sub-Saharan Africa (Mwangi, 1997) and 

particularly in Ethiopia where the population growth rate and land degradation places a 

challenge on agriculture (Fufa and Hassan, 2006), such discrimination with regards to 

productivity-enhancing farm inputs can result in gender differentials in farm 

productivity (Udry et al., 1995) and subsequently poverty. This is further supported by 

the fact that female labor, proxied by the number of female adults in the household, is 

associated with lower probability and intensity of adoption. The negative impact of 

female labor might also be reflecting households’ preference for female labor-saving 

technologies particularly where there are alternative opportunities for female labor. 

The probability of fertilizer adoption and intensity of adoption decreases with age, 

consistent with Fufa and Hassan (2006) and Chianu and Tsujii (2004). This suggests 

that older household heads might have a shorter planning horizon and thus less likely to 

adopt soil conservation practices than younger household heads. Furthermore research 

has found evidence than younger farmers are more likely to adopt technologies and 

given that they have more energy, they are more likely to invest in productivity-

enhancing technologies (Alavalapati et al., 1995).  

The suggested positive impact of oxen ownership on both the decision to adopt as 

well as the intensity of adoption suggests that wealthier households have an advantage 

 15



in adoption of fertiliser. The number of oxen owned by a household can be taken as a 

proxy for household wealth (Clay, et al., 1998). Wealthier households are better placed 

to purchase fertilisers as well as to amass additional resources that can be used for on-

farm investments. Poverty has been found to be a major constraint in African agriculture 

(World Bank, 2007).  The significance of oxen in determining use of farm inputs such 

as inorganic fertilisers combined with the finding that fertiliser enhances productivity in 

Africa (Mwangi, 1997) confirms this. This suggests that policies aimed at alleviating 

poverty will help alleviate constraints to access and use of farm inputs needed to 

improve agricultural productivity. 

With regards to plot characteristics, the positive impact of plot size could be 

suggesting that it might not be economically efficient for farmers with small farm 

holdings to apply fertilisers due to economies of scale effects at plot-level, for example, 

packaging of fertilisers. Similarly the positive impact of farm size (Table A1 in the 

appendix) suggests that larger farmers benefit from either economies of scale or 

preferential access to inputs and credit (Polson and Spencer, 1991) and/or might be able 

and willing to bear more risks than small farmers. It could also be the case that farm size 

is capturing the wealth status of the household in which case this is in line with concerns 

we raised earlier regarding the constraints poverty imposes on fertiliser adoption. 

Farmers have been found to have fairly good indigenous knowledge of the challenges 

facing their farming systems and their assessment of soil quality impacts greatly on their 

soil fertility management strategies (Edwards, 1987 cited in Adesina, 1996). Given that 

the primary goal of fertilizer use is to enhance soil fertility by supplying the nutrients 

necessary for improved crop yields (Mwangi, 1997), it is intuitive that perceived soil 

fertility is associated with reduced adoption and subsequent intensity of adoption. 

Gentle or flat slopes are associated with less erosion compared to moderate slopes 

(Ovuka and Ekbom, 1999) implying that they experience less nutrient loss and thus 

farmers might not see the need to apply fertilizers on them. Thus intuitively we find that 

the likelihood of adoption as well as adoption levels decline in the proportion of the plot 

that is both flat and moderately sloped i.e. the flatter the plot, the less likely the 

adoption.  
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6. Conclusions and policy implications 

This paper investigates how farmers’ adoption of fertiliser is influenced by changes in 

precipitation, using plot and farm level panel data from the central Highlands of 

Ethiopia matched with corresponding village level rainfall data. The analysis is an 

addition to the limited empirical literature that assesses empirically the risk factors 

associated with rainfall variability and how this impacts investments in productive farm 

inputs such as fertilizer. Our main hypothesis is that higher anticipated rainfall levels 

will lead to higher fertilizer adoption. This is based on the argument that higher 

anticipated rainfall is also to result in increased harvest levels which in turn are expected 

to ease the liquidity constraints faced by households. The major contribution of the 

analysis lies in its use of plot level panel data that highlights the importance of not only 

household-level but also plot level characteristics. In addition, the strength of the 

analysis is that it is based on actual weather changes and explicitly examines farmers’ 

responses to these, which conventionally is assumed in climate assessment studies. 

