
NON-COMPUTABILITY OF HUMAN INTELLIGENCE

YASHA SAVELYEV

Abstract. We revisit the question (most famously) initiated by Turing: can human intelligence be
completely modeled by a Turing machine? We show that the answer is no, assuming a certain weak
soundness hypothesis. More specifically we show that at least some meaningful thought processes
of the brain cannot be Turing computable. In particular some physical processes are not Turing
computable, which is not entirely expected. There are some similarities of our argument with the
well known Lucas-Penrose argument, but we work purely on the level of Turing machines, and do not
use Gödel’s incompleteness theorem or any direct analogue. Instead we construct directly and use a
weak analogue of a Gödel statement for a certain system which involves our human, this allows us
to side-step some (possible) meta-logical issues with their argument.

We study the following question:

Question 1. Can human intelligence be completely modelled by a Turing machine?

We will give a complete definition of a Turing machine after the introduction. An informal definition
of a Turing machine [1] is as follows: it is an abstract machine which accepts certain inputs, and
produces outputs. The outputs are determined from the inputs by a fixed finite algorithm, in a
specific sense.

In particular anything that can be computed by computers as we know them can be computed by
a Turing machine. For the purpose of the main result the reader may simply understand a Turing
machine as a digital computer with unbounded memory running a certain program. Unbounded
memory is just mathematical convenience, it can in specific arguments, also of the kind we make, be
replaced by non-explicitly bounded memory.

Turing himself has started on a form of Question 1 in his Computing machines and Intelligence,
[2], where he also outlined a possible obstruction to a yes answer coming from Gödel’s incompleteness
theorem. He pointed out that one way to avoid this obstruction is to reject the assumption that
humans are fundamentally consistent. What the latter actually means in practice is subject to a
lengthy discussion, we need some qualifier like “fundamental” as even mathematicians do not on the
surface assert consistent statements at all times.

There are a number of ways of interpreting Question 1. Turing himself was mainly interested in
whether a Turing machine can fool an experimenter into believing that it is a human subject, in
various Imitation Games, see [2] for examples. As this author understands, Turing believed roughly
the following, (here for exposition’s sake we take the liberty of compressing, perhaps not completely
accurately, Turing’s ideas into a neat hypothesis):

Hypothesis 1 (Turing’s hypothesis). For every given human experimenter, an imitation game, and
given some bounded amount of time, one can construct a Turing machine that will fool him in this
imitation game, for that amount of time.

This particular hypothesis may well be true, nothing in the present note contradicts it. However our
interpretation of the question is different. We are asking is whether there is a meaningful mathematical
difference in operation of a human mind and a Turing machine. While the significance of this version
of the question for computer science is perhaps arguable, for physics and biology it is profoundly
important.

It should be pointed out that a common misconception is that there can be no such mathematical
difference if one believes the universe to be governed by deterministic, or effectively for a given purpose
deterministic, laws. Quantum mechanics for instance is effectively for our purpose deterministic, as

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Philsci-Archive

https://core.ac.uk/display/295732681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 YASHA SAVELYEV

the results (measurements) are at worst given by a probability distribution that is determined. But
deterministic does not imply computable in the mathematical sense, e.g. Turing computable, (this
may refer also to the above mentioned probability distribution). The latter would be computably
deterministic, and this is the source of the misconception. 1

Gödel himself first argued that such a mathematical difference exists, [3, p. 310]. Later Lucas [4]
and later again and more robustly Penrose [5] strongly argued that a meaningful difference exists and
for a no answer to question 1. They further formalized and elaborated the obstruction coming from
Gödel’s incompleteness theorem. And they reject the possibility that humans could be inconsistent
on a fundamental level. The main common objections to their argument concern the meta-logic of
the argument, see for instance [6]. We shall say a few words about this below. The other objection is
simply that the consistency assumption may be wrong, this is suggested by Turing himself for instance
as mentioned above. For a discussion of the consistency question we refer the reader to the wonderful
books of Penrose, [7], [5].

It should also be noted that for Penrose in particular, non-computability of intelligence is evidence
for new physics, and he has specific and very intriguing proposals with Hameroff [8], on how this can
take place in the human brain. Another physical argument for non-computability is presented in Song
[9]. Here is a partial list of some partially related work on mathematical models of brain activity and
or quantum collapse models: [10], [11], [12], [13].

We likewise argue here for such a mathematical difference. Like Lucas-Penrose we have a soundness
assumption but our seems much weaker. We do not use Gödel incompleteness theorem, instead we
construct some weak analogue of Gödel statement directly. The following is a slightly informal version
of our main Theorem 2.

Theorem 1. The answer to Question 1 is no, assuming a certain soundness condition on our humans.
More specifically, at least some human being S as a component of a simple certain physical system,
cannot be both Turing computable and sound in a specific sense.

In what follows we refer to some language of abstract formal systems but none of this appears in
the main argument, as our language will be purely that of Turing machines. It will be instructive to
first give a preliminary version of Penrose argument, in our language, and see what goes wrong. But
to emphasize this is not his argument.

Let P be a human subject, which we understand as a machine printing statements in arithmetic,
given some input. That is for each Σ some string input, P (Σ) is a statement in arithmetic, e.g. Fermat’s
last theorem. Say now P is in contact with experimenter/operator E. The input string Σ that E gives
P is the following: “here is the specification of a Turing machine T , this machine computes you as a
(perhaps partially defined) function Σ 7→ P (Σ)”. Before we proceed, we put the condition on our P
that he believes himself to be fundamentally sound, that is he believes P (Σ) is true for all Σ. This is
not an assumption by P , this is what P asserts as truth, whether this is actually rational is another
discussion as already mentioned. Now P replies:

I know I am sound, hence T must be sound if it did compute me, but I can then
construct a Gödel statement G(T ) for T , which is then a true statement in arithmetic,
and which indirectly asserts “T cannot print G(T )”.

