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Abstract. It was recently shown that quantum and classical mechanics are related in a
deeper and more intimate way than previously thought possible. A geometric framework for
both theories that allowed going back and forth between quantum and classical processes was
discovered. The quantum-mechanical experiments were presented in a new and illuminating
fashion, paving a way to resolve the paradoxes of quantum theory. The downside of the theory
is a relatively involved machinery of functional analysis and differential geometry used to derive
the results. At the same time, the main conclusions are fundamentally simple and can be
presented without complicated math. The goal of this paper is to provide such a “no math”
presentation of the theory.

1. Introduction
Recent papers [1]-[7] put the classical and the quantum dynamics on an equal footing opening a
new way of investigating major paradoxes of quantum mechanics. The papers are based on the
following three components:

(i) The standard Schrödinger quantum mechanics

(ii) The classical Newtonian mechanics

(iii) An identification of the classical space R3 with a submanifold in the Hilbert space of states,
formed by the delta-like states of a particle

The first two components don’t need a clarification. The third one is essential for the new
results in the papers. Mathematically, an identification between points in R3 and the states of a
particle located at the points is easy to construct. It is also easy to motivate this correspondence
physically by noticing that to identify a point in R3 is to observe a particle at the point. In
quantum mechanics, a particle at a point is given by the Dirac delta state, hence the identification
between the two. More importantly, as proven in [1] and, in part, in the previous publications
[2]-[7], the identification of the classical space and classical phase space of a system of particles
with a submanifold of the space of states of the corresponding quantum system is physically
sound and consistent. When the system is constrained to the submanifold, it behaves classically.
Otherwise, it behaves quantum-mechanically. By fully embracing such an identification, the
physical reason behind the constraint can be found and the paradoxical nature of the quantum
elucidated. At the end, the analysis strongly supports the hypothesis that the appropriate arena
for all physical processes is the space of states, rather than the classical space. This transition
from a “point in space” to a ”point in space of states” description of the physical world as well
as new experimentally testable predictions are what sets the approach apart from the existing
approaches and interpretations of quantum mechanics. Here the results of [1] are reviewed and
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explained in a simple language and put in the context of an existing research. It needs to be
stressed that no additional assumptions besides (i)-(iii) above will be used in the paper.

2. Newtonian mechanics in the Hilbert space of states
Quantum systems are described most completely by state vectors that are elements of a Hilbert
space. A Hilbert space is a vector space with an inner product and the norm defined by it. As
such, Hilbert space is similar to the Euclidean space R3 that we live in with the norm being
similar to the Euclidean norm (i.e., the Euclidean length of a vector). The difference is that
Hilbert spaces are generally infinite-dimensional. Vectors in a Hilbert space are commonly given
by complex-valued functions ψ, often called state or wave functions rather than three-component
tuples of real numbers x = (xk). Likewise, the norm-squared of a vector ||ψ||2 is the integral of
the square of the modulus of the function

∫
|ψ(x)|2d3x with respect to a measure rather than

the sum of squares of the components of a vector
∑

k(xk)
2 in R3.

To relate the classical and the quantum, we need to have a common mathematical language for
both theories. If the classical mechanics is to be derived from the quantum, this language must
be functional in nature, that is, based on the functions in a Hilbert space of states rather than
points in R3. On the other hand, experiment demonstrates that the position of a macroscopic
particle is well defined at any time. The state function of a particle with the known position is
zero outside the point where the particle is located and is given in the coordinate representation
by the Dirac delta-function. So the state function of a classical point particle (material point)
is ideally the Dirac delta-function. The classical space R3 can be identified with the set of all
possible positions of the particle. Consequently, the classical space is represented in the Hilbert
space of states of the particle by the set M3 of all delta functions.

There are numerous realizations of the space of states in a form of a particular Hilbert space of
functions. Many of the realizations contain Dirac delta-functions. However, the typical Hilbert
space L2(R3) of states of a single particle in the coordinate representation does not contain delta
functions. The state of a physical particle with a well-defined position a in this representation
is typically identified with the Gaussian function

δ̃3
a =

(
1

2πσ2

) 3
4

e−
(x−a)2

4σ2 . (1)

The parameter σ controls the width of the graph of the function. The isomorphism ωσ : a −→ δ̃3
a

identifies then the set R3 of points a with the set Mσ
3 of all Gaussian functions (1). The resulting

realization of R3 by the set Mσ
3 of Gaussian functions will be sufficient for the purpose of this

paper. Moreover, as shown in [1], it is equivalent to the realization of R3 by the set M3 of Dirac
delta functions.

The functions (1) have a unit norm in L2(R3): the integral of the square of any such function
is equal to one. The set of all functions of norm one form a unit sphere SL2 in L2(R3). This is
analogous to the set of unit vectors in R3 forming the sphere S2. The set Mσ

3 is then a subset
of the sphere SL2 that is analogous to and can be visualized as a curve on S2. The norm in the
Hilbert space induces the metric on the sphere, so that we can measure the distance between
any two points on the sphere. This is analogous to the Euclidean metric on R3 giving rise to the
metric on the sphere S2: to find the distance between points on the sphere, we just apply the
usual measuring tape along the surface of the sphere. The metric induced on SL2 is Riemannian,
i.e., it is given by an inner product on tangent spaces. To find the inner product of two vectors
in a tangent space, we simply find the real part of their inner product in the ambient Hilbert
space. This is similar to the way in which the metric induced on the sphere S2 is obtained.

For any given point ϕ on the sphere SL2 , consider the great circle {ϕ} through ϕ, formed by
the states eiαϕ with α ∈ R. We will call the great circle through the point ϕ the phase circle for



ϕ. Clearly, various phase circles either coincide or do not intersect. The resulting equivalence
classes of states form the complex projective space or the space of physical states. This space
is important because a constant phase factor in a state does not change the probability of
measurement results on the state. It is also useful to notice that for ϕ in Mσ

3 the phase circle
for ϕ is orthogonal to Mσ

3 at ϕ. That is, for ϕ in Mσ
3 the plane through the phase circle {ϕ} is

orthogonal to the tangent space to Mσ
3 at ϕ.

By projecting points ϕ in SL2 to their equivalence classes {ϕ}, one obtains the fibre bundle
π : SL2 −→ CPL2 with the circles {ϕ} as the fibres. The complex projective space CPL2

possesses an induced Riemannian metric. Namely, given two vectors tangent to SL2 at ϕ, the
components of the vectors orthogonal to the fibre {ϕ} can be identified with vectors tangent to
the projective space CPL2 at the point {ϕ}. The inner product of these vectors is just the real
part of the inner product of the corresponding orthogonal components in L2(R3). That yields
the Riemannian metric on CPL2 , called the Fubini-Study metric. Furthermore, the metric on
the sphere SL2 or alternatively on the projective space CPL2 define the induced Riemannian
metric on the set Mσ

3 . Because at any point ϕ in Mσ
3 , the circle {ϕ} through ϕ is orthogonal to

the space tangent to Mσ
3 at ϕ, the induced Riemannian metrics on Mσ

3 are both the same.
It can be shown [1] that the distance between points a and b in the Euclidean space R3,

measured in the units 2σ, is equal to the distance between the corresponding points δ̃3
a and δ̃3

b
in Mσ

3 in the induced metric. In other words, the metric space R3 with the usual Euclidean
metric is isomorphic (identical to) to the metric space Mσ

3 with the induced Riemannian metric.
Furthermore, the space Mσ

3 inherits a differentiable structure from the like-structure on the
sphere SL2 or the projective space CPL2 and becomes a manifold with a Riemannian metric or
a Riemannian manifold. This means that differentiation of functions on Mσ

3 is also defined. The
map ωσ is then an isomorphism of the Euclidean space R3 and the Riemannian manifold Mσ

3 or
an isometric embedding of R3 into the sphere SL2 and the Hilbert space L2(R3). That simply
means that the spaces R3 and Mσ

3 are mathematically the same, as manifolds with a metric.
Now, the space R3 is a vector space: it is possible to add vectors and multiply them by

numbers in the usual way, without leaving the space. On the other hand, the space Mσ
3 does

not inherit the vector structure of the ambient Hilbert space L2(R3). In fact, a multiple of a
vector ending on SL2 or a sum of two such vectors does not result in a vector with the end
point on SL2 in general. However, if desirable, the vector structure on Mσ

3 can be introduced
independently by inducing it from the space R3 via the isomorphism ωσ. That is, we can define
the operations of addition ⊕ and multiplication by a scalar λ� via ωσ(a)⊕ ωσ(b) = ωσ(a + b)
and λ � ωσ(a) = ωσ(λa). If this is done, then ωσ becomes an isomorphism of vector spaces.
However, since the obtained vector structure on M3 is not the same as the one on the Hilbert
space L2(R3), the manifold M3 with this structure is not a subspace of L2(R3).

