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Abstract

The possibility question concerns the status of possibilities: do they form
an irreducible category of the external reality, or are they merely features of
our cognitive framework? If fundamental physics is ever to shed light on this
issue, it must be done by some future theory that unifies insights of general
relativity and quantum mechanics. The paper investigates one programme
of this kind, namely the causal sets programme, as it apparently considers
alternative developments of a given system. To evaluate this claim, we prove
some algebraic facts about the sequential growth of causal sets. These facts
tell against alternative developments, given that causal sets are understood
as particular events. We thus interpret causal sets as multi-realisable objects,
like states. This interpretation, however, is undermined by an argument for
the probabilistic constraint of General Covariance, as it says that multiple
paths along which a causal set is produced are not physically different.

1 Introduction: the possibility question
In “Dilemma of determinism” (1884) William James succinctly contrasts the two
camps in the the modality debate.1 One camp admits that “possibilities may be
in excess of actualities”, [. . . ] [ so that ] actualities seem to float in a wider sea
of possibilities from out of which they are chosen”. The other camp, which he

1The support of the WSN2017 programme of the Polish Foundation for Science is gratefully
acknowledged. I am indebted to David Rideout, David Meyer, and the participants of their seminar
for discussions on causal sets. My special thanks go to Craig Callender.
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called “determinists”, says that possibilities “exist nowhere, and that necessity on
the one hand and impossibility on the other are the sole categories of the real.
Possibilities that fail to get realized are [. . . ] pure illusions: they never were
possibilities at all.[. . . ] The cloud of alternatives our minds escort this mass of
actuality withal is a cloud of sheer deceptions, to which ‘impossibilities’ is the
only name that rightfully belongs”.

James made two comments which are particularly pertinent to the debate be-
tween the two camps. The first, and to which we full-heartedly subscribe, is that
the issue is “a perfectly sharp one”, or, as he says: “The truth must lie with one
side or the other, and its lying with one side makes the other false”. His second
remark voiced scepticism as to whether science can resolve the issue. In his view,
scientific conclusions are based on facts alone, but as for “the evidence of existing
facts, the possibility-question must remain a mystery never to be cleared up.” We
take issue with this view, since (we think) it is based on an oversimplified view on
the relations between scientific theories and experimental data. We tend to think
of the possibility question as concerning a high-level claim, comparable (yet still
more abstract) to the question of whether matter is continuous or corpuscular.
Given that at the end of the nineteenth century theoretical and experimental data
persuaded the scientific community to accept the corpuscular view, so we hope
that future science might help to resolve the possibility question.

The second camp tends to be associated with Humean positions (although not
necessarily with the views of the historical David Hume). However, the progress
in the development of neo-Humean theories of laws of nature urges caution in this
regard. Today’s neo-Humeans countenance indeterminism, posing the question
whether our world is deterministic or not. The neo-Humeans accomplished a rare
feat of elucidating indeterminism in non-modal terms, in contrast to a large modal
tradition. To highlight an otherwise well-known neo-Humean account of laws of
nature, the Mill-Ramsey-Lewis best-system account identifies laws of nature with
the theorems of all true deductive systems that strike the best balence with respect
to strength and simplicity. A system of laws is then said to be indeterministic if it
is true about a pair of divergent worlds, i.e., qualitatively different worlds, whose
initial segments are qualitatively alike. Finally, our world is called “indeterminis-
tic” if its set of laws comprises an indeterministic system of laws (Lewis, 1983).
Note that the account appeals to concepts such as the linguistic description of a
world, axiomatisation, strength and simplicity of an axiomatic system, the balance
between the last two features, and does not invoke any modal notions. The result-
ing notions of laws and indeterminism depend on particularities of a language in
which a world’s description is stated, as well as on the understanding of strength,
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simplicity, and the balance between the two, the latter being rather properties of
our conceptual framework than features of the objective non-linguistic and non-
conceptual reality. Thus, neo-Humean indeterminism falls somewhat unlikely un-
der “a category of the real”. Furthermore, arguably neo-Humean indeterminism
and modal indeterminism are not co-extensional concepts. The best system ac-
count may deliver the verdict “a world is indeterministic” that results from the
laws of nature not being complete enough (since best balance sacrifies a certain
degree of strength in this regard), whereas the world in question is flat, possibility-
wise. In the opposite direction, a not complete enough system of laws might fail
to discern a pair of diverging worlds, and thus gives the verdict of determinism,
where possibility-wise indeterminism reigns.

There are two morals to be taken from this neo-Humean story. First, for clar-
ity’s sake, given that the rejection of possibilities can be combined with indeter-
minism, we will not phrase the possibility question as concerning determinism
(in contrast to James). Second, while subscribing to James’ succinct formulation,
“are possibilities a category of the real”, we add the gloss that the real is to be
meant as the objective reality, independent of its linguistic characterisation, or its
representation in this or that cognitive framework.

Given the high-brow formulation of the possibility question, how is funda-
mental science meant to help resolve it? To reflect first on the current situation,
our best theories, namely quantum mechanics and general relativity, are not of
much help. General relativity is the theory of the large, and is silent or problem-
atic about small objects, like particles and their evolutions. Although it admits
space-times that are somewhat reminiscent of alternative future possibilities, they
always come with causal anomalies, which makes the qualification “future pos-
sibilities” problematic.2 Quantum mechanics, the theory of the small, initially
appears to be more up to the task, as by a handbook description of its measure-
ment algorithm, it yields the set of possible results of a particular measurement.
But, to recall, the measurement algorithm is in conflict with the evolution law of
quantum mechanics, Schrödinger’s equation, which describes deterministic evo-
lutions of quantum states. The conflict is known as the measurement problem of
quantum mechanics, and its resolution is the aim of the interpretations of quan-
tum mechanics. According to some interpretations, moreover, a measurement’s
possible results are understood as determined by values of a hidden factor, so the
results are not alternative possibilities, in the required sense. In any case, without

2Technically, these are the so-called non-isometric extensions of a maximal globally hyperbolic
space-time, cf. Chruściel and Isenberg (1991).
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resolving the measurement problem, quantum mechanics can hardly shed light on
the possibility question.

The present predicament suggests that we need to look at a theory of the large
and the small, one which provides a unification of the quantum and general rela-
tivity. Currently there are a few programmes of that kind, known as programmes
in quantum gravity. However, a question which presents itself is what features of
a theory are relevant to the possibility question. How are possibilities represented
in the mathematical structures of the theory? In short, what should we look for if
we are interested in the question of possibility? We do not know what a general
answer to the queries is, however intriguing they are. Therefore, we follow in this
paper a simple instinct that links possibilities to the admittance of alternative evo-
lutions of a theory’s system, or (somewhat differently), to the existence of crossing
trajectories in a theory’s state space. From this perspective, the causal sets pro-
gramme in quantum gravity initially seem quite promising. In the remainder of
this paper we will investigate modal aspects of this programme.