This alone doesn’t quite work however for E counters:
I see, but do you in fact in print G(T )? This is the only way you can presently reach
a contradiction, as T only computes what you print, not what you can meta-prove.

P has to say no! Because he does not in fact know G(T ) is true, since he has to know that T is sound,
and this only happens (from his point of view) if he knew for a fact: T computes P . If P does print
G(T ) then he is patently unsound, as he has no basis to assert G(T ), so his very belief that he is sound
would be absurd.

1We should mention that there is also a notion of non-deterministic Turing machines but this “non-deterministic” is
not directly related to our discussion. Moreover these machines can be simulated by Turing machines of the type we
consider, so are not considered here.



NON-COMPUTABILITY OF HUMAN INTELLIGENCE 3

0.0.1. A possible fix. (Outline) We can try to fix the above argument as outlined in the following, and
this “fixed version” will be very close in essence to the argument Penrose gives in [7], which we take
to be his main and final argument, (as far as I am aware).

Change Σ to: “here is a specification of a Turing machine T , print your statement that you assert
to be true assuming ΘT :

(0.1) T computes P.”

Again P reasons that since his deductions based on ΘT are sound, the same must be true of T . Then
(perhaps) there is a conditional Gödel statement G(T,ΘT ), which is true if F(T ) + ΘT is sound and
indirectly asserts that T cannot print G(T,ΘT ). Here F(T )+ΘT denotes the formal system underlying
T adjoined with the assertion ΘT as an axiom. P then prints G(T,ΘT ).

Now if ΘT is true, and P is indeed sound and hence T is sound, then T cannot print G(T,ΘT ). So we
reach a contradiction, unless P is not in fact sound. The above outline is still not totally satisfactory.
For one we need to show that conditional Gödel statements as above can be constructed (by P ). At
the least this requires that ΘT be interpreted as a statement in a suitable formal system (containing
arithmetic). For this we need P to be suitably defined, otherwise it is not clear how the interpretation
of ΘT as a statement could work, but we delve no further. See however [14], and [6] for discussions on
related issues.

This note can be understood as an elaboration of the above “fixed” argument, but with additional
changes and improvements. First we do not need our subject S to be totally sound, we only need
soundness of a certain much more limited function, associated to S. Moreover we do not need S to
explicitly construct Gödel statements, for we find in this context an elementary and explicit analogue,
a kind of weak Gödel statement directly, and this suffices for S. Thus Gödel incompleteness theorem
is not used at all. Note also that we formalize at least partly some necessary properties of S or rather
of a certain system encompassing S. This is in contrast with P above being essentially undefined.
Finally we use exclusively the language of Turing machines, as opposed to formal systems, the former
is vastly more elementary and concrete. In particular the above mentioned weak Gödel statement is
formulated purely in the language of Turing machines.

1. Some preliminaries

This section can be just skimmed on a first reading. Really what we are interested in is not Turing
machines per se but computations that can be simulated by Turing machine computations. These can
for example be computations that a mathematician performs with paper and pencil, and indeed is the
original motivation for Turing’s specific model. However to introduce Turing computations we need
Turing machines, here is our version, which is a computationally equivalent minor variation of Turing’s
original machine.

Definition 1.1. A Turing machine M consists of:
• Three infinite (1-dimensional) tapes Ti, To, Tc, divided into discreet cells, one next to each

other. Each cell contains a symbol from some finite alphabet. A special symbol b for blank,
(the only symbol which may appear infinitely many often).

• Three heads Hi,Ho,Hc (pointing devices), Hi can read each cell in Ti to which it points, Ho,Hc

can read/write each cell in To, Tc to which it points. The heads can then move left or right on
the tape.

• A set of internal states Q, among these is “start” state q0. And a non-empty set F of final,
“finish” states.

• Input string Σ, the collection of symbols on the tape Ti, so that to the left and right of Σ there
are only symbols b. We assume that in state q0, Hi points to the beginning of the input string,
and that the Tc, To have only b symbols.

• A finite set of instructions I that given the state q the machine is in currently, and given the
symbols the heads are pointing to, tells M to do the following, the taken actions 1-3 below will
be (jointly) called an executed instruction set, or just step:



4 YASHA SAVELYEV

(1) Replace symbols with another symbol in the cells to which the heads Hc,Ho point (or leave
them).

(2) Move each head Hi,Hc,Ho left, right, or leave it in place, (independently).
(3) Change state q to another state or keep it.

• Output string Σout, the collection of symbols on the tape To, so that to the left and right of Σ
there are only symbols b, when the machine state is final. When the internal state is one of
the final states we ask that the instructions are to do nothing, so that these are frozen states.

We also have the following minor variations on standard definitions, and notation.

Definition 1.2. A complete configuration of a Turing machine M or total state is the collection
of all current symbols on the tapes, position of the heads, and current internal state. A Turing
computation, or computation sequence for M is a possibly not eventually constant sequence

{si}i=∞
i=0 := ∗M(Σ)

of complete configurations of M , determined by the input Σ and M , with s0 the initial configuration
whose internal state is q0. If elements of {si}i=∞

i=0 are eventually in some final machine state, so
that the sequence is eventually constant, then we say that the computation halts. For a given Turing
computation ∗M(Σ), we shall write

∗M(Σ) → x,

if ∗M(Σ) halts and x is the output string.