In addition to the classical space R3, the Newtonian mechanics uses extensively the phase
space. The phase space of a single particle in R3 is the space R3 × R3 of all the pairs (a,p),
where a is the position and p is the momentum of the particle. On the other hand, the Gaussian
wave packet centered at a point a for a particle of mass m with group velocity v = p/m is given
in quantum mechanics by the state function

ϕa,p(x) =

(
1

2πσ2

)3/4

e−
(x−a)2

4σ2 ei
p(x−a)

~ . (2)

For the particle at rest, the state function ϕa,p(x) reduces to the functions δ̃3
a, previously

introduced in (1). Likewise, the state functions (2) can be obtained from the Gaussian functions
(1) by changing to the moving system of coordinates. Consider the subset Mσ

3,3 of all such state

functions ϕa,p in L2(R3), defined up to a constant phase factor each. Similarly to the case of



the classical Euclidean space, the map Ω : R3 × R3 −→Mσ
3,3,

Ω(a,p) = ϕa,p(x) (3)

can be used to identify the classical phase space R3 × R3 with the manifold Mσ
3,3 with the

Euclidean metric induced by the map Ω(a,p) from the metric on L2(R3).
With this construction in place, the Euclidean space R3 and the phase space R3 × R3 of a

particle are mathematically indistinguishable from the sets Mσ
3 and Mσ

3,3 furnished with the
provided additional structure. Because of the isometric property of the embedding ωσ, the
components of the velocity dϕt/dt and acceleration d2ϕt/dt

2 of a point ϕt = δ̃3
a(t) moving along

the manifold Mσ
3 coincide with their Newtonian values da/dt and d2a/dt2. The principle of least

action and the equations of motion of the Newtonian dynamics can be formulated now in terms
of the new dynamical variables δ̃3

a and dδ̃3
a/dt with δ̃3

a ∈ Mσ
3 , or a single dynamical variable

ϕa,p ∈ Mσ
3,3. The motion of a material point in Newtonian dynamics is represented now by a

path with values in the classical space Mσ
3 or a path with values in the classical phase space

Mσ
3,3, where both spaces are submanifolds of the sphere SL2 .
A similar realization exists for classical mechanical systems consisting of any number of

particles. For example, the map ωσ⊗ωσ : R3×R3 −→ L2(R3)⊗L2(R3), ωσ⊗ωσ(a,b) = δ̃3
a⊗ δ̃3

b
identifies the configuration space R3 × R3 of a two particle system with the submanifold
M6 = ωσ ⊗ ωσ(R3 × R3) of the Hilbert space L2(R3) ⊗ L2(R3) of all possible states of the
pair. Projection of velocity and acceleration of the state ϕ(t) = δ3

a(t) ⊗ δ3
b(t) onto M6 gives

the Newtonian velocity and acceleration of the particles. Note also that the isomorphism
ωn : R3 × ... × R3 −→ Mσ

3n, ωn(a1, ...,an) = δ̃3
a1
⊗ ... ⊗ δ̃3

an allows us to interpret n-particle
states in Mσ

3n as positions of n particles in the single classical space R3. A similar map identifies
the submanifold Mσ

3n,3n with the classical phase space of n particles. These maps allow us to
think of Mσ

3n and Mσ
3n,3n as the classical space and phase space with n particles.

To summarize, we have learned the following lesson:

Lesson 1.

Classical Newtonian mechanics of an arbitrary system of material points can be mathematically
formulated in terms of the quantum state of the system, where the state is constrained to the
classical space or the phase space submanifold of the Hilbert space of states.

Note that this statement is only a mathematical fact. The question remains if there is any
physics behind this reformulation. Namely, we need to figure out the relationship between the
Newtonian dynamics formulated in terms of the state variable and the Schrödinger dynamics of
the system.

3. Newtonian dynamics as a constrained Shrödinger dynamics
The Schrödinger equation dϕ

dt = − i
~ ĥϕ gives the velocity of the quantum state of a system as a

function of time. It can be thought of as an equation for the integral curves of the vector field
hϕ = − i

~ ĥϕ on the space of states. To solve the equation is to find the curve in the space of
states that goes through the given initial point ϕ0 and has tangent vectors defined by the vector
field hϕ.

More generally, quantum mechanics can be formulated in terms of vector fields on the space
of states in place of the linear operators. Namely, given a self-adjoint operator Â on a space of
states L2 (i.e., an observable) the associated linear vector field Aϕ (a linear function on L2 with
values in L2) is defined by

Aϕ = −iÂϕ. (4)



Self-adjoint operators generate unitary transformations, so that the integral curves ϕt of the
associated vector fields lay on the surface of the sphere. To visualize Aϕ, we can think of a
tangent vector Aϕ attached to the points of the sphere SL2 . The commutator of observables and
the commutator (Lie bracket) of the corresponding vector fields are related in a simple way:

[Aϕ, Bϕ] = [Â, B̂]ϕ. (5)

So the algebra of observables is realized by the algebra of linear vector fields on the sphere.
Furthermore, recall that the sphere SL2 and the projective space of states possess the induced

Riemannian metric. This metric can be used to find physically meaningful components of the
vector field Aϕ associated with an observable. Namely, the field Aϕ can be decomposed into
components tangent and orthogonal to the great circle {ϕ} formed by the points eiαϕ (i.e., to
the fibre {ϕ} of the fibre bundle π : SL2 −→ CPL2). These components have a simple physical
meaning. Namely, from

A ≡ (ϕ, Âϕ) = (−iϕ,−iÂϕ), (6)

we see that the expected value A of an observable Â in state ϕ is the projection of the vector Aϕ
onto the fibre {ϕ}. The vector −iÂ⊥ϕ = −iÂϕ− (−iAϕ) associated with the operator Â−AI
is orthogonal to the fibre {ϕ}. Accordingly, the variance

∆A2 = (ϕ, (Â−AI)2ϕ) = (ϕ, Â2
⊥ϕ) = (−iÂ⊥ϕ,−iÂ⊥ϕ) (7)

is the norm squared of the orthogonal component −iÂ⊥ϕ.
Let us apply this to the Schrödinger equation dϕ

dt = − i
~ ĥϕ. The right hand side is the

vector field hϕ associated with the Hamiltonian. The decomposition of hϕ gives the Schrödinger
equation in the form

dϕ

dt
= − i

~
Eϕ− i

~
(ĥ− E)ϕ = − i

~
Eϕ− i

~
ĥ⊥ϕ. (8)

From this and equation (7) we conclude, in particular, that the speed of state in the projective
space is equal to the uncertainty of energy. Equation (8) also demonstrates that the physical

state is driven by the operator ĥ⊥, associated with the uncertainty in energy rather than the
energy itself.

