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Abstract

A regularity theory of causation analyses type-level causation in terms of Boolean

difference-making. The essential ingredient that helps this theoretical framework over-

come the well-known problems of Hume’s and Mill’s classical accounts is a principle of

non-redundancy: only Boolean dependency structures from which no elements can be

eliminated track causation. The first part of this paper argues that the recent regularity

theoretic literature has not consistently implemented this principle, for it disregarded

an important type of redundancies: structural redundancies. Moreover, it is shown

that a regularity theory needs to be underwritten by a hitherto neglected metaphysical

background assumption stipulating that the world’s causal makeup is not ambiguous.

Against that background, the second part then develops a new regularity theory that

does justice to all types of redundancies and, thereby, provides the first all-inclusive

notion of Boolean difference-making.

1 Introduction

Theories of causation come in many variants, many of which are incompatible. Accord-

ing to some, causation is deterministic, while according to others it is not; some theories

take difference-making to be the characteristic feature of causation, others opt for powers

or dispositions; some yield that causation is an extrinsic property, according to others it is

intrinsic; etc. Conflicting theories continue to co-exist because they are embedded in, and

draw their justification from, incompatible background metaphysics, which are notoriously

difficult to reconcile and which, typically, are taken for granted in discussions about causa-

tion. Hence, without claiming to be presenting the only or ultimate truth about causation,

this paper develops a modern regularity theory of causation.
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Regularity theories are embedded in the metaphysical tradition of Humean actualist anti-

necessitarianism (Hume 1748, sect. 7), according to which there is no causal oomph; rather,

causation, possibility, and lawhood supervene on the actual distribution of matters of fact,

which itself is a brute fact. Causal laws are convenient summaries of the regularities that

happen to emerge from that distribution. Correspondingly, being in accordance with those

laws, that is, being empirically possible is a matter of existing (in an atemporal sense) in

the actual world. Plainly, as all metaphysical frameworks, actualist anti-necessitarianism

is controversial. This paper, however, is not the place to enter that controversy. Its main

objective is not metaphysical but pragmatic: to provide a conceptual fundament for the cur-

rently spreading configurational comparative methods (CCMs) of causal data analysis.1 We

take the anti-necessitarian background to be sufficiently justified if it yields an account of

causation that conceptually underwrites CCMs.

CCMs differ from other techniques as regression analytical methods (RAMs) (e.g. Gel-

man and Hill 2007) or Bayes-nets methods (BNMs) (e.g. Spirtes et al. 2000) in a number

of respects (for a discussion of some of these differences see Thiem et al. 2016). Most im-

portantly for our current purposes, while RAMs and BNMs search for causal dependencies

among variables by exploiting their statistical (in-)dependencies, CCMs search for causal

dependencies among concrete values of variables by exploiting Boolean dependencies as

“A=αi is sufficient/necessary for B=βi”. To this end, CCMs must be underwritten by a the-

ory of causation that provides a link between Boolean dependencies and causation. This is

exactly the field of expertise of regularity theories.

The primary analysandum of regularity theories is causation on the type level, that is,

causal relevance relations between variables or factors taking on specific values: “A=αi

is causally relevant to B=βi”, where A=αi, for instance, stands for malfunctioning traffic

lights and B=βi for occurring rear-end collisions. (We will use the terms “variable” and

“factor” interchangeably in this paper.) Regularity theories take difference-making to be the

characteristic feature of causation. What that amounts to can easily be specified in causal

terms: A=αi is a difference-maker of B=βi iff there exist (at least) two scenarios σ1 and σ2
such that A=αi is associated with B=βi in σ1 and A 6=αi with B 6=βi in σ2 while all alternative

causes of B=βi are absent in σ1 and σ2, where alternative causes of B=βi are causes not

located on a causal path through A=αi. However, as regularity theories aim for a reductive

analysis of causation, they cannot define “A=αi is causally relevant to B=βi” with recourse