The results indicate that in a world of credit and insurance market imperfections, 

previous year rainfall levels relaxes constraints due to such imperfections by increasing 

households disposable income. Thus our results suggest for possible poverty traps on 

poor farmers in the face of uninsured risks due to climate change and variability, given 

that rainfall variability is one aspect of climate change and variability. Given the link we 

establish between rainfall and fertiliser adoption patterns, climate change and 

variability, via its direct impact on crop income, is expected to worsen poverty levels by 

lowering incomes of better off farmers while those who are already poor will remain 

trapped in poverty as adverse weather patterns will negatively impact on their income 

prospects. This is evidence that there may be a market for weather-based derivatives in 

low-income agriculture and that the next step would be to establish the value of such 

insurance and the proper mechanism design. Provision of such insurance might ease the 

constraints households face when they try to invest in farm inputs. Furthermore, such 

mechanisms need to be accompanied by policies that seek to eliminate possible 

discrimination against female household heads in terms of access to productive inputs 

such as fertilisers. The significance of wealth indicators imply that polices aimed at 

poverty alleviation will help ease constraints farmers face in technology adoption. 

The analysis is important in informing future studies that attempt to assess the link 

between weather related uncertainty and agricultural investment in credit constrained 
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settings. The fact that we find evidence that households depend on good weather to 

make necessary productivity enhancing investments underlies the enormous importance 

attached to weather not only in determining current productivity but also future 

investments. 

The analysis in this paper is based on average rainfall (abundance) and the impact of its 

variability on fertilizer use over years.  Equally (even more) important measure in the 

Ethiopian context is the timing and variability of rainfall in a given year, which not only 

affects productivity, but also conditions fertilizer adoption decisions. Enhancing 

fertilizer use by Ethiopian farmers would require policy measures that provide insurance 

against losses associated with such variability. In addition, given the near-total 

dependence of the Ethiopian economy on such risk-prone, small-holder agriculture, 

short-term insurance measures might not be sustainable; and structural measures  that 

reduce dependency on agriculture, particularly crop production,  such livestock as off-

farm employment options are worth exploring and investing in. 
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Appendices 
 
Table A1: Random Effects Probit and Tobit on Farm-Level Fertiliser Adoption       

  Random Effects Probit Random Effects Tobit 
Variable Coeff. Std. Error Coeff. Std. Error 
Rainfall  
Lagged rainfall 21.742*** 3.686 49.840*** 8.412 
Lagged rainfall squared -0.008*** 0.001 -0.019*** 0.003 
Socioeconomic characteristics 
Gender 0.736*** 0.213 2.224*** 0.522 
Age  -0.018*** 0.005 -0.047*** 0.011 
Education -0.001 0.070 0.004 0.172 
Formal farmer training -0.076 0.157 -0.195 0.382 
Male adults 0.005 0.041 0.031 0.105 
Female adults -0.105** 0.045 -0.266** 0.113 
Oxen 0.261*** 0.078 0.804*** 0.181 
Frequency of land change -0.249** 0.126 -0.496* 0.290 
Farm characteristics 
Average distance -0.002 0.003 -0.001 0.009 
Farm size 0.456*** 0.081     
Fertile -0.972***  0.230 -2.356***  0.533 
Moderately fertile -0.940*** 0.219 -2.191*** 0.519 
Flat slope -1.520*** 0.346 -3.836*** 0.786 
Moderate slope -0.796** 0.352 -2.014** 0.821 
Constant -12.443***  2.256 -27.076*** 5.183 
Rho 0.489 0.089 0.527 0.063 
LR test of Rho=0: p-value 0.000   
Wald chi2 108.66 157.03 
Log-likelihood -641.076 -1601.627 
Observations 1220 1215 
Number of household id 936 932 

   Note: * significant at 10%; ** significant at 5%; *** significant at 1% 
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