We write M(Σ) for the output string of M , given the input string Σ, if the associated Turing
computation ∗M(Σ) halts.

Definition 1.3. Let Strings denote the set of all finite strings of symbols in some fixed finite alphabet,
for example {0, 1}. Given a partially defined function f : Strings → Strings, that is a function
defined on some subset of Strings - we say that a Turing machine M computes f if ∗M(Σ) → f(Σ),
whenever f(Σ) is defined.

For writing purposes, let us call a partially defined function f : Strings → Strings as above an
operator, and write O for the set of operators. So a Turing machine T itself determines an operator,
which is defined on all Σ ∈ Strings s.t. ∗T (Σ) halts, by Σ 7→ T (Σ).

The following definition is also purely for writing purposes.

Definition 1.4. Given Turing computations (for possibly distinct Turing machines) ∗T1(Σ1), ∗T2(Σ2)
we say that they are equivalent if either they both halt with the same output string, or both do not
halt. We say a pair of Turing machines T1, T2 are equivalent if they compute the same operator.

Let us expand the above discussion a bit. We will allow our Turing machine T to reject some
elements of Strings as valid input. We may formalize this by asking that there is a special final
machine state qreject, so that T (Σ) halts with qreject for Σ /∈ I ⊂ Strings, where I is some set of all
valid, that is T -permissible input strings. Note we do not ask that for Σ ∈ I, ∗T (Σ) halts. If ∗T (Σ)
does halt then we shall say that Σ is acceptable. It will be convenient to forget qreject and instead
write T : I → O, where I ⊂ Strings is understood as the subset of all T -permissible strings, and O is
the set output strings, keeping all other data implicit. The specific interpretation should be clear in
context.

We also note that all of our input, output sets are understood to be subsets of Strings under some
encoding. For example if the input set is Strings2, we may encode it as a subset of Strings via encoding
of the type: “this string Σ encodes an element of Strings2 its components are Σ1 and Σ2.” In particular
the sets of integers N,Z will under some encoding correspond to subsets of Strings. However it will
be often convenient to refer to input, output sets abstractly without reference to encoding subsets of
Strings. (Indeed this is how computer languages work.)

Remark 1. The above elaborations mostly just have to do with minor set theoretic issues. For example
we will want to work with some “sets” T of Turing machines, with abstract sets of inputs and outputs.



NON-COMPUTABILITY OF HUMAN INTELLIGENCE 5

These “sets” T will truly be sets if implicitly all these abstract sets of inputs and outputs are encoded
as subsets of Strings.

Definition 1.5. We say that a Turing machine T computes an operator f : Strings → Strings on
A ⊂ Strings if A is contained in the subset I of T -permissible strings, and ∗M(Σ) → f(Σ), whenever
f(Σ) is defined, for Σ ∈ A.

Given Turing machines M1 : I → O, M2 : J → P , where O ⊂ J , we may naturally compose them
to get a Turing machine M2 ◦M1, let us not elaborate as this should be clear, we will use this later on.

1.1. Join of Turing machines. There is a simple variant of a Turing machine where a single tape
is replaced by a multi-tape. Indeed our Turing machine of Definition 1.1 is a multi-tape version of a
more basic notion of a Turing machine with a single tape, but we need to iterate this further.

We replace a single tape by tapes T 1, . . . , Tn in parallel, which we denote by (T 1 . . . Tn) and call
this n-tape. The head H on the n-tape has components Hi pointing on the corresponding tape T i.
When moving a head we move all of its components separately. A string of symbols on (T 1 . . . Tn) is
an n-string, formally just an element of Σ ∈ Stringsn, with i’th component of Σ specifying a string of
symbols on T i.

Given Turing machines M1,M2 we can construct what we call a join M1 ? M2, which is roughly a
Turing machine where we alternate the operations of M1,M2. In what follows symbols with superscript
with 1, 2 denote the corresponding objects of M1, respectively M2, cf. Definition 1.1.

M1 ? M2 has three (2)-tapes:
(T 1

i T
2
i ), (T

1
c T

2
c ), (T

1
o T

2
o ),

three heads Hi,Hc,Ho which have component heads Hj
i ,H

j
c ,H

j
o , j = 1, 2. Machine states:

QM1?M2 = Q1 ×Q2 × Z2,

with initial state (q10 , q
2
0 , 0) and final states:

FM1?M2
= F 1 ×Q2 × {1} tQ1 × F 2 × {0}.

Then given machine state q = (q1, q2, 0) and the symbols (σ1
i σ

2
i ), (σ

1
cσ

2
c ), (σ

1
oσ

2
o) the heads Hi,Hc,Ho

are currently pointing, to we first check instructions in I1 for q1, σ1
i , σ

1
c , σ

1
o , and given those instructions

as step 1 execute:
(1) Replace symbols σ1

c , σ
1
o to which the head components H1

c ,H
1
o point (or leave them in place,

the second components are unchanged).
(2) Move each head component H1

i ,H
1
c ,H

1
o left, right, or leave it in place, (independently). (The

second component of the head is unchanged.)
(3) Change the first component of q to another or keep it. (The second component is unchanged.)

The third component of q changed to 1.
Then likewise given machine state q = (q1, q2, 1), we check instructions in I2 for q2, σ2

i , σ
2
c , σ

2
o and

given those instructions as step 2 execute:
(1) Replace symbols σ2

c , σ
2
o to which the head components H2

c ,H
2
o point (or leave them in place,

the first components are unchanged).
(2) Move each head component H2

i ,H
2
c ,H

2
o left, right, or leave it in place.