1Qualitative Comparative Analysis (QCA) (Rihoux and Ragin 2009; Thiem 2014) and Coincidence Anal-
ysis (CNA) (Baumgartner and Ambühl 2018) are paradigmatic CCMs. QCA, in particular, has been ap-
plied in hundreds of studies, mainly in the social sciences (cf. the website of the COMPASSS network:
www.compasss.org).
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to the absence of alternative causes of B=βi. Instead, the difference-making requirement

must be captured in terms of non-causal (i.e. Boolean) dependencies, which, as we shall

see below, calls for imposing constraints not only on dependence relations between pairs

of factor values but also on whole dependency structures. It follows that a causal relation

between A=αi and B=βi does not supervene on intrinsic properties of the (sets of) entities

represented by A=αi and B=βi, rather it obtains in virtue of the latter’s function in a whole

dependency structure. Finally, regularity theories assume causation to be deterministic.

The primary analysans of regularity theories consists in structures of Boolean depen-

dencies of sufficiency and necessity without redundancies. The principle, originally due to

Broad (1930) and famously shaped in Mackie’s (1974) INUS-theory, that only redundancy-

free Boolean dependencies track causation, is the essential theoretical ingredient that helped

overcome the problems incurred by the classical regularity theories (e.g. Hume 1748 and

Mill 1843). To render this principle precise, Graßhoff and May (2001) determined that only

minimally necessary disjunctions of minimally sufficient conditions of scrutinized effects

are amenable to a causal interpretation. Syntactically put, causally interpretable Boolean

dependencies must be expressible as biconditionals featuring a redundancy-free disjunc-

tive normal form on one side and the scrutinized effect on the other—we shall speak of

RDN-biconditionals, for short. Baumgartner (2013) suggested that this idea could be gen-

eralised for the analysis of multi-effect structures by simply conjunctively concatenating

atomic RDN-biconditionals with one effect to complex RDN-biconditionals with multiple

effects. Baumgartner (implicitly) assumed that by concatenating atomic RDN-biconditionals

no new redundancies could be introduced.

The first part of this paper will show that this assumption is false. The non-redundancy

principle is not as easily implemented for multi-effect structures as was hoped by Baum-

gartner (2013). Certain RDN-biconditionals in conjunctive sequences of such bicondition-

als, while internally free of redundancies, can themselves be redundant in the superordinate

structure and, as a result, fail to make a difference on the structural level. Hence, what counts

as a redundancy-free Boolean dependency structure does not only depend on the minimality

of sufficient and necessary conditions but also on the minimality of the conjunctive concate-

nation of the resulting RDN-biconditionals. That is, the regularity theoretic literature has so

far disregarded an important type of redundancy, viz. structural redundancies. Furthermore,

it will be shown that regularity theories can only consistently capture the difference-making

requirement if they are underwritten by a hitherto neglected background assumption stipu-

lating that the causal makeup of the world is not ambiguous.
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The second part of the paper then develops a new regularity theory that integrates that

metaphysical background, does justice to all types of redundancies, properly generalises

the basic idea behind modern regularity theories for multi-effect structures, and, thereby,

provides the first all-inclusive notion of Boolean difference-making. To this end, the resulting

theory abandons the idea, common to all its regularity theoretic predecessors, that multi-

effect structures can be modularly built up from single-effect structures, and replaces it by a

form of causal holism according to which causation is a holistic property that supervenes on

complete distributions of matters of fact and not on proper parts thereof.

2 Fundamentals

A regularity theory assumes that type-level causation is not fundamental but supervenes on

actual distributions of matters of fact, viz. on Humean mosaics (e.g. Lewis 1986, xi-x), which

amount to sets of configurations of natural properties coincidently instantiated by units of

observation—events, states of affairs, cases, or whatever other entities the preferred ontology

happens to furnish. The problem of rendering the notion of a natural property precise is

notoriously difficult. For the purposes of this paper, we bracket it and simply assume that all

henceforth analysed properties are natural. Moreover, as is common in the causal modelling

literature, we want to remain as non-committal as possible with respect to the ontology of

causation and, thus, refer to the causal relata simply as “factors taking values”.