The plan of the rest of this paper is as follows. In Section 2 we introduce
the causal sets programme and then in Section 3 we discuss causal order – the
prominent concept of this programme. Then Section 4 presents our mathemati-
cal results concerning sequential growth: it gives a set-theoretical reading of the
theoretical physics style heuristic arguments of the programme and then exhibits
the proofs of some facts about evolutions of causal sets. These facts are a formal
skeleton of the paper, as they undermine the cogency of the notion of alternative
possibilities in the model of sequential growth. Section 5 thus turns to formal
metaphysics to discuss under what conditions events can happen together. The
conclusion of this section is that causal sets should be interpreted as repeatable
states rather than complex non-repeatable events. Next Section 6 discusses this
interpretation, focusing in particular on its probabilistic aspects. It is argued there
that one of the assumed probabilistic rules, called General Covariance, implies the
rejection of physical reality of alternative possible paths leading to a given state.
Finally, Section 7 discusses some options of how to preserve the concept of alter-
native possibilities in the theory of sequential growth. We begin with introducing
causal sets programme.

4



2 On the causal sets programme
Our concern in this paper is indeterministic (modal) aspects of the causal sets
programme, which was launched by Raphael Sorkin and collaborators.3 This is
a programme in quantum gravity that is based on two ideas: (i) a deep structure
of quantum space-time, which the theory identifies with a causal set (“causet”, in
short), is discrete, and (ii) a causet is partially ordered by a causally interpreted
ordering. The programme advances a few further claims that might as well draw
a metaphysician’s attention. To quote,

Another [feature of the theory] is a complete departure from deter-
minism – even at the fundamental scale, when all aspects of the “state
of the system” are “known”, the classical limit of the theory is postu-
lated to be stochastic in nature. [. . . ] Unitarity will likely have to be
abandoned to formulate the quantum theory in a discrete setting. [. . . ]
Locality as a fundamental physical principle seems to be abandoned.
(Rideout, 2001, p. 109).

To add one more metaphysically controversial doctrine, there is real becoming
according to the programme. That is, the universe is thought of as growing in
consecutive stages, where the stages are defined in causal rather than temporal
terms. Time and, generally, space-time, is constituted in the growth.

As expected, the sheer number of controversial claims has commanded atten-
tion of metaphysicians, philosophers of science, and physicists. The programme
has been discussed, criticised, or defended from many perspectives. For a dis-
cussion from a philosophy of physics perspective, see Wüthrich and Callender
(2017); Wüthrich (2012), and the references therein.

In what follows, I will focus on a somewhat less discussed feature of the pro-
gramme: whether it represents possibilities as a separate category of physical real-
ity. Recent decades have seen significant progress in the mathematically rigorous
modelling of modalities, both in modal logics and formal metaphysics. Thus, the
interaction between these philosophical traditions and the causal sets programme
can be both illuminating and fruitful for both parties, I believe. From this perspec-
tive we will investigate the model of sequential growth that Rideout (2001) and
Rideout and Sorkin (2000) put forward. Since the concept of ordering is crucial
for modal issues, we focus on it in the next section.

3Cf. Bombelli et al. (1987); for more info on the programme, see the causal sets reference
webpage, www.phy.olemiss.edu/~luca/Topics/st/causal_sets.html.
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3 Causal order
As a causet is a partial order �, i.e., a reflexive, antisymmetric, and transitive
order,4 that is further subject to a local finiteness assumption (see below), we
focus first on the order. Calling the order “causal” indicates that it is to generalize
the causal ordering of general relativity, GR, defined as

x �GR y iff there exists a future-directed causal curve from x to y.
The focus on this concept of general relativity comes from a diagnosis that “of all
the major concepts in our current best theories, the spacetime causal order from
General Relativity and the path integral from quantum theory will survive the
coming revolution” (Dowker and Zalel, 2017, p. 247), which in turn is based on
a number of mathematical results, a particularly important one being Malament’s
(1977) theorem. The theorem says that for an important class of GR space-times
(the so-called future and past distinguishing spacetimes), a causal isomorphism
preserves the metric structure up to a conformal factor. This is typically glossed
by saying that causal ordering determines metric structure up to conformal factor.5

Since a null-curve is causal, and a point can be connected to itself by a null-
curve, � is reflexive. In some contexts, however, one may prefer to work with
a related strict order (i.e., irreflexive and transitive) rather than a partial causal
order �. This strict order is defined by the equivalence x ≺ y ⇔ x � y ∧ x , y.
Depending on the context, we will freely switch between � and ≺.

Irreflexivity and transitivity of ≺ imply asymmetry, x ≺ y⇒ ¬(y ≺ x). Asym-
metry of ≺ as well as anti-symmetry of � in turn prohibit loops, x ≺ y ∧ y ≺ x (or
x � y ∧ y � x ∧ x , y). The prohibition of causal loops signals a departure from
the general relativistic causal ordering, which permits such loops. This remark is
not intended as criticism, since causal loops in GR are often seen as anomalous,
or an artefact of the theory that allows for too many models, with many unphys-
ical ones.6 A more worrisome observation is that causal ordering of GR seems
to have deterministic underpinnings. After all, globally hyperbolic space-times
have the initial value problem (IVP) well-posed, by the Choquet-Bruchat and Ge-
roch theorem (1969), meaning that there is a unique (up to isometry) maximal

4Reflexive means that x � x, anti-symmetry means that x � y and y � x imply x = y, and
transitive means that x � y and y � z imply x � z.

5 For a discussion of mathematical results underlying the causal sets program, see Wüthrich
(2019).

6By Censorship Conjecture, the generic space-times of General Relativity are globally hy-
perbolic; in such space-times causal loops are absent. By equating “generic” with “physical” (a
frequent move) one thus relegates GR causal loops to the realm of non-physical.
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globally hyperbolic space-time that extends an initial data set and satisfies Ein-
stein’s Field Equations. As globally hyperbolic space-times are often considered
generic models of GR, the result provides evidence for the determinism of GR,
if restricted to generic space-times. Thus, restricting ourselves to globally hyper-
bolic space-times, if we have x �GR y and x �GR z and know that x belongs to
space-time M, then y and z must both belong to the same space-time M. This
is to be contrasted with a modal-temporal ordering <, understood as “it might
happen in the future of”. For example, the fact that Toss < Heads and Toss <
Tails does not entail that Tails and Heads can happen together (are co-possible).
Here by Toss we understand a particular toss of a given coin, and Tails / Heads
refer to alternative particular events of the coin landing tails up / heads up on a
table. For indeterminism-friendly settings one might thus be tempted to venture
into non-globally hyperbolic models, but they do not offer much help, either. Al-
though in these cases there are non-unique space-times that extend a given initial
data set, these space-times typically have causal anomalies such as causal loops,
so GR causal ordering is then different from the asymmetric ordering postulated
for causal sets.