Suppose that at t = 0, a microscopic particle is prepared in the state (2). Recall that the
set of states (2), considered for all possible values of the position a and momentum p, form a
submanifold Mσ

3,3 of the space of states that is mathematically identical to the classical phase
space of the particle. For any given value of p, the lines formed by varying the components ak
of a form an orthogonal coordinate grid in the classical space submanifold of Mσ

3,3. Likewise, by
fixing a and changing components pk of the momentum p, we obtain an orthogonal coordinate
grid in the momentum space submanifold of Mσ

3,3. Let us find the components of the orthogonal

part − i
~ ĥ⊥ϕ of the velocity dϕ

dt in the basis of the unit orthogonal vectors of the coordinate

grids at t = 0. For ϕ = reiθ and an arbitrary Hamiltonian of the form ĥ = − ~2
2m∆ + V (x), a

calculation of the components of velocity dϕ
dt along the unit orthogonal vectors − ∂̂r

∂ak
eiθ (i.e., the

classical space component of dϕ
dt ) yields

Re

(
dϕ

dt
,− ∂̂r

∂ak
eiθ

)∣∣∣∣∣
t=0

=

(
dr

dt
,− ∂̂r

∂ak

)∣∣∣∣∣
t=0

=
vk
2σ
. (9)



Similarly, a calculation of the components of velocity dϕ
dt along the unit orthogonal vectors i ∂̂θ∂pkϕ

(momentum space component) gives

Re

(
dϕ

dt
, i
∂̂θ

∂pk
ϕ

)∣∣∣∣∣
t=0

=
mwkσ

~
, (10)

where

mwk = − ∂V (x)

∂xk

∣∣∣∣
x=x0

(11)

and σ is small enough for the linear approximation of V (x) to be valid within intervals of length
σ.

The velocity dϕ
dt also contains a component due to the change in σ (spreading), which is

orthogonal to the fibre {ϕ} and the phase space Mσ
3,3, and is equal to

Re

(
dϕ

dt
, i
d̂ϕ

dσ

)
=

√
2~

8σ2m
. (12)

Calculation of the norm of dϕ
dt = i

~ ĥϕ at t = 0 gives∥∥∥∥dϕdt
∥∥∥∥2

=
E

2

~2
+

v2
0

4σ2
+
m2w2σ2

~2
+

~2

32σ4m2
, (13)

which is the sum of squares of the found components. This completes a decomposition of the
velocity of state at any point ϕa,p ∈Mσ

3,3.
From (9) and (10), we conclude that the phase space components of the velocity of state

dϕ
dt = − i

~ ĥϕ assume correct classical values at any point ϕa,p ∈Mσ
3,3. This remains true for the

time dependent potentials as well. The immediate consequence of this and the linear nature of
the Schrödinger equation is the following lesson:

Lesson 2.

Under the Schrödinger evolution with the Hamiltonian ĥ = − ~2
2m∆+V (x, t), the state constrained

to Mσ
3,3 ⊂ CPL2 moves like a point in the phase space representing a particle in Newtonian

dynamics. More generally, Newtonian dynamics of n particles is the Schrödinger dynamics of
n-particle quantum system whose state is constrained to the phase-space submanifold Mσ

3n,3n of
the projective space of states of the system.

Remarks:

(i) For the states in Mσ
3,3, the velocity of state under the Schrödinger evolution with the

Hamiltonian ĥ = − ~2
2m∆ + V (x, t) was shown to contain the classical velocity and

acceleration. On the contrary, it is possible to show [1] that there exists a unique extension of
the Newtonian dynamics formulated on the classical phase space Mσ

3,3 to a unitary dynamics

in the Hilbert space L2(R3), satisfying formulae (9) and (10). This uniqueness property is
due to the fact that the space Mσ

3,3 is complete in L2(R3), which means that it exhausts all

directions in L2(R3). As a result, the Newtonian evolution on Mσ
3,3 has a unique “lift” to a

unitary evolution on L2(R3).



(ii) Note again that the velocity and acceleration terms in (13) are orthogonal to the fibre
{ϕa,p} of the fibration π : SL2 −→ CPL2 , showing that these Newtonian variables have to
do with the motion in the projective space CPL2 . The velocity of spreading is orthogonal
to the fibre and to the phase space submanifold Mσ

3,3. The implication of this is that the
“concentration” of state under the collapse has nothing to do with a motion in the classical
space.

(iii) A replacement of observables with the associated vector fields allows one to interpret the
commutators of observables (Lie bracket of vector fields) with the curvature of the sphere
of states [1]. Accordingly, the algebra of observables becomes encoded into the geometry of
the space of states.

As was mentioned in the Introduction, all results derived in this paper are based on the
standard quantum mechanics, standard classical mechanics and the identification of points in
the classical space with the delta-states of a particle located at these points. As discussed,
the latter identification is certainly valid mathematically. We now see a clear indication of the
physical validity of the identification, naturally leading us to the following proposition.

Proposition

We saw that physical properties (position, velocity) of a system of classical particles are ingrained
into the properties of the state function. We also saw that the dynamics of macroscopic particles
is contained in the Schrödinger equation for the state constrained to a 3-dimensional submanifold
in the space of states, and is described by a path with values in the submanifold. We then propose
that what we call the classical space is that 3-dimensional submanifold of the space of states, with
the latter being the actual arena for all physical processes.

With this accepted, the remaining results in this paper become physical consequences of the
standard quantum and classical mechanics (including the theory of Brownian motion) and the
proposition, with no additional assumptions. Without the proposition, the results are still valid
mathematically, even if their physical significance may be denied.

4. The Born rule and the normal probability distribution
Under the embedding of the classical space R3 into the space of states, the variable a ∈ R3 is
represented by the state δ̃3

a. The set of states δ̃3
a form a submanifold Mσ

3 in the Hilbert spaces
of states L2(R3), which is ”twisted” in L2(R3). It belongs to the sphere SL2 and goes across
the dimensions of L2(R3). The distance between the states δ̃3

a, δ̃3
b on the sphere SL2 or in the

projective space CPL2 is not equal to the distance ‖a− b‖R3 between the points a and b in R3.
In fact, the former distance measures the length of a shortest line between the states while the
latter is obtained using the same metric, or ”measuring tape”, but applied along the twisted
manifold Mσ

3 . The precise relation between the two distances is given by

e−
(a−b)2

4σ2 = cos2 θ(δ̃3
a, δ̃

3
b), (14)

where θ is the Fubini-Study distance between states in CPL2 [1].
The relation (14) has an immediate implication onto the form of probability distributions of

random variables over Mσ
3 and CPL2 . In particular, consider the state of a particle under a

measurement as a random variable ϕ with a certain probability distribution that depends only
on the distance between the initial and the current states. Consider the probability distribution
of the random variable ϕ constrained to Mσ

3 . Since in this case ϕ = δ̃3
a, we could equally

talk about the distribution of position random variable a for the particle. Suppose that this
distribution is normal. Then the probability distribution of ψ must satisfy the Born rule for the



probability of transition between states. The opposite is also true [1]. In simple words, we have
the following result:

Lesson 3.

The normal distribution law on Mσ
3 implies the Born rule on CPL2. Conversely, the Born rule

on the space of states implies the normal distribution law on Mσ
3 .

Measurements performed on a macroscopic particle satisfy generically the normal distribution
law for the measured observable. This is consistent with the central limit theorem and indicates
that the specific way in which the observable was measured is not important. From (14) and
Lesson 3, it then follows that the Born rule is as generic on the space of states as the normal
distribution law is on the classical space R3. However, the relationship (14) provides only a
geometric part of the story. What is the physics behind the relationship of the normal probability
distribution and the Born rule?

Consider a measurement of position of a particle as an example. A common way of finding
the position of a macroscopic particle is to expose it to light of sufficiently short wavelength and
to observe the scattered photons. Due to the unknown path of the incident photons, multiple
scattering events on the particle, random change in position of the particle, etc., the process of
observation can be described by the diffusion equation with the observed position of the particle
experiencing Brownian motion from the starting point during the time of observation. This
results in the normal distribution of observed position of the particle.