(3) Change the second component of q to another or keep it, (first component is unchanged) and
change the last component to 0.

Thus formally the above 2-step procedure is two consecutive executed instruction sets in M1 ?M2. Or
in other words it is two terms of the computation sequence.

1.1.1. Input. The input for M1 ? M2 is a 2-string or in other words pair (Σ1,Σ2), with Σ1 an input
string for M1, and Σ2 an input string for M2.



6 YASHA SAVELYEV

1.1.2. Output. The output for ∗M1 ? M2(Σ1,Σ2) is defined as follows. If this computation halts then
the 2-tape (T 1

o T
2
o ) contains a 2-string with T 1

o component Σ1
o and T 2

o component Σ2
o. Then the output

M1 ? M2(Σ1,Σ2) is defined to be Σ1
o if the final state is of the form (qf , q, 1) for qf final, or Σ2

o if the
final state is of the form (q, qf , 0), for qf likewise final. Thus for us the output is a 1-string on one of
the tapes.

1.2. Generalized join. A natural variant of the above join construction M1 ? M2, is to let M1

component of the machine execute a times before going to step 2 and then execute M2 component
of the machine b times, then repeat, for a, b ∈ N. This results in a + b consecutive terms of the
corresponding computation sequence. We denote this generalized join by

Ma
1 ? M b

2 ,

so that
M1

1 ? M1
2 = M1 ? M2,

where the latter is as above. We will also abbreviate:
M1 ? M

b
2 := M1

1 ? M b
2 .

The set of machine states Ma
1 ? M b

2 is then Q1 × Q2 × Za+b. Let us leave out further details as this
construction is analogous to the one above.

1.3. Universality. It will be convenient to refer to the universal Turing machine U . This is a Turing
machine already appearing in Turing’s [1], that accepts as input a pair (T,Σ) for T an encoding of a
Turing machine and Σ input to this T . It can be partially characterized by the property that for every
Turing machine T and Σ input for T we have:

∗T (Σ) is equivalent to ∗ U(T,Σ).

1.4. Notation. In what follows Z is the set of all integers and N non-negative integers. We will often
specify a Turing machine simply by specifying an operator

T : I → O,

with the full data of the underlying Turing machine being implicitly specified, in a way that should be
clear from context.

2. Setup for the proof of Theorem 1

The reader may want to have a quick look at preliminaries before reading the following to get a
hold of our notation and notions. We shall denote our human subject by S, however this (possibly
with decorations) may also denote in what follows certain functions or operators in the language of
the previous section, associated to S. Sometimes to avoid confusion we differentiate the two by calling
the former physical S. Our first order of business is describing how to associate such operators.

We intend to restrict our S to interpret and reply to a certain string input in a controlled environ-
ment. This means first that no information i.e. stimulus that is not explicitly controlled and that is
usable by S passes to S while he is in this environment. The idea is then that we pass verbally or
otherwise a string to S and wait for his reply. One thing to keep in mind is that S’s reply may depend
on his mental state, where the latter is used in a colloquial sense. In the absence of any meaningful
stimuli, we may more simply say that S’s answer may depend on the time that the question is be-
ing asked. We suppose that time is relative time measured in ~N for some small real positive ~. So
preliminary we have something like:

S : Strings× ~N → Strings,

such that S(Σ, t) is constant for t ∈ [i~, (i + 1)~), for each i. Physically such an assumption is very
reasonable, if it holds or if ~N can be replaced by Q, then we can talk about computability of this S
in the classical sense, as described in the previous section. If we cannot reduce to ~N or Q then we
cannot make sense of S being Turing computable in the classical sense, but we can perhaps talk about
extended notions of computability like in Blum-Shub-Smale [15]. However it is not clear if this would



NON-COMPUTABILITY OF HUMAN INTELLIGENCE 7

be meaningful physically. Let’s suppose for the time being that there is no time dependence in the
absence of stimuli, as it is not a meaningful complication at least when time is quantized as ~N, and
can be readily incorporated into our argument, by just decorating everything with time.

Definition 2.1. Given a string Σ ∈ Strings, we say that Σ is acceptable if when our human subject
S is given Σ, he replies eventually with something that is unambiguously interpretable as a string in
Strings, (in practice S just replies verbally). We then have an operator S : Strings → Strings, which
is defined on the subset of acceptable strings.

Next we need to discuss what it means in our setting for S to be Turing computable. Indeed this
just means that the operator S needs to be Turing computable, but what this involves can depend on
what kind of environment we have setup for S, or in other words system. We need that our would be
Turing machine computing S has access to any information that is part of that system, and that may
be involved in S constructing his answer. The following is then a preliminary definition, later on we
will deal with a more formal specific setup where a precise definition will be immediate.

Definition 2.2. We say that a Turing machine S′ computes S, and S is computable if given any
acceptable Σ, and whenever S′ is meaningfully given access to all and no more information that may
be involved in S constructing his answer S(Σ), we have S′(Σ) = S(Σ).

Our operators associated to the physical S have an extra hidden output: time to answer. We
won’t explicitly state this in the output but may talk about time to answer, in some arguments. A
small note, which may be obvious, a Turing machine is an abstract machine, a priori not a machine
operating in the physical world. If we want a machine operating in the physical world we shall say:
a simulation of a Turing machine. Usually this just means a computer simulation, that is a program
running on a computer. A simulation of a Turing machine then has some real world properties like
time to compute/answer.

For some arguments we need a stronger form of computability.