The moral of these observations is that GR will not help us understand the
causal sets ordering ≺ in an indeterminism-friendly way. As a result, the task of
finding some structures in causal sets that can be interpreted as alternative possi-
bilities becomes even more pressing.

The program gives prominence to the order concept that abstracts from indi-
viduality of what is ordered. The notion of set, with individuality of its elements,
seems to be unnecessary and irrelevant given that order, volume, and quantum
paths are sufficient for the deep structures of quantum space-times. Yet, in math-
ematics, one defines partial ordering as a partially ordered set, and causal sets
theorists follow suit in their definitions. In their prose, however, they draw a dis-
tinction between “non-numbered” sets and “numbered sets”. Further, diagrams
depicting causal sets suggest that the only captured feature is the pattern of order-
ing (for non-numbered causets) or pattern of ordering plus a labelling function (for
numbered causets). To produce corresponding representations, a natural move is
to take recourse to equivalence classes (first case), with labelling added (second
case). In the sections below, we provide such a representation and carry out the
discussion of the causal sets in these terms. We focus on un-numbered causal sets,
since by ignoring frame-dependent ordering they seem more fundamental.

Having rehearsed the basic notions of causal ordering, numbered causets, and
non-numbered causets, we next do some formal work. We give formal (set-
theoretical) reading of theoretical physics style heuristic constructions of the causal
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sets programme. This is to exhibit mathematical meaning of these constructions,
and, more importantly, to produce rigorous proofs of some facts about the process
of sequential growth. The facts are important as they suggest that there is no room
for alternative possible developments in the theory of sequential growth, contrary
to what the programme promises.

4 Facts about un-numbered causets
A causet is a partially ordered set, 〈C,�〉, with a Local Finiteness postulate,

∀x, z ∈ C card{y ∈ C | x � y � z} < ∞, (1)

i.e., the cardinality of elements lying between any two elements (that is, inside
any Alexandrov’s diamond) is finite. Recalling the terminology, a chain in 〈C,�〉
is a linearly ordered subset of C, and a path between x and y in C is a maximal
chain between x and y.

To get a grip on paterns of order alone, in abstraction from any particular sets,
we use slightly different definitions, and we do so in two steps. Yet, we begin with
a set-relative notion:

Definition 1 (proto-causets). Let D be a countably infinite set. A proto-causet
over D is a non-empty partial order 〈S ,�〉, S ⊆ D, that satisfies Local Finiteness
postulate (Eq. 1). The set of proto-causets over D will be denoted by PCD.

In accordance with the general idea that it is order rather than individual relata
that is important, we next abstract from individuals (at least in part), focusing on
appropriate equivalence classes.7

Definition 2. Let OPD be the set of order-preserving isomorphisms on PCD. The
set of causets over D is: CD = {[S ,�] | 〈S ,�〉 ∈ PCD},
where [S ,�] = {〈S ′,�′〉 | ∃ R ∈ OPD R(〈S ,�〉, 〈S ′,�′〉)}.

So causets are equivalence classes of proto-causets wrt order preserving isomor-
phisms.

We next introduce a relation of link on PCD that carries over to CD, and which
is to represent stages of the universe’s growth.

7 The relativisation to a base set D still remains, but it can be removed at the cost of using
somewhat more extricate mathematics.
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Definition 3 (links on PCD). For 〈S ,�〉, 〈S ′,�′〉 ∈ PCD, we say that these two
proto-causets form a link in PCD iff there is e ∈ S ′ \ S s.t. S ′ = S ∪ {e}, �′

|S =�,
and ∀x ∈ S ′ e �′ x. We say that 〈S ,�〉 is a parent, 〈S ′,�′〉 is a child, and e is a
new element in the link’s child.

Note that by this definition a new element in a child cannot be below an ele-
ment of the parent. Thus, the child’s new element is placed either above a maximal
chain in the parent, or space-like related (henceforth S LR ) to all elements of the
parent.

For the record, here is how the above definition carries over to causets:

Definition 4 (links on CD). For A, B ∈ CD, we say that 〈A, B〉 is a link in CD iff
there are 〈S ,�〉 and 〈S ′,�′〉 in PCD such that A = [S ,�], B = [S ′,�′] and 〈S ,�〉
and 〈S ′,�′〉 form a link in PCD.

For links in CD we use the same terminology of parent, child, and the child’s new
element as for the corresponding concepts in PCD.

Let us observe that there are causets with single parents, and causets with
multiple parents. As for the former, any causet based on a chain, or based on
an anti-chain, has a single parent. The simplest two-parents causet is � • (the
parents are � and • • respectively). On the other hand, any two finite causets have
a common ancestor, the singleton-based causet •.

Since models of sequential growth use only finite causets (or, to be precise,
causets based on finite proto-causets), from now on we restict our attention to the
sets PCfin

D and Cfin
D of finite proto-causets and causets based on finite proto-causets,

respectively, where D is countably infinite.
Links in Cfin

D might serve the role of what in mathematical jargon is called
covering relation, that is, the ordering that is no more breakable by transitivity
into its constituents. In this spirit we use links to define an ordering on Cfin

D :

Definition 5 (ordering of Cfin
D ). For A, B ∈ Cfin

D , A < B iff there is a finite sequence
[S 1,�1], [S 2,�2], . . . [S n,�n] in Cfin

D s.t. A = [S 1,�1], B = [S n,�n] and for every
i : 1 ≤ i < n, [S i,�i] and [S i+1,�i+1] form a link in Cfin

D .

We subsequently show that < is a strict ordering on Cfin
D :

Fact 6. < is a irrreflexive and transitive relation on Cfin
D .

Proof. < is irrreflexive because no 〈[S ,�], [S ,�]〉 is a link in Cfin
D . For transitivity

of <, let the sequence [S 1,�1], [S 2,�2], . . . , [S n,�n] be a witness for A < B, and
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Figure 1: Although S A ( S B, it is not the case that A < B, where A = [S A,≺A]
and B = [S B,≺B], since the only way to add the new element to S A is to place it
below an element of S A.

the sequence [S ′1,�
′
1], [S ′2,�

′
2], . . . , [S ′m,�

′
m] be a witness for B < C. Since B =

[S n,�n] = [S ′1,�
′
1], the concatenation of these two sequences (with [S n,�n] and

[S ′1,�
′
1] identified) is a witness for A < C. �

As already remarked, irreflexivity and transitivity imply the asymmetry of <.
The question may present itself as to why should we opt to use the ordering

of Def. 5 rather than the set-theoretical inclusion to order Cfin
D . The answer is that

the former is friendly to the concept of sequential growth in a way that the latter
is not. Figure 1 show the two inclusion-related proto-causets none of which is an
outgrowth of the other, as there is no sequence of parent-child links joining the
two.