Factors represent categorical properties that partition sets of units of observation either

into two sets, in case of binary properties, or into more than two (but finitely many) sets, in

case of multi-value properties. In the context of CCMs, factors representing binary properties

can be crisp-set or fuzzy-set (e.g. Thiem 2014); the former can take on the Boolean identity

elements 0 and 1 as possible values, whereas the latter can take on any (continuous) values

from the unit interval [0, 1]. Factors representing multi-value properties can take on any of

an open (but finite) number of possible values {0, 1, 2, . . . , n}. For simplicity of exposition,

we confine ourselves to crisp-set factors in this paper.

The focus on the crisp-set case allows us, for instance, to conveniently abbreviate the

explicit “Variable=value” notation, which generates convoluted syntactic expressions with

increasing model complexity. As is conventional in Boolean algebra, we write “A” for A=1

and “a” for A=0. While this shorthand simplifies the syntax of causal models, it introduces

a risk of misinterpretation, for it yields that the factor A and its taking on the value 1 are

both expressed by “A”. Disambiguation must hence be facilitated by the concrete context

in which “A” appears. Accordingly, whenever we do not explicitly characterise italicized
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(a)

# A B C D E
σ1 1 0 1 1 0
σ2 1 1 1 1 0
σ3 0 0 0 0 1
σ4 1 0 0 0 1
σ5 0 1 0 0 1
σ6 1 1 0 1 1
σ7 0 0 1 1 1
σ8 0 1 1 1 1

(b)

# A C D E
σ1 1 1 1 0
σ2 1 1 1 0
σ3 0 0 0 1
σ4 1 0 0 1
σ5 0 0 0 1
σ6 1 0 1 1
σ7 0 1 1 1
σ8 0 1 1 1

(c)

Figure/Table 1: An exemplary causal structure (a) (where “•” symbolises conjunction and
“�” expresses negation) with a corresponding complete Humean mosaic (b) and an incom-
plete one (c).

Roman letters as “factors”, we use them in terms of the shorthand notation. Moreover, we

write “A∗B” for the conjunction “A=1 and B=1”, “A + B” for the disjunction “A=1 or

B=1”, “A → B” for the conditional “If A=1, then B=1” (a + B), and “A ↔ B” for the

biconditional “A=1 iff B=1” (A∗B + a∗b).

To have a concrete context for our ensuing discussion, consider the causal structure over

the set of crisp-set factors F1 = {A,B,C,D,E} in the hypergraph of Figure 1a. This graph

has two non-standard elements that require introduction: arrows merged by “•” symbolise

conjunctive relevance, and “�” expresses that the negation of the factor at the tail of the arrow

is relevant. That is, in Figure 1a, A∗B and C are two alternative causes of D and a and c are

two alternative causes ofE. A possible interpretation of these factors might be the following.

Suppose a city has two power stations: a wind farm and a nuclear plant. Let A express that

the wind farm is operational and C that the nuclear plant is operational and let operationality

be sufficient for a nuclear plant to produce electricity, while a wind farm produces electricity

provided it is operational and there is wind (B). Hence, the wind farm being operational

while it is windy or the nuclear plant being operational (A∗B+C) are two alternative causes

of the city being power supplied (D). Whereas the wind farm or the nuclear plant not being

operational (a+ c) are two alternative causes of an alarm being triggered (E).

We assume that the structure is deterministic and, for simplicity, that there are no causal

paths leading to D and E other than the ones through A, B, and C (meaning that there are

no latent paths). It then follows that the elements of F1 can be instantiated in exactly the 8

types of configurations σ1 to σ8 in Table 1b. Type σ1, for instance, represents a configuration

where A, C, and D take the value 1 (i.e. the wind farm and the nuclear plant are operational
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and the city is power supplied) while B and E take value 0 (i.e. there is no wind and the

alarm is not triggered); type σ2 represents a configuration where all but E take value 1, etc.

Most logically possible configurations of the factors in F1 are determined to be inexistent

by Figure 1a. For example, C cannot be combined with d, for C causally determines D.