The ability to describe the process of measurement as a diffusion seems to be a general
feature of measurements in the macro-world, independent of a particular measurement set-up.
The averaging process making the central limit theorem applicable and leading to the normal
distribution of the position random variable can be seen, for example, as the result of random hits
experienced by the particle from the surrounding particles participating in the measurement.
These random hits are equally likely to come from any direction, independent of the initial
position of the particle, leading to Brownian motion and the validity of the diffusion equation
for the probability density of the position random variable for the particle.

Now, suppose that a microscopic particle undergoes a position measurement and is exposed to
a random potential that produces the Brownian motion when applied to a macroscopic particle.
it can be shown [1] that the state of such a particle is equally likely to shift in any direction in
the projective space of states. So the probability to find the particle in an initial state ψ in the
state ψ + δψ depends only on the distance (but not the direction) from ψ to ψ + δψ in CPL2 .
From Lesson 3, we conclude that the probability of transition from ψ to ψ + δψ must be given
then by the Born rule.

Let us investigate the dynamical origin of the Born rule in more detail. For this, note that in
the non-relativistic quantum mechanics, the particle, and therefore its state in a single particle
Hilbert space, cannot disappear or get created. The unitary property of evolution means that
the state can only move along the unit sphere in the space of states L2(R3). To express this
conservation of states in the case of observation of position of the particle, consider the density
of states functional ρt[ϕ;ψ]. To define it, we begin with an ensemble of particles whose initial
state belongs to a neighborhood of the state ψ on the sphere of states. The functional ρt[ϕ;ψ]
measures the number of states that by the time t belong to a neighborhood of a state ϕ in the
space of states. (As shown in [1], the motion of state under a measurement can be assumed
to be happening in a finite-dimensional subspace of the space of states. The density of states
functional is then well defined.)

Under the realization ω : R3 −→ Mσ
3 in section 1, the states in Mσ

3 are identified with
positions of particles. So the density of states functional ρt[ϕ;ψ] must be an extension of the
usual density of particles ρt(a; b) with initial position b in R3. In other words, we must have
ρt(a; b) = ρt[δ̃

3
a; δ̃3

b]. In the case of macroscopic particles, the conservation of the number of



particles is expressed in differential form by the continuity equation. For instance, if ρt(a; b) is
the density at a point a ∈ R3 of an ensemble of Brownian particles with initial position near b
and jt(a; b) is the current density of the particles at a, then

∂ρt(a; b)

∂t
+∇jt(a; b) = 0. (15)

We will assume that ρt(a; b) and jt(a; b) are normalized per one particle, i.e., the densities are
divided by the number of particles. In this case, the particle density and the probability density
can be identified.

The conservation of states of an ensemble of microscopic particles is expressed by the
continuity equation that follows from the Schrödinger dynamics in an arbitrary potential. This
is the same equation (15) with

ρt = |ψ|2, and jt =
i~
2m

(ψ∇ψ − ψ∇ψ). (16)

For the states ψ ∈Mσ
3,3 we obtain

jt =
p

m
|ψ|2 = vρt. (17)

Because the restriction of Schrödinger evolution to Mσ
3,3 is the corresponding Newtonian

evolution, the function ρt in (17) must be the density of particles, denoted earlier by ρt(a; b).
Once again, it gives the number of particles that start on a neighborhood of b and by the time
t reach a neighborhood of a. The relation ρt(a; b) = ρt[δ̃

3
a; δ̃3

b] tells us that ρt in (16) must be

then the density of states ρt[δ̃
3
a;ψ]. It gives the number of particles initially in a state near ψ

found under the measurement at time t in the state near δ̃3
a.

From the Schrödinger equation and the fact that the Schrödinger dynamics constrained to
Mσ

3,3 is equivalent to the Newtonian one, and using nothing else, we obtained the relationship
between the density of states functional at a point of Mσ

3 and the modulus squared of the initial
state function at the corresponding point of R3:

ρt[δ̃
3
a;ψ] = |ψt(a)|2. (18)

This result in the case of a measurement can be described as follows. We are dealing with an
ensemble of states initially positioned near the point ψ so that the density of states functional is
concentrated at the point ψ. As the time goes by, the states undergo a random motion in accord
with the Schrödinger equation with a random potential and the density of states functional
“spreads out” in the space of states. The potential that generates a Brownian motion when
applied to a macroscopic particle also generates a distribution of the displacement of state that
is direction-independent in the space of states and satisfies the Born rule.

The relationship (18) explains the identification of |ψt(a)|2 with the probability density, which
is one of the postulates in quantum theory. Indeed, the probability density to find the system in
a state for an ensemble of states is proportional to the value of the density of states functional
on that state, which for the states in Mσ

3 is given by (18). So |ψt(a)|2 is the probability density
to find the particle near a simply because this quantity is the density of quantum states near
the point δ̃3

a. If there are more states near δ̃3
a, it becomes more likely to find the state under an

observation near that point.

5. Collapse of state under a measurement
We saw that, under a measurement, the state of the particle is exposed to a random potential
and gets displaced in the space of states. The density of states at a point that results from



this process depends only on the distance between the initial and the end states. The value of
the density of states functional for the end-states on the manifold Mσ

3 is given by the square of
the modulus of the initial state function at the corresponding point in R3. It follows that the
probability of transition between the initial state and the end-state satisfies the Born rule. The
following lesson follows:

Lesson 4.

Collapse of the quantum state of a system can be modeled and explained by a random motion of
state on the space of states under a measurement.

This result is rather unexpected and goes against the usual understanding and modeling of
the collapse. The existing models utilize various ad hoc additions to the Schrödinger equation
with the goal of explaining why the state under the resulting stochastic process “concentrates”
in a non-unitary way to an eigenstate of the measured observable (usually, position or energy)
[8]-[19]. Instead, it is argued here that under a generic measurement, an ensemble of states
with an initial position near ψ “diffuses” isotropically into the space of states by a unitary
Schrödinger evolution with a random potential. The random potential term in the equation is
due to uncontrollable interactions of the system with the measuring device. The potential has the
same characteristics as the one that can be used to model the classical measurement. Whenever
a particular state in the ensemble of states under such evolution reaches a neighborhood of an
eigenstate of the measured observable, we say that the “collapse” of the state has occurred. In
this case, the measuring device can record the value of the measured physical quantity.

According to this scenario, the measuring device has two separate functions. On one hand,
it initiates a diffusion by creating a “noise”. On the other, it registers a particular location of
the diffused state. For instance, the “noise” in the position measuring device could be due to
a stream of photons. The device then registers the state reaching a point in Mσ

3 . Note the
similarity in the role of measuring devices in quantum and classical mechanics: in both cases
the devices are designed to measure a particular physical quantity and inadvertently create a
“noise”, which contributes to a distribution of values of the measured quantity.

The difference between the measurement of the position of microscopic and a macroscopic
particles is then two-fold. First, under a measurement, the state ψ of a microscopic particle is
a random variable with values in the entire space of state functions CPL2 and not just in the
submanifold Mσ

3 . Second, unless ψ is already constrained to Mσ
3 (the case that would mimic

the measurement of position of a macroscopic particle), to measure position is to observe the
state that “diffused” enough to reach the classical space submanifold Mσ

3 . Assuming the state
has reached Mσ

3 , the probability density of reaching a particular point in Mσ
3 is given, as we

saw, by the Born rule.
We don’t use the term collapse of position random variable when measuring position of a

macroscopic particle. Likewise, there seems to be no physics in the term collapse of the state
of a microscopic particle. Instead, due to the diffusion of state, there is a probability density to
find the state of the particle in various locations on CPL2 . In particular, the state may reach
the space manifold Mσ

3 = R3. If that happens and we have detectors spread over the space, then

one of them clicks. If the detector at a point a clicks, that means the state is at the point δ̃3
a

in CPL2 (that is, the state is δ̃3
a). The number of clicks at different points a when experiment

is repeated is given by the Born rule. The state is not a “cloud” in R3 that shrinks to a point
under observation. Rather, the state is a point in CPL2 which may or may not be on R3 = Mσ

3 .
When the detector clicks, we know that the state is on Mσ

3 .
Note once again that there is no need for any new mechanism of “collapse” in the model. An

observation is not about a “concentration” of state in R3 and the stochastic process initiated
by the observation is in agreement with the conventional Schrödinger equation with a randomly
fluctuating potential (“noise”). The origin of the potential depends on the type of measuring



device or properties of the environment capable of “measuring” the system. Fluctuation of
the potential can be traced back to thermal motion of molecules, atomic vibrations in solids,
vibrational and rotational molecular motion, and the surrounding fields. Most importantly, the
evolution under the potential happens in the space of states, rather than the classical space R3.