Another question is what are the consequences of working with equivalence
classes of specified posets rather than specified posets themselves. What comes to
the fore is that a parent in PCfin

D has typically much more children than a parent in
Cfin

D . To calculate the number of children of a parent in PCfin
D that has m maximal

elements, we count the number of ways a new element can be placed above these
maxima, to obtain

(
m
0

)
+

(
m
1

)
+ . . . +

(
m

m−1

)
+

(
m
m

)
. That number is greatly reduced

once we do equivalence classes of Cfin
D . Figure 2 shows a case of two children in

PCfin
D giving rise to one child in Cfin

D .8

As we have just learned, Cfin
D with the relation < forms a strictly ordered set.

We now investigate some further properties of it.

8 The figure suggests that the pasts of new elements in isomorphic children 〈S B,≺B〉 and
〈S D,≺D〉, i.e., {x, z} and {y, z}, resp., are isomorphic as well, but generally this suggestion is wrong
– for a counterexample, see Figure 3.2 of Rideout (2001).
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Figure 2: Two proto-causets 〈S B,≺B〉 and 〈S D,≺D〉, children of proto-causet
〈S A,≺A〉. Since 〈S B,≺B〉 and 〈S D,≺D〉 are isomorphic, they yield just one child
[S A,≺A] = [S B,≺B] of causet [S A,≺A].

Fact 7. Any two finite causets A, B ∈ Cfin
D have a maximal lower bound C in Cfin

D ,
i.e., there is no C′ > C that lower bounds A and B. But some pairs of causets
might have more than one maximal lower bound.

Proof. If A and B are comparable by < or identical, we are done. If A and B are
incomparable by <, we pick a path l leading from the one-element causet [1,�1]
to A and a path l′ leading from [1,�1] to B. As these paths are finite and both start
with the same element, there is a maximal element mll′ in the paths’ intersection.
Since A, B are finite, the number of paths from [1,�1] to A and from [1,�1] to B
is finite, and hence the set of mll′’s is finite as well. This set thus has maximal
elements, which by the constructions are maximal lower bounds of A and B.
As for the part of the Fact starting with “But . . . ”, consult Figure 3 that depicts
two finite causets with two maximal lower bounds.9 �

In the case of infinite causets, although any two are obviously lower bounded
by [1,�1], it is not known if they have maximal lower bounds.

Let us next turn to upper bounds:

Fact 8. Any two causets A, B ∈ Cfin
D have an upper bound C in Cfin

D . However, they
might fail to have a least upper bound (supremum).

9In the case of infinite causets, although any two are obviously lower bounded by [1,�1], it is
not known if they have maximal lower bounds.
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Figure 3: Two causets E and F have two maximal lower bounds, A and B. Two
causets A and B have two minimal upper bounds, E and F.

Proof. Since A and B are based on finite proto-causets, while D is countably in-
finite, we can pick disjoint subsets S A and S B of D to represent A and B, re-
spectively. We then construct the so-called parallel composition of such two dis-
joint proto-causets 〈S A,�A〉 and 〈S B,�B〉, then argue that the composition makes
a proto-causet, and finally take the equivalence class that the proto-causet de-
fines. The parallel composition of 〈S A,�A〉 and 〈S B,�B〉 is defined by putting
S = S A ∪ S B, and for x, y ∈ S : x � y iff x �A y or x �B y. 〈S ,�〉 is a poset, and
clearly S ⊆ D. Further, since S is finite, being the sum of two finite sets, 〈S ,�〉
satisfies Local Finiteness postulate (Eq. 1). Accordingly, 〈S ,�〉 is a proto-cause
and so it defines the equivalence class C = [S ,�] ∈ Cfin

D .
It remains to be seen that A < C and B < C. Given the finiteness assumptions, el-
ements of S B = {b1, b2, . . . , bn} can be added consecutively to S A forming a finite
chain of proto-causets:

〈S A,�A〉, 〈S A ∪ {b1},�1〉, 〈S A ∪ {b1, b2},�2〉, . . . 〈S A ∪ {b1, b2, . . . bn},�〉,

where each �i is an appropriate restriction of �, namely �i=�|S A∪{b1,b2,...,bi} (i 6 n).
Observe that in S each element of S A is incomparable to each element of S B, so
indeed �i is = �i+1 restricted to S A∪{b1, b2, . . . , bi}, i.e., �i=�i+1 |S A∪{b1,b2,...,bi}. Thus,
any two consecutive elements of the above chain form a link, and the sequence
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of these links witnesses A < C. An analogous sequence of proto-causets leading
from S B to S shows that B < C as well.
For the second part of the Fact (beginning with “However . . . ”), see Figure 3: it
exhibits two causets that have two minimal upper bounds. i.e., they have no least
upper bound.10 �

An interesting consequence of the last two facts is that 〈Cfin
D , <〉 does not form a

lattice, so it is not a Boolean algebra. That cast doubts on a motivation for causets,
which was a construction of a Boolean algebra, so that the logic of causets-based
quantum gravity be classical. Sorkin (2012, p. 366) aims, for instance, to obtain a
Boolean algebra by defining events as finite subsets of causets:

Let us write A for the space of all events. Structurally, A is a Boolean
algebra, meaning that union, intersection, complementation and symmetric-
difference are defined for it. In logical terms these correspond respec-
tively to the connectives or, and, not, and xor.

One can of course take a Boolean algebra of subsets of a finite set of causets.
This algebra, however, is distinct from partial order 〈Cfin

D , <〉, which is not even a
lattice. In particular, the algebra is orderred by the set-theoretical inclusion ⊆, not
the causal ordering <. It is not at all clear how to wed the Boolean algebra idea to
the basic structure 〈Cfin

D , <〉.
The last formal topic in this section are the maximal causets which are achiev-

able in the process of sequential growth. We are invited to think of a child’s new
element as a novel outgrowth of a parent, something that has become. We thus
have finite chains of causets, i.e., related by <, representing finitely many stages of
growth. So we can legitimately ask where the process of all the causets growing
out of the singleton-based causet leads to. Since 〈Cfin

D ,6〉, with A 6 B defined as
A < B or A = B, is a poset, by the Hausdorff Maximality Principle, we have this
fact:

Fact 9. There are maximal chains in 〈Cfin
D ,6〉; any chain in 〈Cfin

D ,6〉 can be ex-
tended to a maximal chain; each maximal chain in 〈Cfin

D ,6〉 contains the singleton-
based causet.

Moreover, we may identify a maximal outgrowth in the process of sequential
growth with a union-like operation on maximal chains in 〈Cfin

D ,6〉, which exist by
the Fact above. The identification is doable, as evidenced by this fact:

10Note, however, that numbered causets (which trace their ancestry) can be ordered into a tree-
like branching structure, i.e., with a single minimal element and no two causets having an upper
bound. For more on this, see the Appendix.
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Fact 10. The union of the representatives of the elements of a maximal chain in
〈Cfin

D ,6〉 is a countably infinite proto-causet (so it yields as its equivalence class a
countably infinite causet).