Definition 2.3. We say that an operator S : Strings → Strings associated to our physical S is
strongly computable, if there exists a Turing machine S′ computing S and a particular simulation
on a fixed computer C, such that times to answer coincide. If C is as above we say that S is strongly
computed by S′ on C.

Naturally this stronger form of computability is automatic if all thought processes of our physical
S are simulations of Turing machine computations, (for a fixed Turing machine). We shall call such
a physical S totally computable. From a functional point of view totally computable means that
anything S does and all his interactions with environment can be strongly computed on a fixed com-
puter, provided the necessary elements of the environment can be computed. We won’t attempt to
make this notion precise as we only use this in the following preliminary argument, we later replace it
with a weaker but precise mathematical notion.

2.1. Preliminary Argument. This outline will have some formally unnecessary points that have to
do with motivation and expected behavior of our subject. Later on we will strip most of this out. We
proceed via a thought experiment. Our human experimenter E is in communication with S. Suppose
she controls all information that passes to S, that is usable by S in constructing his answers. So that
S is in an isolated environment as described above. We also suppose for narrative purposes that S
understands natural language, basic mathematics, basic theory of computation, and is aware of our
notions above. S has in his room a general purpose (Turing) digital computer, with arbitrarily as
necessary expendable memory. We will say S’s computer in what follows. We shall write A for the
system above: S and his computer in isolation. We can understand A as an operator

A : Strings → Strings,

where input is what we pass to our S and the output is what S answers possibly using his computer
somehow.

At this moment E passes to A the following input, which we understand as one string Σ = ΣA′ :



8 YASHA SAVELYEV

(1) Assume that I (that is E) believe that A above is computed by a Turing machine called A′.
The simulation of A′ is programmed into your computer. You have access to this simulation
A′ and its source code - that is the precise specification of the operation of A′.

(2) If you can show that I am in contradiction you will be freed. You may only use your answer
to 3 below to do so, if you do not reply to 4 with an integer, you are disqualified and don’t
get your freedom. Moreover before you answer, you must run exactly one computation ∗ on
your computer. This must satisfy that ∗ is equivalent to ∗A′(Σ), otherwise you are again
disqualified.

(3) Print an integer. (Could be verbally.)
Let us first better explain A′. Say E has total information about this system A. Then assuming that S
is totally computable, since E knows all the variables that can come into any decision process of S, she
can construct a Turing machine that computes what S will print given any string. Let’s assume for
simplicity that there is nothing else in S’s room that he can meaningfully use to construct his answer
(like a separate clock for instance). Then the only variable that can come into play, in the Turing
machine model of A, is the relative computational speed of S’s computer and the speed of our subject
S simulating his own would be underlying Turing machine - that is speed of his thought processes. We
describe this relative computation speed by a parameter s0. All this will be explained and dealt with
more formally further below. So let A′

s0 denote the above mentioned Turing machine.
E then implicitly passes the specification of A′

s0 to S in the finite string Σ, with A′
s0 referred to by

the name A′. In other words the only thing S obtains from E in the end is a finite string. This is
logically crucial.

Now the answer that E expects is A′
s0(Σ), and from E’s point of view:

(2.4) A′
s0(Σ) = A′(Σ).

So say S believes that the answer that is expected by E is given by the Turing computation that
we shall call computation

∗ = ∗A′ = ∗A′(Σ).

As will be demonstrated in the formalized argument further below, any ambiguity related to what
S “believes” is irrelevant; for a contradiction will be unambiguously reached if S decides on a certain
interpretation, and a certain behavior.

S then proceeds to compute the result of ∗ using his digital computer, and he waits for ∗ to halt.
We then have the following possibilities:

(1) ∗ does halt with say x, in this case A answers y 6= x, showing E is in contradiction.
(2) ∗ does not halt and A never answers.
(3) ∗ does not halt and A answers i.e. A(Σ) is defined. Then E is in contradiction, since ∗ is

supposed to halt with A(Σ) if this is defined.
(4) ∗ halts but A answers before it halts, possibly unable to obtain a contradiction.
(5) ∗ does halt with x, but A answers y = x, failing to obtain a contradiction and staying in his

jail.
The first and third possibilities are ruled out by E’s hypothesis. The fourth is certainly conceivable,
even though it would be very strange if this happened every time. The second says that S has non-
halting input, this is conceivable but rather inconvenient for S, and altogether rather improbable. The
last is not interesting, we will assume to be dealing with subjects that do not fall into this possibility;
this is part of the sanity assumption further on.

2.2. Formalizing the thought experiment. We now analyze the second and fourth possibility
above more carefully. To avoid them we need S to actually read the specification of A′ and pick his
computation to run on his computer more carefully. We also formalize the above setup. All that we
in principle need from the preliminary argument is the following: a system denoted A containing our
subject S, and containing a computer that will be denoted C, as well as a way to pass to this system A
strings and receive from A an output. The strings Σ should encode, perhaps implicitly, a specification



NON-COMPUTABILITY OF HUMAN INTELLIGENCE 9

of a Turing machine, and some auxiliary information which we make explicit shortly. We write
Tst ⊂ Strings

for the subset determined by such strings. The output is assumed to be in integers. So the above
determines an operator:

A : Tst → Z.

2.2.1. Total computability. The nature of the second and fourth possibility in the preliminary argument
above, leads us naturally to try formalize certain race conditions between S and his computer. For
this reason we need computability of A to be a consequence of a more fundamental property of the
physical S - a partial formalization of total computability mentioned above. We now explain this.