6. Classical behavior of macroscopic bodies
We saw that the Schrödinger evolution of state constrained to the classical phase space Mσ

3,3

results in the Newtonian motion of the particle. A similar result holds true for systems of
particles. To reconcile the laws of quantum and classical physics, one must explain the nature
of this constraint. Why would microscopic particles be free to leave the classical space, while
macroscopic particles be bound to it?

Consider for simplicity a crystalline solid. The position of one cell in the solid defines the
position of the entire solid. If one of the cells was observed at a certain point r, the state of the
solid immediately after the observation (in one dimension with r being the left most cell) is the
product

ϕ = δ̃r ⊗ δ̃r+∆ ⊗ ... ⊗ δ̃r+n∆, (19)

where ∆ is the lattice length parameter. The general quantum-mechanical state of the solid is
then a superposition of states (19) for different values of r in space:

ϕ =
∑
r

Cr δ̃r ⊗ δ̃r+∆ ⊗ ... ⊗ δ̃r+n∆. (20)

Why would non-trivial superpositions of this sort be absent in nature?
To understand the dynamics of macroscopic bodies under a measurement, consider first the

Brownian motion of a crystalline solid under the influence of the surrounding particles. The
motion of any solid can be represented by the motion of its center of mass a under the total
force acting on the body and a rotational motion about the center of mass. The motion of the
center of mass is the motion of a material point under the random force term, which is the sum
of forces acting from the surrounding particles on each cell. Therefore, the center of mass will
experience the usual Brownian motion. In particular, the mean-squared displacement of the
center of mass of our one-dimensional solid is given by

da2

dt
= 2K, (21)

where K is the diffusion coefficient.
It is a well established and experimentally confirmed fact that macroscopic bodies experience

an unavoidable interaction with the surroundings. Their “cells” are pushed in all possible
directions by the surrounding particles. For instance, a typical Brownian particle of
radius between 10−9m and 10−7m experiences about 1012 random collisions per second with
surrounding atoms in a liquid. The number of collisions of a solid of radius 10−3m in the same
environment is then about 1019 per second. Collisions with photons and other surrounding
particles must be also added. Even empty space has on average about 450 photons per cm3 of
space.

Let us estimate the value of the diffusion coefficient for a macroscopic body. As known after
the works of Stokes and Einstein, the diffusion coefficient for a spherical particle is well described
by the expression

K =
kBT

6πηr
, (22)

where r us the radius of the particle and η is the dynamic viscosity. In particular, for a
macroscopic particle of radius r ∼ 1mm in the air, η ∼ 10−5N · s/m2, at room temperature,



we get K ∼ 10−12m2/s. According to (21), it would take about 106s or more than 10 days
for the standard deviation of 1mm in the distribution of the displacement of the particle to
occur. Now, the actual time of observation of position of particles in experiments is much
shorter. For instance, if we scatter visible light off the particle to determine its position, the
time interval of observation could be as short as 10−13s, which for a 1mm of radius particle
in the air would amount to the displacement of the order of 10−21m. This quantity is much
less than the accuracy of measurement, limited by the wavelength λ ∼ 10−5m, and cannot be
observed in the measurement. In general, the vanishingly-small value of the diffusion coefficient
K for macroscopic bodies together with the zero mean displacement explains why the Brownian
motion is not commonly observed in the macro-world.

Consider now what happens to the quantum state of a macroscopic body under the influence
of the same surroundings. As in section 4, we conclude that the state of the solid will experience
a random motion on the space CPL2 , built on the superpositions (20) and that any direction of
displacement of the state in the space at any time t is equally likely. From (14) it follows that
for the close-by states in Mσ

3 we have the equality θ2 = a2. That is, the Fubini-Study distance
between the states and the Euclidean distance between the corresponding points in R3 are the
same. From this, the isotropy of the distribution of states and (21) it then follows that at t = 0

dθ2

dt
= 2K, (23)

where the coefficient K is the same as in (21). As discussed, the value of K for macroscopic
bodies is vanishingly small. Accordingly, the position of the state ψ in the space of states for a
macroscopic body remains constant. As a rule of thumb, if the Brownian motion of the body
can be neglected, then the change in the quantum state of the body under the influence of the
surrounding can be neglected as well.

The considered situation is surprisingly similar to that of a pollen grain and a ship initially
at rest in still water. While under the kicks from the molecules of water, the pollen grain
experiences a Brownian motion, the ship in still water will not move at all. We see that this is
more than an analogy: when the state is constrained to the classical phase space submanifold,
the “pushes” experienced by the state become the classical kicks in the space that could lead to
the Brownian motion of the body.

As an example, let us consider again the particle of 1mm radius in the air at room temperature
whose displacement during the time of observation was estimated earlier by 10−21m. The Fubini-
Study distance between Gaussian states in Mσ

3 that are 10−21m apart with σ ∼ 10−5m can
be calculated via (14) and is about 10−16rad. So the state is hardly moving away from its
original position and cannot realistically reach points in the space of states that are away from
that position. In particular, it becomes impossible to find the state positioned initially in the
configuration space Mσ

3n at a different point in the space of states.
Suppose now an external potential V is applied to the macroscopic system. According to (13),

this will “push” the state that belongs to the classical phase space submanifold in the direction
tangent to the submanifold. Therefore, the external potential applied to a macroscopic body
will not affect the motion of state in the directions orthogonal to the classical phase space
submanifold. That means that the state will remain constrained to the submanifold. On the
other hand, as we know from the same section, the constrained state will evolve in accord with
Newtonian dynamics in the total potential V + VS , where VS is the potential created by the
surroundings. However, since at any time t the total force −∇VS exerted on the macroscopic
body by the particles of the surroundings can typically be neglected (no friction), the body will
evolve according to Newtonian equations with the force term −∇V .

So, the origin of the classical behavior of macroscopic bodies in the theory is two-fold. First
of all, the initial state of a macroscopic body is on Mσ

3,3. That is, a macro body is created



at a point of the submanifold Mσ
3,3. Second, because of the interaction of the particle with

the surroundings (radiation, molecules of air, water and other media), the state undergoes a
diffusion process rather than a free Schrödinger evolution. Also, because of the macroscopic
character of the body, the diffusion coefficient is extremely small. The probability distribution
of the variation of the state of the body has a zero mean and is nearly constant in time. We
don’t see a quantum evolution of the state, but rather a negligible diffusion. This diffusion does
not influence measurement of position of the body as that measurement happens on a much
shorter time scale.

From this analysis, it becomes clear that the transition of macroscopic to microscopic
happens for the macroscopic bodies for which the Brownian motion in the surrounding media is
observable. If a macroscopic body is sufficiently small so that the Brownian motion of the body
in the media can be observed in an experiment, then the superposition of states of different
positions of the body becomes observable as well. In fact, it was demonstrated that under the
conditions typical for the Brownian motion, the state of the system has equal probability of
any direction of displacement in the space of states. In particular, the state may become a
superposition of distinguishable states of a given position in R3. Interference effects on such
states are then observable.