Proof. Let L = A1, A2, . . . be a maximal chain in 〈Cfin
D ,6〉, guaranteed to exist by

Fact 9. Since L is a maximal chain, every pair Ai, Ai+1 (i ∈ N) forms a link in Cfin
D .

There is thus a sequence L′ of representatives of A1, A2, . . ., namely L′ = 〈S 1,�1〉,
〈S 2,�2〉, . . . s.t. Ai = [S i,�i] and each pair 〈S i,�i〉, 〈S i+1,�i+1〉 forms a link in
PCfin

D . Take now the union of the base sets of the representatives: S ∗ =
⋃
{S γ |

〈S γ,�γ〉 ∈ L′}. Clearly, S ∗ ⊆ D as each S γ ⊆ D. Since S ∗ is the union of countably
infinitely many finite sets, it is countably infinite. Define next a candidate for an
ordering on S ∗: for x, y ∈ S ∗, x �∗ y iff there is 〈S γ,�γ〉 ∈ L′ s.t. x, y ∈ S γ

and x �γ y. The definition is consistent as it is impossible that for some 〈S γ,�γ
〉, 〈S η,�η〉 ∈ L′ there are x, y ∈ S γ ∩ S η s.t. x �γ y but y �η x (because the two are
comparable by < and the ordering on a parent is a restriction to the parent of the
ordering on its child). For irreflexivity of �∗, by the construction, for any x ∈ S ∗

there is 〈S γ,�γ〉 ∈ L′ and, as x �γ x for every x ∈ S γ, �∗ is irreflexive as well.
For transitivity, let 〈S γ,�γ〉 be a witness for x <∗ y and 〈S η,�η〉 be a witness for
y �∗ z. The two witnesses are comparable by <; let thus 〈S γ,�γ〉 < 〈S η,�η〉 (the
other case is exactly alike). Since this implies S γ ⊆ S η, it follows that x, y, z ∈ S η.
As x <γ y, by consistency of � −orderings in elements of L′, x <η y. This
together with y �η z implies, by transitivity of �η and definition of �∗, that x �∗ z.
We thus established that 〈S ∗,�∗〉 is a poset, with S ∗ ⊆ D. It remains to see if it
satisfies Local Finitely postulate as well. Note that for any x, y ∈ S ∗, there is S γ

s.t. x, y ∈ S γ. By Local Finiteness for 〈S γ,�γ〉, the set {z ∈ S γ | x �γ z �γ y} is
finite. Also, if z′ ∈ S ′γ \ S γ for 〈S γ′ ,�γ′〉 ∈ L′, then z′ �γ′ y – by the definiton of
links, since y ∈ S γ. And by the definition of �∗, if x �γ z �γ y, then x �∗ z �∗ y.
Combining these two observations, {z ∈ S γ | x �γ z �γ y} = {z ∈ S ∗ | x �∗ z �∗ y},
which is finite. We thus have shown that 〈S ∗,�∗〉 ∈ PCD; hence it yields the
equivalence class [S ∗,�∗] ∈ CD. �

We end this formal part by mentioning one more fact that has an interpretative
significance.

Fact 11. If a causet A is based on a proto-causet S A containing two maximal
chains of different length, then A has more than one parent.

Proof: Since the proto-causet S A has two maximal chains of different length, it
can be produced from two posets, each resulting from S A by shortening a different
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maximal chain of unequal length. (By shortening of a one-element chain we mean
here the removal of this chain). Since these two posets differ wrt length of the two
resulting chains, they are not equivalent, and hence define different causets, which
by the constructions are parents of the original causet. And, as these parents are
not identical, they are incomparable by <, so they belong to different maximal
chains in 〈Cfin

D , <〉. �
The consequence of this fact is that a typical causet has multiple parents, each

parent belonging to a different maximal chain of causets, with all these chains con-
taining the causet in question.11 This consequence creates tension with a modal
interpretation of causets once we identify maximal chains of causets with possi-
ble histories producible in the process of sequential growth: after all, how can we
have a parent from a different history than our own? Another problematic feature
of causets is that any two causets have an upper bound, see Fact 8. Before we
discuss this tension further, we turn to formal metaphysics for help in elucidating
the concept of alternative possibilities.

5 Causets: events or states?
A natural interpretation of a causet’s children is modal: children of a given parent
are alternative possible stages of the universe’s growth. Since a causet gives way
to another causet, it does not contain the whole information about a maximal
course of events that sequential growth can produce (an exception are causets
produced by maximal chains in Cfin

D , as in Fact 10). A causet thus seems to be
identifiable to what is sometimes called “partial history”. This is to be contrasted
with “history” simpliciter, that is, a maximal course of events. A partial history
is compatible with more than one alternative history – otherwise it would not be
partial. If one likes, one might think of histories simpliciter as causally-produced
outgrowths of partial histories. In a similar vein, one may think of later causets (in
the sense of <) as being more fine-grained (less partial) than their predecessors.
While a partial history is compatible with more than one alternative fine-grainings
of it, two alternative fine-grainings of a partial history cannot be compatible, and
hence cannot be compatible with one and the same history. This is a familiar
and intuitive tale, but, as we have already alluded, it seems to be in conflict with
algebraic facts about causets.

11 The reference to typicality above reflects the relative rarity of causets in which all maximal
chains have equal length.
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The crux of the problem is the concept of alternative possibilities. How do
we draw a distinction between alternative partial histories, and co-possible partial
histories? The former cannot happen together, whereas the latter can, by being
parts of a maximal course of events. An easier question is how to differentiate
between alternative possible events and co-possible events. One might opt for a
deflated responce that collapses co-possibility with consistency, such as in “the
set of events is co-possible iff a complete description of this set is consistent”.
Although this answer has some credibility among philosophers, it does not look
like a cogent move in the context of fundamental physics, with its use of causal
concepts, like � of sequential growth, which is a primitive causal notion, not re-
ducible to logic. Now, an appeal to causal ordering, understood quite weakly, as
“. . . can causally influence . . . ”, delivers a powerfull criterion of co-possibility,
due to Belnap (1992): if there is z such that x � z and y � z, then all three, x, y,
and z are co-possible. In plain words, if there is a possible later witness of x and
y, then x and y can really happen together; if the later witness actually happened,
x and y happened as well. If in doubt whether a particular key stroke I might ex-
ecute on my laptop, and a particular electromagnetic outburst on Andromeda that
astrophysicists predict, can happen together, look for some third possible event,
whose past comprises the two events in question. It is much easier to decide if the
two events have happened together, as one faces an easier task of finding some ac-
tual event. Deciding whether the two events can happen together sets us a higher
target of finding an appropriate possible event.