Overall, if the behaviour of the factors in F1 is underwritten by Figure 1a, Table 1b lists

all and only their empirically possible configurations, which, according to the metaphysical

embedding of regularity theories, are the configurations that exist in the actual world. As

there are no latent causal paths, Table 1b contains a complete distribution of possible matters

of fact for the underlying causal structure. We shall say that Table 1b is the complete Humean

mosaic for the structure in Figure 1a. By the lights of a regularity theory, that the causal

dependencies in Figure 1a obtain means nothing over and above Table 1b being a complete

Humean mosaic.

A regularity theory defines causation in terms of sufficiency and necessity relations

among factors representing different natural properties that are logically and conceptually

independent and not related in terms of metaphysical dependencies such as supervenience,

constitution, grounding, etc.—we shall speak of modally independent properties, for short.

Subject to the nature of the involved factors, sufficiency and necessity relations can be given

a classical or a fuzzy-logic rendering (cf. Baumgartner and Ambühl 2018). In the context of

this paper, we can confine ourselves to the classical rendering in terms of material implica-

tion: A is sufficient for B iff A→ B, and A is necessary for B iff B → A. Clearly, most of

these Boolean dependencies have nothing to do with causation. For example, the configura-

tionA∗b∗C∗e is sufficient forD in Table 1b, for this table does not feature the combination of

A∗b∗C∗e and d. The same holds for A∗B∗C∗e, A∗B∗c∗E, etc. Moreover, the disjunction of

all sufficient conditions ofD is necessary forD; that is, the following relations of sufficiency

and necessity obtain among D and the other factors in F1:

A∗b∗C∗e+ A∗B∗C∗e+ A∗B∗c∗E + a∗b∗C∗E + a∗B∗C∗E ↔ D (1)

(1) obviously does not track causation, as the factor E, for example, is part of every

sufficient condition of D, but neither E nor e are causally relevant for D in Figure 1a (i.e.

whether the alarm is triggered has no causal influence on the city’s power supply). Still,

some relations of sufficiency and necessity in fact reflect causation: in Table 1b, A∗B and

C are individually sufficient and their disjunction is necessary for D and they are the two

alternative causes of D. Accordingly, the crucial problem to be solved by a regularity theory

is to filter out those Boolean dependencies that track causation.
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The main reason why most structures of Boolean dependencies do not reflect causation

is that they tend to contain redundant elements, which are dispensable for those Boolean

dependencies to obtain. Structures of causal dependencies, by contrast, do not feature re-

dundancies. All components of a causal structure make their own distinctive difference to

the behaviour of the factors in that structure. Accordingly, the regularity theoretic analysans

must be required to be redundancy-free.

Non-redundancy (NR). A Boolean dependency structure over a set of factors F tracks cau-

sation only if every component of that structure is indispensable to account for the behaviour

of the elements of F.

When applied to sufficient and necessary conditions, (NR) entails that all factor values

that can be removed from such conditions without affecting the latter’s sufficiency and ne-

cessity are not difference-makers and, hence, not causally relevant. Only minimally sufficient

and minimally necessary conditions possibly track causation (Graßhoff and May 2001).

Minimal sufficiency. Let Σ be a conjunction of factor values Z1∗ . . . ∗Zn with 1 ≤ n. Σ is a

minimally sufficient condition of B, iff

(a) the factors in Σ and B represent different natural and modally independent properties,

(b) Σ→ B, and

(c) for no proper part Σ′ of Σ: Σ′ → B (where a proper part of a conjunction is that

conjunction reduced by at least one conjunct).

Minimal necessity. Let Π be a disjunction (in disjunctive normal form) of factor values

Z1∗ . . . ∗Zk + . . . + Zm∗ . . . ∗Zn with 1 ≤ n. Π is a minimally necessary condition of B iff

(a) the factors in Π and B represent different natural and modally independent properties,

(b) B → Π, and

(c) for no proper part Π′ of Π: B → Π′ (where a proper part of a disjunction is that disjunc-

tion reduced by at least on disjunct).