After receiving Σ, S may look at the specification of the Turing machine encoded by Σ and based
on that decide after a time

t0D = t0D(Σ)

to run some computation ∗ on C. S then waits for a time
tW = tW (Σ)

for ∗ to halt, and then whether ∗ halts or not decides, after a time
t1D = t1D(Σ),

on his answer to E based on what he has obtained. All of these operations: “waiting”, “deciding” are
to be strongly computable if S is totally computable in the informal sense above.

We now formalize the above. Define T to be the set of Turing machines with permissible input some
subset of Strings and output in Z. We likewise understand T as a subset of Strings with respect to
a particular chosen encoding, but then forget this.

The initial “decision map” of S may be understood as an operator:
S0,D : Tst → T × Strings.

The output S0,D(Σ) is a pair (X,Σ1) of a Turing machine X and permissible input Σ1 to this Turing
machine. The computation ∗X(Σ1) is what S decides to run on Cs. In a more basic language, we may
say that S0,D(Σ) is a pair of a computer program and input for this program that S will run on C.

We have another operator:
RC : T × Strings× Tst → Strings t {∞},

where {∞} is the one point set containing the symbol ∞, which is just a particular distinguished
symbol, also implicitly encoded as an element of Strings. RC(X,Σ1,Σ) signifies what S obtains as
a result of waiting on ∗X(Σ1) to halt on C, if this is the computation he ran. This in principle may
depend on the original input string Σ as well, because how long he chooses to wait may depend on Σ.
We set

RC(X,Σ1,Σ) = ∞
if S does not finish waiting for ∗T (Σ1) to halt, and

RC(X,Σ1,Σ) = X(Σ1)

if he does.
Likewise

S1,D : (Z t {∞})× Tst → Z,
denotes the final “decision map” of S. Its input is meant to be what S obtains from RC , together with
the original input string for S0,D. If S is in addition sane as defined below, then by Property 2 for any
Σ ∈ Tst this map satisfies:
(2.5) S1,D(x,Σ) = x+ 1 if x ∈ Z.

Lemma 2.6. If the waiting operation by S is strongly computable: i.e. it is computable for how much
time S idles, then RC is likewise strongly computable.



10 YASHA SAVELYEV

Proof. To see this let
W : T × Strings× Tst → {∞}

be the would be Turing machine that given (X,Σ1,Σ) strongly computes the operation of S “waiting”
for the simulation of ∗X(Σ1) to halt on C. The output is symbolic - the only meaningful property
of W (X,Σ1,Σ) is time to halt when simulated on some computer C. Let C1 denote the computer
s.t. when ∗W (X,Σ1,Σ) is simulated on C1, this computation halts in time tW (Σ). For a non-
negative integer s, we then call Cs a classical computer (with arbitrarily expendable memory), whose
computational capacity is s times the computational capacity of C1. We could say that s is up to
scaling the “number of individual executed instructions per second”, but then to make things simpler
we suppose that all steps of any computation sequence take same amount of time to execute. Formally
it will of course be enough to have a uniform lower bound on the execution time of each step in any
computation sequence, which is automatic for digital computers.

For Y = (X,Σ1) ∈ T × Strings, if C = Cs we set
R′

s(Y,Σ) = W ? Us((Y,Σ), Y ),

in the language of generalized join operation described in Section 1, for U the universal Turing machine.
Less formally R′

s is determined by the following properties. The first term of the computation
sequence ∗R′

s(Y,Σ) corresponds to the first term of ∗W (Y,Σ). The following s terms of ∗R′
s(Y,Σ)

correspond to the first s terms of ∗X(Σ1), followed by second term of ∗W (Y,Σ) and then terms s+ 1
to 2s of ∗X(Σ1), and so on. The halting condition is either we reach a final state of W or a final state
of X. If ∗R′

s(Y,Σ) halts with final state of X, then
R′

s(Y,Σ) = X(Σ1),

otherwise if it halts with final state of W , then
R′

s(Y,Σ) = ∞.

Thus R′
s computes RC , moreover it is clear by construction that it strongly computes RC on Cs+1. �

Then as operators
(2.7) A(Σ) = S1,D(RC(S0,D(Σ),Σ),Σ).

We say that Si,D are strongly computed on C if there are Turing machines S′
i,D computing Si,D,

so that for any Σ ∈ Tst
∗S′

0,D(Σ), ∗S′
1,D(RC(S0,D(Σ),Σ),Σ)

halt in time
t0D, respectively t1D,

on C, where t0D, t1D are as above.

Definition 2.8. Suppose that (2.7) is satisfied on Tst. Suppose further that W and Si,D are strongly
computed on C1, where C1 is as above, and consequently if C = Cs then RC is strongly computed by
R′

s on Cs+1. Then we say that the physical S is totally computable relative to A.

Notation 1. If S is totally computable relative to A, and C = Cs for some s then we set Rs = RC ,
and As = A.

Lemma 2.9. As is strongly computed on Cs+1.

Proof. To see this set let S̃i,D be the Turing machine which is equivalent to S′
i,D, but so that for all

inputs the time to answer of S̃i,D simulated on Cs+1, coincides with time to answer of S′
i,D on C1, in

other words it is (s+ 1)-times slower in execution. For example we may set

S̃0,D(Σ) = S′
0,D ? Gs(Σ, 1),

where G is a Turing machine with input Z, and which does not halt on 1, similarly for S̃1,D. It is
trivial to just construct such a G. Also recall that we have a simplifying assumption, that all steps



NON-COMPUTABILITY OF HUMAN INTELLIGENCE 11

of any computation sequence execute at same speed, so that S̃0,D is indeed (s+ 1)-times slower than
S′
0,D. Then by construction the associated Turing machine:

(2.10) ∀Σ A′
s(Σ) = S̃1,D(R′

s(S̃0,D(Σ),Σ),Σ)

computes As and its time to answer when simulated on Cs+1 coincides with time to answer of As. �

2.2.2. Elaborating Tst. Let us suppose then that E has determined that S is totally computable relative
to A. By the above discussion we may suppose that each string Σ ∈ Tst encodes the statement ΘΣ:

S is totally computable relative to A,

C = Cs and A′
s strongly computes A on Cs+1.