The later witness intuition is the implication from the existence of a later wit-
ness to a co-possibility. The other direction is more problematic, as a world might
come to an abrupt end. The absence of a later witness of two events might signal
a world’s abrupt end rather than incompatibility of two events in question.12 Nev-
ertheless, by having accepted the more problematic direction as well, we can use
it to argue for negative verdicts. For instance, we observe that there is no possible
event in the future of a particular coin toss that could be causally influenced by
two possible results of it, landing Heads up and landing Tails up. Any possible
event in the future of that flip can influenced by Heads up, or by Tails up, but not
by both. Hence Tails up and Heads up are not co-possible.

The criterion of a later witness (with both directions) plays an essential role in
Belnap’s (1992) Branching Space-Times (BST) theory. In mathematical parlance,
a subset of a partially ordered set that satisfies the criterion is called an “upward

12For a further discussion of the criterion, as well as of alternative criteria of co-possibility, see
Müller (2014).
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directed subset”. BST then defines histories as maximal upward directed subsets
of a partially ordered set of all possible events.

Causets do not seem to satisfy the later witness intuition – unless the set Cfin
D

does not admit alternative finite causets. But if it does admit two alternative
causets, then by Fact 8 there is a (finite) causet that upper bounds the two (wrt
<). Recalling the reading of the order < on Cfin

D , this means that starting from
one alternative causet, or from another alternative causet, one arrives at the upper
bound of the two by causal processes of sequential growth. One may thus wonder
if the two causets were genuinely alternative to begin with. Somewhat similarly,
causets do not seem to satisfy the demand that no event has a causal past contain-
ing incompatible parts; by Fact 11 a typical causet has many parents, with any two
of them belonging to different maximal chains of causets.

The intuition of a later witness concerns events, so without an argument, we
should not expect it to carry over to objects of other categories. Also, although el-
ements of a causet are sometimes explicated as events (cf. Sorkin (2012)), perhaps
they are events in some other sense, or not at all events, or a causet (set of events)
is not an event-like concept. The later witness intuition builds upon a concept of
event in which the identity criteria for eventhood include having a fixed past. So
in this sense of “events”, an event cannot occur more than once and, moreover,
in two senses: it cannot be repeated in either one history, or in multiple histories.
If an event were multi-realizable by having parts (or instances) in alternative his-
tories, one might explicate the notion of event’s past in such a way that its past
would comprise objects that are not co-possible. Such multi-realizable events
have a room in analytic metaphysics. For the record, recall David Lewis’s (1986,
p. 196) notion of non-fragile event, which serves as a basic block in his theory
of causation. Lewis’s non-fragile event is multi-realizable in alternative possible
worlds, but (as I understand it) not in one possible world. So a non-fragile event
might have occurred somewhat differently than it actually occurred. But it cannot
re-occur after a time being. This suggests that perhaps causets are multi-realizable
events.

Drawing on different senses of “events” might be confusing and so it would
be better to use a different and more general term, “states”. Clearly, the state of a
given object can be repeated in the object’s history and an object might hit upon
the same state in its alternative histories. After all, we can perfectly imagine an
object’s state that can be reached along alternative histories of that object. To
illustrate, a particular state of clutter on my desk may follow the Head-up result of
a particular coin-flip, as well as the Tail-up result of that flip – after the coin has
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been removed from the desk. To extend this idea to states of an isolated system
(or, of a world) requires states to not fully encode their pasts. Then the existence
of a later state preceded by two other states does not means that these two latter
states belong to the same history. These two states can be stages of two alternative
processes that lead to the same state. As a result, with states the intuition of a later
witness fades away.

Understanding causets as states removes the sting of Facts 8 and 11, at least to
a certain extent. For any two states, they are followed, sooner or later, by another
state. Furthermore, every typical state has more than one immediate predecessor
(a parent state). This says more than that every typical state can be arrived along
multiple paths. The last stages of these paths, before they converge on a state in
question, are to be different. Let us take it tentatively for a sound albeit somewhat
exuberant picture of emerging and criss-crossing possible evolutions.

There is an advantage of the turn to states: now the model of sequential growth
exhibits features that are known from a typical way a physical theory is con-
structed. The sequential growth generates a state space (aka phase space). In
the state space there are maximal sequences of states, one following another, by
Fact 9.13 These sequences are discrete trajectories in the state space. Each non-
maximal state belongs to multiple trajectories, which makes a dramatic contrast to
never-crossing trajectories of the Hamiltonian formulation of classical mechanics.
A typical state has many parents, each parent belonging to a different trajectory,
and every non-maximal state has more than one child. Thus, multiple trajectories
crisscross at each typical state (where “typical” means non-maximal and fulfilling
the description given in footnote 11). This is a picture of exuberant possibilities
that grow profusely, with almost any state being an outgrowth of multiple alter-
native processes (encoded by trajectories). That opulence of possibilities might
appear distressing but, no worries, there is way to tame it, namely, probabilities.

As a digression, we return to the later witness intuition: can we accommodate
it in this framework? We noted that the intuition requires an event-concept with
the identity criteria including sameness of the events’ past. Clearly, a typical
causet does not satisfy such criteria, as it can be produced along different causal
paths. But can we still make good of this intuition in the causal sets programme?
To this end we need to use a subtler notion of causet that encodes the causet’s
ancestry as well. A causet, understood as a state, typically has many ancestries,
depending along which path it emerges. Thus, a simple way to encode a causet’s
ancestry is to associate it to a path in Cfin

D leading from a singleton-based causet to

13 By Fact 10, each maximal sequence of states can be considered itself a maximal state.
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the causet in question. As any two subsequent causets in this path are different by
exactly one element, the result of this association is that the causet’s elements are
now numbered, with the numbering representing the order of creation leading to
this causet. A multiple-realizable un-numbered causet is now differentiated into
a family of numbered causets, each numbering representing a path leading to the
causet’s creation. For more info in numbered causets, see Appendix.

The set of numbered causets is strictly ordered by a relation based on an con-
cept analogous to that of a link in Cfin

D . It can be proven that no two numbered
causets have an upper bound (understood as a numbered causet). Any two num-
bered causets always have a lower bound, however, and all paths through the
forest of numbered causets begin with a singleton-based causet. In short, num-
bered causets form a branching tree.14 A branching tree format implies that two
numbered causets have a common later witness iff they are members of a maxi-
mal chain of numbered causets. Since the right-hand side of this bi-conditional is
(naturally) read as saying that the two causets are co-possible, the bi-conditional
is just the statement of the later witness intuition.

By interpreting causets as repeatable states, we now read chains of causets pro-
ducible in sequential growth as discrete criss-crossing trajectories in a state space.
This somewhat unorderly picture is to be pruned by probabilistic constraints, to
which we now turn.