To illustrate, the first disjunct of (1), A∗b∗C∗e, is not a minimally sufficient condition of

D because it contains sufficient proper parts, for instance, b∗C∗e is itself sufficient for D in

Table 1b. But b∗C∗e is likewise not minimally sufficient, as it also contains sufficient proper

parts. Overall, D has three minimally sufficient conditions in Table 1b: A∗B, C, and e.2

2All calculations can be replicated using the R script in Appendix 2.
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Their disjunction is necessary for D, that is, D → A∗B +C + e. That necessary condition,

however, still contains the spurious dependence between e and D (i.e. the alarm not being

triggered is minimally sufficient for the city to be power supplied).3 The reason is that it

does not amount to a minimally necessary condition, as it contains a necessary proper part,

viz. A∗B + C. Whenever D is given, A∗B + C is given. The same does not hold for any

other proper part of A∗B +C + e. Or differently, e is dispensable to account for D because,

whenever e is given, so isA∗B+C. But the reverse does not hold: in configurations σ6 to σ8,

A∗B + C is given but e is not. In sum, the redundancy-free Boolean dependency structure

behind the behaviour of D in Table 1b is this one:

A∗B + C ↔ D (2)

Plainly, these are exactly those sufficiency and necessity relations that reflect the causes of

D in Figure 1a.

(2) is a biconditional featuring a minimally necessary disjunction of minimally sufficient

conditions ofD, in disjunctive normal form. Although the main operator of (2) is symmetric,

meaning thatD is likewise minimally necessary and sufficient for A∗B + C, the fact that (2)

has two disjuncts on the left-hand side and only one on the right-hand side yields a univocal

direction of determination: A∗B and C each determine D, but D does neither determine

A∗B nor C (i.e. the city being power supplied does not determine what plant the electricity

is coming from). Hence, A∗B and C must be the (deterministic) causes of D and not vice

versa (Baumgartner 2013, 95-96). If (2) had only one disjunct on the left-hand side, determi-

nation would be symmetric and, as a result, an unambiguous identification of the direction

of causation would be impossible. In section 5, we will introduce a background assumption

entailing that the complexity of our world is high enough to avoid such ambiguities.

In the regularity theoretic literature (e.g. Graßhoff and May 2001), expressions of the

form of (2) are commonly taken to be causally interpretable and, hence, furnished with a

label: minimal theories.4 As will become clear in section 3, however, minimally necessary

disjunctions of minimally sufficient conditions may—unlike (2)—fail to do justice to (NR)

and, correspondingly, to track causation. We prefer to reserve the label of a minimal theory

to expressions that are guaranteed to comply with (NR), and, thus, refer to all expressions of

type (2) as RDN-biconditionals (redundancy-free disjunctive normal form biconditionals):

3e is (at least) an INUS condition of D as defined by Mackie (1974, 62), whose INUS-theory is therefore
forced to interpret e as a cause of D. This is an instance of the so-called ‘Manchester Factory Hooters’ problem.

4Beirlaen, Leuridan, and Van De Putte (2018) use the label MINUS-formulas.
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RDN-biconditional. A true biconditional Π ↔ B is an RDN-biconditional for B iff Π

is a minimally necessary disjunction, in disjunctive normal form, of minimally sufficient

conditions of B. (Π is the antecedent and B the consequent of the RDN-biconditional.)

No elements can be eliminated from the antecedent of an RDN-biconditional without break-

ing a sufficiency or necessity relation expressed by that biconditional, that is, without ren-

dering that biconditional false. Every factor value in an RDN-biconditional’s antecendent is

indispensable to account for the behaviour of its consequent.

While the idea that the minimality of sufficient and necessary conditions is a precondi-

tion of their causal interpretability has been present in the literature at least since Graßhoff

and May (2001), it has so far not been explicitly connected to the intuition that causes are

difference-makers of their effects. To render that connection (formally) precise, reconsider

the RDN-biconditional (2) entailed by Table 1b and compare configurations σ5 and σ6 in

that table. In both of them, factor C takes the value 0 and B the value 1, while A and D

change from 0 in σ5 to 1 in σ6. In other words, all the disjuncts in (2) not containing A are

not instantiated in the pair {σ5, σ6} (i.e. all alternative sufficient conditions of D are absent),

whereas the contextual factor value B in combination with which A is sufficient for D is

constant. It follows that the change from 0 to 1 in D can only be accounted for by the corre-

sponding change from 0 to 1 in A. This is what it means for A to be indispensable in (2) to

account for the behaviour of D. Configurations as σ5 and σ6 constitute evidence that A is a

difference-maker of D. We shall, hence, say that {σ5, σ6} is a difference-making pair for A

with respect to D. To explicitly define that notion, we follow Mackie (1974, 66-71) in using