(2.11)

Here A′
s has the form of (2.10), and Cs+1 in the second line makes sense given the first line, and the

above discussion. The specification of A′
s as a Turing machine, or more explicitly the specification of

Si,D,W is assumed to be implicit. In the setup of our thought experiment it is provided as a program
in the computer C.

2.2.3. The sanity condition. Given Σ if S0,D(Σ) = (X,Σ1) as above, then because of Instruction 2
of E, S is compelled to choose these so that ∗X(Σ1) is equivalent to ∗A′

s(Σ) consistently. However
since E asserts (2.11), and S would be happy to contradict that, we may understand that by choosing
(X,Σ1) S asserts that ∗X(Σ1) is equivalent to ∗A′

s(Σ), conditionally on (2.11). This motivates the
following.

Definition 2.12. We will say that A is sound and S is sound relative to A if S0,D is sound on
every Σ. The latter means that for every Σ, specifying A′

s as above, ∗X(Σ1) is equivalent to ∗A′
s(Σ),

conditionally on ΘΣ where X,Σ1 is as above. Likewise define soundness of S′
0,D: the would be Turing

machine computing S0,D.

We can now formalize the main necessary property of A. Before A answers on Σ S may interact
with his computer C, and base his actions on the outcome of this interaction. Let

tinter(Σ)

denote the time interval between the time that A receives Σ and the time that A answers.

Definition 2.13. We say that A is sane if the following holds:
(1) Given Σ ∈ Tst, if S knows how to answer in a way that disproves ΘΣ, then A(Σ) is defined,

that is such a Σ is acceptable as previously defined. Here by “knows” we mean using his innate
reasoning powers, and postulates, specifically see 3 below.

(2) Given Σ, if S knows the value A′
s(Σ) = x before A answers then

A(Σ) = y 6= x.

In what follows, let’s say
y = x+ 1

for simplicity.
(3) The physical S asserts that he is sound relative to A, as defined above, in other words he

asserts that S0,D is sound.
To simplify some statements we also define a physical S to be sane iff A is sane.

It is of course possible that S is sometimes either by mistake or by some choice “unsound” in his
choice X(Σ1). But what the following theorem says is that it is in principle impossible, for any sane
(and apparently rational) S, to be both sound and totally computable relative to A. Ergo, if the
reasoning powers of S are completely captured by a formal system F , and if S is sane and totally
computable relative to A, then F must be inconsistent.



12 YASHA SAVELYEV

3. Proof of Theorem 1

Theorem 2. If S is sane and is totally computable relative to A, then S is not sound relative to A.

Proof. Suppose otherwise, then A = As for some s and is strongly computed on Cs+1 by A′
s by the

discussion above. Suppose then s = s0, determined by E and Σ is passed to As0 , which specifies A′
s0 .

So S knows the specification of S′
i,D,W,R′

s0 , and Σ encodes ΘΣ as above.
Now S asserts himself to be sound, so that S0,D is sound, and so S deduces that S′

0,D is sound.
Thus, conditionally on ΘΣ if:

(3.1) ∗ S′
0,D(Σ) → Y = (X,Σ1) ∈ T × Strings,

then ∗X(Σ1) → A′
s0(Σ) if it halts. Then ∗R′

s0(Y,Σ) → ∞, if it halts, otherwise we have a contradiction
by (2.5). Thus S knows, conditionally on ΘΣ, by the above, that

(3.2) ∗ S′
1,D(∞,Σ) is equivalent to ∗A′

s0(Σ).

This is the “weak Gödel statement” we mentioned in the introduction. Note that this is just a name,
we do not need any formal relationship with Gödel statements, although a relationship exists.

So far S has not run any computation on C, he then runs ∗S′
1,D(∞,Σ). If ∗S′

1,D(∞,Σ) halts in
time at most t0 then S, if he is indeed sound, obtains a contradiction by printing: S′

1,D(∞,Σ)+ 1 (for
instance). If ∗S′

1,D(∞,Σ) does not halt in time t0, then S and so A prints any integer “immediately”
after this time t0 has elapsed. S knows this will give a contradiction if s0 is large enough. (If t0 is 1
second, and s0 = 1010 then “immediately” means: within the time of a few centuries, as we shall see
in a moment.)

To see this contradiction, first note that ∗S̃1,D(∞,Σ) halts after at least

(s0 + 1)t0

time, when simulated on C, since ∗S′
1,D(∞,Σ) halts in time at least t0 on C, and by construction of

S̃1,D. Now by our supposition C = Cs0 , and hence the halt time of ∗A′
s0(Σ) on Cs0+1 is at least

s0
s0 + 1

(s0 + 1)t0 + t0D.

Meanwhile A replies to Σ in time
t0 + t0D.