6 Probability to the rescue?
Although sequential growth produces an abundance of criss-crossing trajectories
in the space of un-numbered causets, some trajectories might be barely probable,
or improbable. By interpreting the assignment of zero probability to a trajectory
as impossibility of this trajectory, one might obtain a less exuberant picture of
the possibilities emerging from sequential growth. Introducing probabilities to
the theory of causets involves two tasks. The first is purely formal, and address
questions like what objects probabilities are defined on, and which constraints they
are subject to. The other task is to show how numerical values of formally defined
probabilities result from a physical process, as described by some equations. Both
the tasks are addressed in Rideout (2001) and Rideout and Sorkin (2000). In this
commentary I focus on the formal task alone.

14 I owe this observations to D. Rideout, in a personal communication.
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To begin with, we should decide which framework, of un-numbered causets
or of numbered causets, should be used for the introduction of probabilities. Al-
though our exegesis of the above papers pushes us in opposite directions, we opt
for un-numbered causets.15 The next decision is the following: to what objects
are probabilities to be assigned?

Transition probabilities. Probabilities are assigned to pairs <parent, child>,
written as µ(<parent, child>), and interpreted as the probabilities of transitions
from a parent to its child. The interpretation implies that the probability of the
passage from a parent to its child is probabilistically independent from the parent’s
history. It follows that the probability of a passage from B1 to B2 along a given
path γ in Cfin

D is the product of transition probabilities of all parent-child links
forming the path γ.

Next, the probabilities are subject to a “summing to unity” constraint.

Summing to unity Let A be a causet with children B1, B2, . . . , Bk.
Then

∑k
i=1 µ(〈A, Bi〉) = 1.

With this contraint, one can associate a Kolmogorovian probability space 〈X,F , p〉
to each causet A. Here the base set X is the set of all pairs 〈A, Bi〉, where B1, B2, . . . , Bk

are the children of A (or equivalently, X is the set of all children of A). F is the
field of subsets of X and p is the probability measure on F , uniquely defined by
transition probabilities µ on X. Clearly, F is finite, as any finite causet has finitely
many children.16

The next condition is what Rideout and Sorkin (2000) term the Bell causality
condition. To state it, we need the concept of a precursor. The precursor of a link
consists of exactly those elements of the link’s parent that causally precede the
new element in the link’s child.

15The description of how a causet’s children are to be counted for the Summing to Unity con-
straint requires numbered causets. But the idea that a causet can be reached along multiple paths,
which underlies General Covariance, is in line with un-numbered causets, but not with numbered
causets.

16Note that “summing to unity” delivers different numbers, depending on how a causet’s chil-
dren are counted. Typically a numbered causet has more children than its un-numbered cousin.

20



Bell causality condition. Let C be an arbitrary causet based on n-elements
proto-causets, C1,C2 be two children of C, whose new elements are e1 and e2,
respectively.17 Consider then a “pruned” segment B of C, which is the union of
the preceqursor of link 〈C,C1〉 and the preceqursor of link 〈C,C2〉. Construct then
two children B1, B2 of B by adding e1 and e2 to B, respectively. Then the condition
requires the following:

µ(C,C1)
µ(C,C2)

=
µ(B, B1)
µ(B, B2)

(2)

To comment on the condition, the “pruned” causet B might contain substan-
tially fewer elements than the initial causet C. Each element of B causally pre-
cedes a new element in one child or the other. Thus, although the links C,C1

and C,C2 might be located somehere high in the tree produced by the sequential
growth, the links B, B1 and B, B2 might be located significantly lower. The mean-
ing of the equation is that as far as the quotient of transition probabilities with a
fixed parent is concerned, the quotient does not depend on these elements of the
parent that are causally unrelated to the children’s new elements. From a more
formal perspective, the condition imposes a contraint on how probability spaces
associated with different causets are to be related.

The next condition intends to “gauge out” the paths along which a causet is
produced. We left it to the end of this section, as it casts new light on the interpre-
tation of causets.

General covariance For any C ∈ Cfin
D , if γ and γ′ are paths in Cfin

D that originate
at the singleton-based causet and terminate at C, then the product of the transition
probabilities along the links of γ must be the same as the product of the transition
probabilities along the links of γ′.

Why should one identify the probabilities along various paths leading to a
causet C? Each path encodes an order of becoming of C. Each path thus yields a
different numbering of elements of C. Since by Def. 3, a new element cannot be
placed below an old element, it is impossible that x ≺ y, while n(y) 6 n(x), where
n is a numbering function, and 6 is the ordering of natural numbers. Accordingly,
every path leading to C induces an ordering n, called “natural”, that is subject to
this condition: if x ≺ y, then n(x) < n(y). (Note that this condition is a one-way

17Since the set-theoretical representation of causets is somewhat multi-layered, giving a pre-
cise definition of concepts like precursor, or a child’s new element requires lengthy and little-
illuminating work. We thus leave the condition in a none too precise form, relying on the reader’s
ability to grasp it, and do the formal work, if needed.
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implication rather than the equivalence. For a definition of numbering functions,
incl. a natural numbering, see the Appendix). Thus, abstracting from numerical
values, all natural numberings for a given causet C agree on how causally related
elements of C are ordered. They disagree (still abstracting from particular numeri-
cal values) on causally unrelated elements, understood here as SLR elements. But
this disagreement cannot be substantial. After all, for SLR events {e1, e2, . . . , en}

the question of which was created first, does not admit a non-perspectival answer.
If we ask at e1, the answer is “e1”, if we ask at e2, the answer is “e2”, etc. Rideout
and Sorkin (2000) thus concede that natural numberings are not meant “to carry
any physical information”. Since natural numberings for C and paths leading to C
stand in one-to-one correspondence, the paths leading to C do not carry any phys-
ical information either. This is the reason of why all paths leading to C receive
the same probability. But if the paths carry no physical information needed for di-
verging probability assignments, how can they, with the absence of differentiating
physical information, be considered alternative possible paths to C?

General Covariance casts a somewhat unfriendly light on our interpretation
of elements of Cfin

D as states. Recall that a typical element A ∈ Cfin
D has mul-

tiple parents, and hence can be reached by multiple paths, all starting with the
singleton-based causet. However, since the premises of General Covariance are
satisfied, the probabilities of reaching A along different paths should be the same.
Now reading A as a multi-realizable state, we get that no matter how this A is
arrived at, the probability of its production should be the same. This might appear
somewhat strange, as we may imagine (drawing on our everyday’s experience)
that some paths leading to a given state are easier than the other. To explain away
this weirdness, we turn to the argument for General Covariance, only to learn that
this argument concludes that paths are not physically real. But if they are not
physically real, they can hardly play the role of alternative possible paths leading
to C. After all, if the paths do not to carry any physical information, what informa-
tion are they supposed to carry? The only answer, I think, is that this information
regards our ways of representing reality rather than any information about reality
itself, where ways of representing might result from the formal methods we use.
Clearly, one needs a much more substantial differentiation of paths to consider
them as alternative possible ways of producing a given causet.