X as a placeholder for a (possibly empty) conjunction of factor values Zh∗ . . . ∗Zi and Y as

a placeholder for a (possibly empty) disjunction Zj∗ . . . ∗Zk + . . .+ Zm∗ . . . ∗Zn:

Difference-making pair. Let A∗X + Y ↔ B be true. A difference-making pair for A

w.r.t. B relative to A∗X + Y ↔ B is a pair of configurations {σi, σj} such that A and B

are given in σi and not given in σj , while X ∗ ¬Y holds in both σi and σj .

The (tight) connection between the minimality of sufficient and necessary conditions and

the difference-making intuition can now be rendered precise:

Theorem 1. A∗X + Y ↔ B is an RDN-biconditional iff there exist difference-making pairs

for all factor values in A∗X + Y .

As to Theorem 1, which is proven in Appendix 1, eliminating redundancies from a

true necessary disjunction of sufficient conditions is a means to ascertain the existence of
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difference-making pairs. If all component factor values have difference-making pairs, the

disjunction is internally redundancy-free. Internal redundancy-freeness is necessary but, as

the next section will show, not sufficient for causal interpretability.

3 Structural redundancies

The reason why the existence of difference-making pairs for all factor values in an RDN-

biconditional is not sufficient for causal interpretability is that the notion of a difference-

making pair is not defined in terms of the absence of alternative causes (cf. p. 3) but of

alternative sufficient conditions—which are not guaranteed to be causes. To see this, recon-

sider the structure in Figure 1a over the set of crisp-set factors F1 = {A,B,C,D,E} and

the corresponding complete mosaic in Table 1b. That mosaic not only entails (2) but also an

RDN-biconditional for E and one for C:

A∗B + C ↔ D (2)

a + c ↔ E (3)

a∗D + e ↔ C (4)

While E is the other effect in Figure 1a, C in fact is exogenous. Nonetheless, C can be

expressed as an internally redundancy-free Boolean function of its effects D and e (i.e. the

nuclear plant is operational iff the city is power supplied and the wind farm is not operational

or the alarm is not triggered). In other words, there exist difference-making pairs for all factor

values in the antecedent of (4) without any of them actually being causes of C. Even though

(4) expresses upstream dependencies, all currently existing regularity theories are forced

to causally interpret (4) because they take internal redundancy-freeness to be sufficient for

causation. As a result, they cannot reliably distinguish between downstream and upstream

dependencies and, thus, fall prey to a standard objection against regularity theories (cf. e.g.

Armstrong 1983, ch. 2).5

To avoid that consequence, we not only have to impose (non-causal) difference-making

constraints on individual Boolean dependencies but also on whole dependency structures.

Each substructure X of a complex causal structure S makes its own distinctive difference

5The example in Figure 1a was deliberately chosen for its simplicity. But this problem can arise in structures
of arbitrary complexity. To substantiate this, the replication script in Appendix 2 provides a test loop that
randomly draws causal structures, simulates Humeans mosaics from those structures, and checks whether these
mosaics entail RDN-biconditionals affected by this problem. It turns out that the check is positive in about 35%
of the draws.
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to the overall behaviour of the factors in S, that is, for every X in S it holds that S (with

X ) and S ′, which results from S by removing X , have different ramifications for the be-

haviour of (some of) the involved factors. Correspondingly, when RDN-biconditionals are

conjunctively combined to a complex Boolean dependency structure Ψ, Ψ tracks causation

only if each conjunct in Ψ makes its own distinctive difference to the behaviour of the factors

in Ψ. This, indeed, is a hitherto neglected source of (NR)-violations: RDN-biconditionals,

although internally redundancy free, can—as a whole—be redundant in superordinate struc-

tures and, hence, fail to make a difference due to a higher-order violation of (NR).