7. The double-slit experiment
The derivation of Newtonian from Schrödinger dynamics, the relationship of the Born rule
to the normal probability distribution, a clear picture of collapse and an explanation of the
classical behavior of macroscopic bodies all support the hypothesis in section 2 stating that the
isomorphism between the classical space R3 and the manifold Mσ

3 must be considered a physical
and not just a mathematical identification. In the remaining part of the paper this hypothesis
combined with the standard classical and quantum mechanics will be used to analyze quantum-
mechanical experiments and to address the paradoxes of quantum theory. As discussed, the
superposition principle in quantum mechanics represents the main obstacle to reconciliation of
the quantum and the classical. Let us therefore begin with the simplest manifestation of the
superposition principle: the double-slit experiment.

Different forms of the experiment are well known and don’t need to be reviewed here. We
are going to discuss the simplest set-up of the experiment, involving an electron gun, a plate
with a pair of parallel slits, and a scintillating screen or a photographic plate to observe the
interference pattern. We will deal with a single electron. Also, since the origin of the electron
will not be important, the electron gun will be left out of the picture. For now we will also leave
out the screen registering the outgoing particles and the surroundings.

The Hilbert space of the system is the tensor product of spaces L2(R3), one for each particle in
the system. However, the state of the macroscopic plate with the slits has the form (19) in section
6. That is, the plate is given by a point ψP on the submanifold Mσ

3n = Mσ
3 ⊗ ...⊗Mσ

3 in CPL2 .
Here L2 is the tensor product of Hilbert spaces L2(R3) for all particles of the plate. As discussed
in the section 2, the isomorphism ωn : R3 × ... × R3 −→ Mσ

3n, ωn(a1, ...,an) = δ̃3
a1
⊗ ... ⊗ δ̃3

an
allows us to view the states in Mσ

3n as points in the classical configuration space R3n or positions
of n particles in the single classical space R3. That is how our usual view of the plate becomes
possible and how the state ψP gets identified with a set of material points that represent the
particles of the plate in R3. Although it is useful to “visualize” the plate by the state ψP , or by
the corresponding set of points in R3, the effect of the plate on the electron in the experiment
can be more easily described by a potential V̂ , which is infinite on the plate and zero at the
slits.

We can now proceed with the analysis of the experiment. First, the wave packet of the
electron propagates toward the plate. If the electron is sufficiently fast, the spreading of the
packet on the approach to the plate can be neglected. During this time interval, the propagation



of the initial packet ψ is happening essentially by a displacement ψt(x) = ψ(a−vt). The electron
state moves along (parallel to) the classical space submanifold Mσ

3 in L2(R3). The motion can
be thought of in the classical terms; we have a material point propagating towards the plate.

During the second stage of the experiment, the electron goes “through” the slits in the plate.
The Schrödinger evolution of the electron is still described by a path ψt in the Hilbert space
L2(R3). However, at this time, the shape of the function ψt is different. After interaction with
the potential the state function is a superposition c1ψ1+c2ψ2, where the packets ψ1, ψ2 represent
the state of the electron passing though one of the slits with the second slit closed. The resulting
superposition continues propagating in the same direction, forming a path ψt.

What happens at this step is very important. Let us describe the motion of the state in
terms of the Schrödinger evolution on the space of states L2(R3). The state ψt of the electron
propagates along the classical space submanifold Mσ

3 = R3, approaching the area of the non-
vanishing potential associated with the plate. On interaction with the potential, the state ψt
evolves into a superposition c1ψ1t + c2ψ2t. In terms of the geometry on the space of states, the
path ψt is no longer valued in the classical space submanifold Mσ

3 in L2(R3). In fact, the classical
space submanifold is formed by the Gaussian states. Those states have a single “hump”, while
ψt behind the plate is a “double-humped” state function. Therefore, the state at time t does
not represent a point in the classical space. As the result of interaction with the plate, the path
ψt moves away from the classical space Mσ

3 and, therefore, passes over the plate with the slits
(which can be thought of as a subset P of Mσ

3 ).
The origin of the paradox of the double-slit experiment is now clear. When trying to view the

dynamics of the electron in the experiment within the classical space Mσ
3 = R3, we are facing

the dilemma: which slit did the electron go through? When formulated in these terms, the only
correct answer seems to be that it went “through both” or to admit that position is not defined.
This violently clashes with everything we know about the world around us and contradicts
Newtonian mechanics. It forces us to think of the electron in terms of some kind of “electron
cloud” that can “assemble” back to the particle (collapse) when measured. Alternatively, that
the answer to Einstein’s question - “is the moon there, when nobody looks?”, - must be negative,
at least for the electrons.

Under the Schrödinger dynamics, the evolution of the electron is a path ψt in the Hilbert
space. It is a path in the usual sense; a continuous, single-valued function of time with values in
L2(R3). When the state is constrained to Mσ

3 , ψt is the usual path of a particle in Newtonian
dynamics. When the electron interacts with the plate, the path continues into the Hilbert space.
Because the path can be written now as a sum ψt = c1ψ1t + c2ψ2t, we tend to think that both
parts, ψ1t and ψ2t are real, so that the path of the electron splits into the paths that go through
slits 1 and 2. This is paradoxical and contradictory. In fact, if the same wave function is
written as a superposition of eigenstates of a different observable, then, by the same logic, the
new components must be real as well. Since there are many observables, the notion of reality
becomes ill-defined. The way out is to accept that the adequate way to describe the reality is
by the vector ψt and not by its components ψ1t and ψ2t, that depend on the choice of a basis.

The issue of reality of the components ψ1t and ψ2t is similar to the following question in
classical physics. When a physical vector (say, a velocity vector) is written in terms of its
components in a certain basis, should we count the components as real? The answer is obvious:
the physical vector itself is real because it is basis independent. However, the components of
the vector are just shadows of the real thing as they change with the change of basis, similar
to the way a shadow changes when the source of light is moved around. Our problem with
the superposition principle is rooted in the desire to attach to the classical components like ψ1t

and ψ2t the status of a “real thing”. The paradox of the superposition is resolved by accepting
the total state ψt as an adequate description of reality, while considering ψ1t and ψ2t for what
they really are: representation dependent components of the vector ψt. To answer Einstein’s



question: The moon and the electron are there, when nobody looks. Their existence is described
by the state, at any time and not just when the object is measured. Whenever the state belongs
to the classical space R3 = Mσ

3 , it describes the usual classical existence in the Newtonian sense.
But unlike the classical position, the state also catches the quantum origin of nature.

Suppose that position of the electron is measured by the screen behind the plate. As discussed
in sections 4 and 5, a measurement of position produces a diffusion on the space of states. If the
initial state of the electron was ψ, the density of states functional at the point δ̃3

a was shown to
be |ψ(a)|2. Because the state is a superposition of two states that describe the electron passing
through one of the slits, the density of states functional contains the cross term. This term in the
density results in an alternating probability of reaching different parts of the screen, producing
a typical interference picture on the screen.

What happens when we place a source of light between the plate with the slits and the screen?
In this case, the diffusion of the electron state begins earlier. After passing through the plate,
the electron state is “two-humped”. In particular, this initial state of the electron is positioned
away from Mσ

3 . Suppose that on interaction with the photons of the source of light, the electron
is observed near one of the slits. That means, in particular, that the diffused electron state is on
the classical space submanifold Mσ

3 . So the state function of the electron observed near one of
the slits must be “single-humped”. The electron in such a Gaussian-like state is later observed
on the screen. Clearly, no interference picture would appear on the screen.