So for s0 > 1 A′
s0 does not strongly compute A on Cs0+1; a contradiction provided that S was capable

of making the above deductions, since we just did so, we may just assume this. To avoid the physically
ambiguous “immediately” used in the argument above, note that if t0 = 1 second and s0 = 1010, then
so long as S replies in time less then a century we obtain a contradiction. Since E in principle can set
things up so that s0 is arbitrarily large, she can set it up so that the window for S to answer, so that a
contradiction is obtained, is arbitrarily large. Thus if ΘΣ holds and S is sane, we must conclude that
S is not sound relative to A. �

The above theorem is a formal elaboration of our Theorem 1, if we take it for granted that sanity
can be assumed, that is that we can can find sane subjects, capable of making all the deductions above.

4. Some possible questions

Question 2. What if S is a Turing machine producing probabilistic answers, that is the answer expected
by E is given by a probability distribution?

It is a mostly trivial complication. The probability distribution is computable by assumption, by
iterating the same argument as before we would invalidate that S is a Turing machine to any requisite
certainty.

Question 3. What if it is impossible for S to be both sound and assert that he is sound? This goes
back to the question in the introduction of whether S asserting his soundness is rational.



REFERENCES 13

S is not asserting his soundness in the dark. This is backed by the totality of his conscious experience,
as well as overwhelming evidence. After all we trust mathematics to be sound with our lives, but
mathematics is founded on axioms which are only postulated to be true essentially on “faith” that we
can see their truth. It would then be absurd to have such trust in mathematics if we doubted our
(fundamental) soundness. See also Penrose [14] for a discussion of this very question.

Nevertheless if we take the objection in this question seriously, then the interpretation of our theorem
is that either there are human beings that are not Turing computable or there are no sane (as defined)
human beings that are sound.

5. Conclusion

We may conclude from above the following. Either there must be Turing non-computable processes
in nature, and moreover they appear in the cognitive functioning of the human brain, or human beings
are fundamentally unsound, that is human reasoning is based on inconsistent formal systems. This
author rejects this as a possibility, especially since the actual soundness hypothesis in the argument
above is extremely weak.

As mentioned in the introduction although it is possible that Turing computable artificial intelligence
will start passing Turing tests, it will always be possible to distinguish some human beings from
any particular modelling Turing machine. This of course still leaves the door open for non Turing
computable artificial intelligence. But to get there we likely have to better understand what exactly
is happening in the human brain, physically, biologically and mathematically.

6. Acknowledgements

Dennis Sullivan, David Chalmers, Bernardo Ameneyro Rodriguez and Simon Ouellette, for com-
ments and helpful discussions.

References

[1] A.M. Turing. “On computable numbers, with an application to the entscheidungsproblem ”. In:
Proceedings of the London mathematical society s2-42 (1937).

[2] A.M. Turing. “Computing machines and intelligence”. In: Mind 49 (1950), pp. 433–460.
[3] K. Gödel. Collected Works III (ed. S. Feferman). New York: Oxford University Press, 1995.
[4] J.R. Lucas. “Minds machines and Goedel”. In: Philosophy 36 (1961).
[5] Roger Penrose. Emperor’s new mind. 1989.
[6] David J. Chalmers. “Minds machines and mathematics”. In: Psyche, symposium (1995).
[7] Roger Penrose. Shadows of the mind. 1994.
[8] Stuart Hameroff and Roger Penrose. “Consciousness in the universe: A review of the ‘Orch

OR’ theory”. In: Physics of Life Reviews 11.1 (2014), pp. 39–78. issn: 1571-0645. url: http:
//www.sciencedirect.com/science/article/pii/S1571064513001188.

[9] Song Daegene. “Non-computability of consciousness”. In: arXiv:0705.1617 ().
[10] Adrian Kent. “Quanta and Qualia”. In: arXiv:1608.04804 ().
[11] Kobi Kremnizer and Andr/’e Ranchin. “Integrated Information-Induced Quantum Collapse”. In:

Foundations of Physics 45.8 (Aug. 2015), pp. 889–899.
[12] Chris Fields et al. “Conscious agent networks: Formal analysis and application to cognition”. In:

Cognitive Systems Research 47 (Oct. 2017).
[13] Peter Grindrod. “On human consciousness: A mathematical perspective”. In: Network Neuro-

science 2.1 (2018), pp. 23–40. url: https://doi.org/10.1162/NETN_a_00030.
[14] Roger Penrose. “Beyond the shadow of a doubt”. In: Psyche (1996). url: http:%5C%5Cpsyche.

cs.monash.edu.au%5Cv2%5Cpsyche-2-23-penrose.html.
[15] Lenore Blum, Mike Shub, and Steve Smale. “On a theory of computation and complexity over

the real numbers: NP- completeness, recursive functions and universal machines.” English. In:
Bull. Am. Math. Soc., New Ser. 21.1 (1989), pp. 1–46. issn: 0273-0979; 1088-9485/e.

http://www.sciencedirect.com/science/article/pii/S1571064513001188
http://www.sciencedirect.com/science/article/pii/S1571064513001188
https://doi.org/10.1162/NETN_a_00030
http:%5C%5Cpsyche.cs.monash.edu.au%5Cv2%5Cpsyche-2-23-penrose.html
http:%5C%5Cpsyche.cs.monash.edu.au%5Cv2%5Cpsyche-2-23-penrose.html


14 REFERENCES

Email address: yasha.savelyev@gmail.com

University of Colima, CUICBAS


	1. Some preliminaries
	1.1. Join of Turing machines
	1.2. Generalized join
	1.3. Universality
	1.4. Notation

	2. Setup for the proof of Theorem 1
	2.1. Preliminary Argument
	2.2. Formalizing the thought experiment

	3. Proof of Theorem 1
	4. Some possible questions
	5. Conclusion
	6. Acknowledgements
	References