Having seen the problems produced by the probabilistic constraint of General
Covariance, one might be tempted to reject it. Obviously, the constraint invokes
the standard desideratum that physical laws be invariant under arbitrary differen-
tiable coordinate transformations, with the underlying idea that a choice of coor-
dinates is conventional, and hence should have any bearing on what the laws of
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nature look like. But, since causets do not live in differentiable manifolds and
continuous spacetime is only apparent, there is no single clear-cut answer how
to apply the idea underlying general covariance to causets. Probabilistic General
Covariance is just one proposal, and (we think) not a fortunate one. One render-
ing of the idea is to require that ordering of elements in a causet has no physical
significance. This seems to imply that there is only physically meaningful way of
becoming for any given causet. This is a rejection of indeterministic becoming.

7 Discussion
In this paper we have focused on the modal aspects of causets. Let us recall
where the argumentation set out in this paper leads us. After proving a few facts
about causets, we argued that causets cannot be understood as particular events,
as objects that are not multi-realizable. For this concept of eventhood there is a
persuasive criterion for co-possibility, which is based on the later witness intuition.
Since any two causets in Cfin

D have an upper bound (i.e., a later witness, exactly),
any two causets in Cfin

D are co-possible, and hence Cfin
D admits exactly one maximal

set of co-possible causets, i.e., just one history, identified thus with Cfin
D itself. The

modalities are trivialised and no room is left for substantial possibilities.
We were therefore compelled to turn to a different understanding of causets.

As a typical causets has many parents and belongs to multiple maximal chains
in Cfin

D , we considered causets to be multi-realizable, like states or Lewisian non-
fragile events. On this understanding, causets producible by sequential growth
form a state space; maximal chains in this state space are (discrete) trajectories.
The picture is in radical contrast to the orderly trajectories of classical physics, as
all trajectories in Cfin

D start at a (unique) minimal element and multiple trajectories
cross at a typical state. Still we found the picture promising, as the theory is
supposed to be indeterministic, and one might hope that probabilities will help
to reduce the number trajectories. While examining the argument for General
Covariance, which is a constraint on the probabilities definable on causets, we
found that by this argument, the multiplicity of paths leading to a given should
not be considered physically real. The paths had better be taken as our different
representations of one physical process. With this diagnosis we end up back in a
familiar pickle: as now paths converging to a given causet C are not thought of
as alternative evolutions, whatever causets are below a given causet they are co-
possible. By a familiar argument, drawing on Fact 8, we get that Cfin

D is a (single)
maximal set of co-possible causets, i.e. a (single) possible history. Is there a way
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C

Figure 4: Two paths, i and ii, of the creation of causet C.

out of this predicament, apart from rejecting substantial possibilities? We end this
paper with two suggestions.

First, it seems to us that the appeal to the physical irrelevancy of the ordering of
SLR events may take two forms, and these two forms are conflated in the causal
sets theory. The first appeal is operative in the concept of un-numbered causet.
Just by being un-numbered, the causet does not provide us with any information
as to how a subset of its SLR elements is ordered (but it gives information on,
e.g., how large is the subset). The second appeal is at work in the argument for
General Covariance, and it concerns paths of causets rather than a single causet. A
(finite) path of causets represents a particular order of creation of a given causet.
Figure 4 shows two paths leading to a simple causet C. Are these paths different?
If one takes the order of creation as trumping relativity, the answer is affirmative:
path (i) depicts a singleton-based causet giving birth to a causet with a single
link, which in turn gives birth to a causet with one element causally un-related
to a causally-related pair. Path (ii) tells a different story, about a singleton-based
causet giving way to a causet based on a causally un-related pair, and finally – to
a causet based on a triple, with one element un-related to a causally related pair.
Note that since all the involved causets are un-numbered, there is no problematic
ordering of causally unrelated elements in each causet.

Things are different, however, if priority is given to relativity, to the point of
ignoring the concept of creation. Then one is deemed to look at the final causet
C, in a vain attempt to figure out an order of its elements. The attempt is vain, as
it must involve the dubious task of assigning order of priority to SLR events.

Thus, to give a chance to alternative multiple possible histories in Cfin
D , one

option is to take the concept of the order of creation seriously: the advice is to
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let creation trump relativity. Since this move undermines the argument for Gen-
eral Covariance, for consistency’s sake this constraint should not be postulated.
This need not be done since the irrelevancy of the ordering of causally unrelated
elements is already captured in un-numbered causets.

Our second suggestion of how to escape from the predicament is to re-think
what it means, in terms of the causets theory, that two elements of a causet are not
comparable by the causal ordering. In the present paper we followed the custom
of causets theorists identifying causally incomparable elements with space-like
related elements. However, in a fully fledged modal account, this identification
simply appears to be wrong. Two events might be incomparable because they
belong to different alternative evolutions, not because they belong to the same
evolution and are space-like related. We leave, however, the task of developing
this suggestion and examining its cogency to a future work.

8 Appendix: on numbered causets
In a numbered causet, its elements have partial identity as they are numbered. I
call it “partial” because the identity of elements of the underlying set D is for-
gotten. Still, by knowing a numbering, a given number can be associated to the
appropriate elements of posets, whose base sets are subsets of D.

Formally, we define a (finite) numbered causet as a pair 〈A, n〉, where A ∈ Cfin
D

and n is a numbering function for A, which we now explain.

Definition 12 (numbering function for a causet). Let A = {〈S γ,�γ〉 | γ ∈ Γ} ∈

Cfin
D be based on m-elements proto-causets (with Γ an appropriate index set). A

function n :
⋃

γ∈Γ S γ 7→ {1, 2, . . . ,m} is a numbering function for A iff it satisfies
the three conditions below:
(i) for each γ ∈ Γ, the restriction n|S γ

of n to S γ is a bijection between S γ and
{1, 2, . . . ,m},
(ii) if x ∈ S γ and y ∈ S η (γ, η ∈ Γ) are equivalent (in the sense of being linked by
an order-preserving isomorphism between S γ and S η), then n(x) = n(y), and
(iii) for every γ ∈ Γ, if x �γ y, then n(x) <N n(y).

Denoting the set of finite numbered causets by nCfin
D , analogously to Def. 3 we

define a link in nCfin
D and then, in terms of the link, the ordering < of nCfin

D .18 It can

18In contrast to a link in Cfin
D , a condition on numbering functions is needed, to the effect that

numbering functions associated with a parent and a child, resp., agree on some sets. We leave the
details to the reader.
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be proved that 〈nCfin
D , <〉 is a strict order and that any two elements of it have an

infimum (greatest lower bound) but no upper bound. Thus, 〈nCfin
D , <〉 is a tree. We

leave the proofs to the reader.
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