What about a delayed-choice version of the experiment when we decide to determine which
slit the electron went through after the electron has passed the plate with the slits? For instance,
we could turn the light on after the electron went through the slits. The paradox is that the
electron seems to “decide” retroactively to behave as a particle or a wave, and, accordingly, to go
through one slit, or both, depending on our decision to turn the light on. However, the previous
analysis is not altered by this change in the experiment. Whether or not the light source is
present, the state of the electron after the slits is “two-humped”. In particular, inserting a
screen between the plate and the light source will show the interference pattern. When the light
source is turned on and the electron is observed near one of the slits, the “two-humped” state is
transformed to a “single-humped, Gaussian-like state. As a result, the screen behind the light
source will not show the interference picture.

As before, we see that the paradox is due to our assumption that the electron must be on
the classical space manifold Mσ

3 at any time. In this case, the observed interference pattern
signifies that the electron somehow “spreads out” over both slits and behaves like a wave. On
the other hand, if the light source is on, then the electron visibly goes through one of the slits
only and behaves like a particle. The paradox is resolved by accepting that evolution of the
electron is described by a path ϕt in the space of states CPL2 . When the electron interacts with
the plate, the path abandons the classical space submanifold Mσ

3 in CPL2 , the state function
is “two-humped” and the interference picture is observable. When the source of light is turned
on and the electron is observed by one of the slits, the path returns to the classical space, the
state function is “single-humped” and the interference is not present. The moment when the
light source is turned on is irrelevant. The nature of the electron does not change. In particular,
the electron does not go back in time to “adjust” its nature depending on our decision to turn
the light source on. The electron does not spread over the slits. Moreover, the electron does not
go through the slits. If anything, it goes over the slits into the large dimensions of the space of
states and comes back whenever its position is measured.

8. EPR and Shrödinger cat paradoxes
Consider a pair of microscopic particles. The quantum state of the pair is an element of the
tensor product Hilbert space H = L2(R3)⊗L2(R3). When positions of both particles are known,
the state belongs to the submanifold Mσ

3 ⊗Mσ
3 in the projective space CPH for H. Suppose



that the state of the pair is prepared to be a superposition of states δ̃a⊗ δ̃a+d for different values
of a. Here we switched for simplicity to particles in one dimension. If position of one of the
particles was found to be a, then position of the second is guaranteed to be a+d and vice versa.
Likewise, if momentum of the first particle in a pair is found to be p, then the momentum of
the second will be −p. A pair of particles in such an entangled state is an example of EPR pair.

There are essentially two paradoxes associated with the considered pair. The first one consists
of the non-local character of “communication” between the particles of the pair. Namely, how
could a measurement performed on one particle instantaneously affect the other particle, no
matter how far away? The other paradox is related to our ability to influence the reality
of position or momentum of the second particle by choosing to measure either position or
momentum of the first. This calls into question the notion of physical reality as well as
completeness of quantum theory.

As in the single particle case, the evolution of the pair is a path in the space of states CPH .
Whenever the path takes values in the submanifold Mσ

3 ⊗Mσ
3 , the position of both particles is

known. Moreover, if the state is constrained to Mσ
3 ⊗Mσ

3 , then the Schrödinger dynamics of
the pair is equivalent to the Newtonian one. As before, the constructed isomorphisms ωσ ⊗ ωσ
allow us to identify the state of the pair in Mσ

3 ⊗Mσ
3 with a point in the configuration space

R3 × R3 of the system of two point-particles or positions of the particles in the classical space
R3.

Suppose the state of the pair is a point on CPH away from the submanifold Mσ
3 ⊗ Mσ

3 .
Suppose that position of one of the particles is measured. For instance, we could shine light
onto one of the particles. Analogously to the process discribed in section 4, the measurement
will trigger a random motion of the state of the pair in the space of states. The conditional
probability for the state of reaching a particular point in the manifold Mσ

3 ⊗Mσ
3 , given that

it has reached the manifold, satisfies the Born rule. We stress that position of only one of the
particles needs to be measured for the state to be able to reach the manifold Mσ

3 ⊗Mσ
3 . Under

a successful measurement, the state of the pair will undergo a random motion while following a
continuous path ψt from the initial state to a point in Mσ

3 ⊗Mσ
3 .

It is important that the distance d between the points a and a + d has nothing to do with
the motion of the state ψ to an observed position state δ̃a ⊗ δ̃a+d. The observed properties of
one particle are not communicated to the other one by any signal or a field in space. Moreover,
there are no particles in the sense of objects on Mσ

3 ⊗Mσ
3 , or on Mσ

3 = R3. Rather, there is
a state ψt representing the pair. When the state is constrained to Mσ

3 ⊗Mσ
3 , the particles are

described by the classical Newtonian dynamics. So we can think of them in purely classical
terms, as indeed, material points. However, the state in CPH , not constrained to the classical
space or phase space submanifolds describes the pair as a quantum object that embraces and
supersedes the material point of Newtonian mechanics.

The paradox of “creation” of reality of position or momentum of one particle by measuring
the corresponding quantity of the second clears up as well. These physical characteristics only
make sense for the state constrained to the manifold Mσ

6 ⊗ Mσ
6 or alike. In that particular

case, their relation to the motion of state was derived in section 2. Otherwise, these physical
characteristics are only “shadows” of the deeper physics described by the state. The space of
states is the new physical arena that extends the classical space. The state offers a more complete
way of identifying characteristics of physical bodies. It generalizes the notion of position,
momentum and other observed quantities and reproduces these quantities when constrained
to an appropriate classical submanifold.

Consider now a system consisting of a microscopic and a macroscopic particles, initially in the
product state ϕ⊗ δ̃3

r , where ϕ is the initial state of the microscopic particle and δ̃3
r is the state of

the macroscopic particle. For instance, the macroscopic particle could represent the apparatus
in a measuring experiment or the cat in the Shrödinger cat experiment. The paradox here is



that the existence of entangled states of microscopic systems results in a contradiction when
applied to macroscopic objects. In particular, in the famous Schrödinger thought experiment
we get superpositions of states of a cat being alive and dead.

As discussed in section 6, a macroscopic system is subjected to interaction with the
environment, or, to put it differently, is “measured by the environment”. As we know from
section 6, under the influence of the environment the state of the macroscopic particle in the
projective space remains constant. The macroscopic object is therefore constrained to the
classical space Mσ

3 . The action of any external potential on the particle is described by the
Newtonian dynamics. In particular, if a potential is applied to the entire system, the macroscopic
particle will change in a classical way while the state of the microscopic particle will evolve by
the Schrödinger equation and the state of the system will remain the product of the new states.
It follows that the entangled state of the cat and the atom is not possible. There cannot be
Schrödinger cats running around.

Remarks:

(i) Note that the decoherence theory approach to the measurement of a microscopic system by
a classical apparatus cannot be valid. In fact, a measurement related decoherence requires
an entanglement of the measured microscopic system and the classical apparatus as a first
step, which, as we know, is not possible.

(ii) Note also that the inconsistent view of reality by different observers in the Wigner’s friend
type of experiment discovered by Frauchiger and Renner [21] is only present when an
entanglement of microscopic and macroscopic objects is possible, which is not the case.
At the same time, there is much more to be investigated now that the new physical arena
is potentially the entire space of states. In particular, the notion of reality is altered for the
objects not constrained to the classical space submanifold. We need to understand what it
means in detail.

9. Summary, experimental verification and comparison to the existing approaches
From the standard Schrödinger and Newtonian mechanics combined with an observation that
points of the classical space can be identified with the delta-like states of a particle, a tight
new relationship between classical and quantum physics was derived. The classical space and
classical phase space for a system of particles were identified with submanifolds in the space
of states. The dynamics of a classical mechanical system was identified with the Schrödinger
dynamics of the system with the state constrained to the classical phase space submanifold. The
Newtonian dynamics reigns on the submanifold, while the Schrödinger dynamics is its unique
extension to the entire space of states. The normal probability distribution on the classical space
has a unique extension to the space of states and becomes the Born rule for the probability of
transition between states. Vector fields on the classical space have a unique extension to linear
vector fields on the space of states. Quantum observables are identified with the associated
linear vector fields. Commutators of observables are Lie brackets of vector fields and are related
to the curvature of the space of states. The physical quantities of velocity, acceleration and mass
of particles in Newtonian dynamics are now components of the velocity of quantum state.

The process of measurement in quantum mechanics is now an extension to the space of states
of the measurement in classical physics with its typical normal distribution of the measured
observable. The state under a measurement is equally likely to fluctuate in any direction of
the space of states. This fact together with the geometry of embedding of the classical space
into the space of states are responsible for the validity of the Born rule for the probability of
transition between arbitrary states. The Born rule also follows from the relationship of the
continuity equations in the Newtonian and Schrödinger dynamics resulting from the embedding.
The state is not a cloud in the classical space that somehow “shrinks” under a measurement.



Rather, the state is a point in the space of states that undergoes a random motion and has a
chance of reaching certain areas of the space in the process. The evolution remains unitary and
satisfies the Schrödinger equation with a random potential. The “collapse” of the state becomes
an unnecessary and redundant concept. The measuring device is not responsible for creating a
basis into which the state is to be expanded. If several measuring devices are present, they are
not “fighting” for the basis. When the eigen-manifolds of the corresponding observables do not
overlap, only one of them can “click” for the measured particle as the state can reach only one
eigen-manifold at a time.

The deterministic and the stochastic Schrödinger evolutions have to be clearly distinguished.
The motion of state normally follows the deterministic Schrödinger equation with a given
potential. However, under the conditions typically associated with a measurement, the state
evolves by the Schrödinger equation with a random potential. The potential initiates a random
motion of the state on the space of states and the resulting change in the density of states
functional. The difference between these two types of evolution is analogous to the difference
between the usual Newtonian motion of a macroscopic particle in a given potential and the
Brownian motion of the particle under random hits, particularly in modeling a measurement by
the diffusion.

The resulting approach to measurement is applicable to quantum systems consisting of an
arbitrary number of particles. When the system is a macroscopic particle, the diffusion of
state trivializes and the state remains unchanged in time. As a result, macroscopic particles
are constrained to the classical space submanifold of the space of states. On the other
hand, microscopic particles can leave the submanifold and exist in a superposition of position
eigenstates. The double-slit and numerous other quantum-mechanical experiments demonstrate
this property. When position of a microscopic particle is measured and the result is obtained,
the state returns to the classical space submanifold. A particular point in the submanifold where
the state was found determines the value of the position variable.

The entangled state of a system of two or more particles is represented by a point that does
not belong to the classical space or phase space submanifold of the space of states. As in the
case of a single particle under a measurement, the state undergoes a random motion in the
space of states. An entangled pair is analogous to a pair of macroscopic particles, say, in one
dimension, with a weightless rigid rod connecting them. When position of one particle in the pair
is measured, the position of the second is then fixed. Similar to this, to make a measurement on
an EPR-pair, it suffices to measure just one of the particles. As in the case of a single particle, the
measurement yields an isotropic distribution of the displacement of state in the space of states,
implying the validity of the Born rule. Even though a measurement on one of the particles
in an entangled pair restricts the outcomes of the corresponding measurement on the second
particle, the measurement does not imply a “communication” between the particles. This too
can be understood using the example of the pair connected by a rod: A random uncontrollable
motion created by measurement of position of one of the particles cannot be used to transmit
information to the second. Instead, similarly to the case of a single microscopic particle, the
state of on an EPR-pair moves under a measurement in a random and continuous way and has
a chance of reaching an eigenstate of the measured observable.

The obtained realization of the Newtonian mechanics in functional terms and the derived
relationship of the classical and quantum theories is not just a reformulation of the theory.
The results of the classical and quantum mechanics are indeed reproduced in the realization.
However, the embedding resulted in a tighter relationship between the theories. Not only
the Newtonian dynamics is the Schrödinger dynamics with a constraint, but the Schrödinger
dynamics is a unique dynamics with this property. This allows us to approach the process of
measurement in quantum theory in a new way, as an extension of the random motion associated
with a classical measurement. An important consequence of this is the notion of a density of



state functional and its derived isotropy property that can be tested. In particular, if several
observables are measured on a certain state of a system at the same time, we should be able
to test the isotropy of the distribution of frequencies of the measured eigenvalues. That is, the
state should be seen “collapsing” equally frequently to the eigenstates of different observables,
positioned at the same Fubini-Study distance from the initial state. The observation of different
components of spin of a particle at the same time would probably be the easiest way to set
up such an experiment. Another experiment could test the classical to quantum boundary.
This boundary is predicted by the theory to be determined by the largest particles for which
the Brownian motion in an appropriate media is observable. In fact, as long as the Brownian
motion for the particle is observable, the state of the particle is capable of diffusing into the
space of states. In particular, superpositions of the position eigenstates for the particle become
possible and can be observed.

The ultimate difference of the proposed realization of the classical and quantum theory from
the existing approaches and interpretations of quantum mechanics is in representing the classical
space as a submanifold of the space of states and in recognizing the need for extension of the
arena for physical processes from the classical space to the space of states. By blindly accepting
that all physics happens in the classical 3-dimensional space, we are bound to a total fiasco in
understanding superpositions of classically meaningful states and the transition from quantum
to classical.

The relationship of the proposed realization to the existing approaches can be spelt in more
detail.

(i) In accepting the standard quantum mechanics, the realization is closest to the orthodox
interpretation and could be called a completion of the latter. In the realization, the state of
a quantum system is defined at any time and is given by the state function. The classical
characteristics typically show up under a measurement, but they represent simply a subset
of possible states in the space of states. Most importantly, we get an explanation of collapse,
without needing to modify the Schrödinger equation.

(ii) The realization demonstrates that objective collapse theories are redundant. Although the
idea of a diffusion-like behavior of the state is valid, we see now that there is no need for
a modification of the Schrödinger equation. The evolution is stochastic, but unitary. The
modification of the equation with a change in the measured observable characteristic for
the collapse models is not needed. In fact, the state does not need to be driven exclusively
to the eigenstates of the observable. There is no preferred basis to deal with either. The
proposed mechanism explains the collapse of the state of a microscopic system under a
measurement as well as the classical properties of macroscopic bodies.

(iii) The proposed realization proves that the “many worlds” interpretation of quantum theory
must be wrong as there are no superpositions of position states of macroscopic objects, for
instance.

(iv) The De Broglie-Bohm theory insists that all particles have a well defined position in the
classical space at any time. The theory combines the classical position with the state-
dependent “pilot” wave and non-local “quantum” potential to reinterpret the Schrödinger
equation. But is a non-local potential any better than a non-local state function, when
we have to deal additionally with the increased number of dynamical quantities (positions
of particles plus the pilot wave itself)? This becomes unnecessary and redundant in the
realization because of the embedding of classical space into the space of states and the
derivation of Newtonian dynamics from the Schrödinger one.

(v) Interpretations of quantum mechanics based on the statistical meaning of the wave function
make sense for the process of measurement on a quantum system. In this case, the process of
diffusion of state is in fact described statistically by starting with an ensemble of states, as in



the theory of Brownian motion. However, denying the significance of state of a single system
is unwarranted and makes understanding of the Schrödinger evolution, the superpositions
of states and the transition to classicality only more cumbersome if not impossible.

The obtained results lead one to the conclusion that macroscopic and microscopic bodies may
not be so different after all. The only important distinction is that microscopic systems live in
the space of states while their macroscopic counterparts live in the classical space submanifold
of thereof. Because our life happens in the macro-world and we deal primarily with macroscopic
bodies, it is hard for us to understand the infinite-dimensional quantum world around us. As soon
as the classical-space-centered point of view is extended to its state-space-centered counterpart,
the new, clearer view of the quantum theory and the classical-quantum relationship emerges.
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