(4) is a case in point. It makes no difference to the behaviour of the factors in F1 beyond

(2) and (3). To show this, we conjunctively concatenate these RDN-biconditionals:

(A∗B + C ↔ D) ∗ (a + c ↔ E) ∗ (a∗D + e ↔ C) (5)

For convenience, let us call the conjunction of all RDN-biconditionals entailed by a Humean

mosaic δ the RDNB-conjunction of δ. It is a transparent and unambiguous representation

of all internally redundancy-free regularities inherent in δ and, as such, will be of central

relevance to our regularity theory of causation. (5) is the RDNB-conjunction of Table 1b.

(5) is true iff the factors in F1 take one of the value configurations in Table 1b. If a mosaic

coincides with the truth conditions of a Boolean dependency structure, we shall say that the

latter returns the former. That is, (5) returns Table 1b and, thereby, accounts for the behaviour

of the factors in F1. But (5) has a proper substructure that returns the exact same mosaic:

(A∗B + C ↔ D) ∗ (a + c ↔ E) (6)

(6), which results from (5) by eliminating (4), has precisely the same ramifications for the

behaviour of the factors in F1 as (5). (6) logically entails (4). The RDNB-conjunction (5) is

logically equivalent to its proper substructure (6). It follows that, although (4) expresses a

regularity entailed by Table 1b, it is dispensable to account for the behaviour of the factors

in F1 and, thus, violates (NR); it is spurious. By contrast, neither (2) nor (3) are redundant in

(5), for neither the conjunction of (2) and (4) nor the conjunction of (3) and (4) is logically

equivalent to (5). Both (2) and (3) make their own distinctive difference to the behaviour of

the factors in F1.

It is not a peculiarity of our example that the non-redundant RDN-biconditionals are ex-

actly the ones that correspond to causal (downstream) dependencies. Causes constrain the

variability of their effects, but not vice versa. Uncaused—that is, exogenous—factors can
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be combined in all logically possible configurations, meaning they have unconstrained vari-

ability. A complete Humean mosaic δ is composed of xn logically possible configurations of

n exogenous factors, each of which can take x values. For each of these xn configurations,

the values of the endogenous factors are constrained by the causal structure behind δ. In

deterministic systems, the behaviours of all endogenous factors can be expressed as func-

tions of the exogenous factors. In our framework, these functions correspond to downstream

RDN-biconditionals that express the behaviour of those factors with constrained variabil-

ity in terms of those factors with unconstrained variability and, therefore, suffice to capture

all the variability constraining inherent in δ. That is, downstream RDN-biconditionals suf-

fice to account for the behaviour of all the factors in δ, to the effect that upstream RDN-

biconditionals (which may also happen to be entailed by δ) are redundant for that purpose.

More generally, let Γ be δ’s RDNB-conjunction; the conjunction Ψ of all downstream RDN-

biconditionals entailed by δ imposes the exact same constraints on the variability of the fac-

tors in δ as Γ, meaning that Γ and Ψ are equivalent. Our example is a mere instance of that

general principle. The core of Table 1b corresponds to the 8 logically possible configurations

of the exogenous factors A, B, and C. As (2) and (3) express the behaviour of those factors

with constrained variability as functions of those factors with unconstrained variability, their

conjunction suffices to account for the behaviour of all the factors in F1. (4) is redundant for

that purpose.

To preclude a causal interpretation of redundant substructures of Boolean dependency

structures, not only sufficient and necessary conditions must be minimised but also the struc-

tures as a whole. More formally, conjunctions of RDN-biconditionals entailed by a Humean

mosaic δ only track causation if they are structurally minimal:

Structural minimality. Let δ be a Humean mosaic over the factor set Fδ and let Γ =

Φ1∗ . . . ∗Φn, n ≥ 1, be δ’s RDNB-conjunction. A conjunction Ψ = Φk∗ . . . ∗Φm, 1 ≤ k ≤
m ≤ n, of RDN-biconditionals from Γ is structurally minimal relative to δ iff

(a) Ψ is logically equivalent to Γ;

(b) there does not exist a Ψ′ that results from Ψ by eliminating at least one conjunct such

that Ψ and Ψ′ are logically equivalent.

That a conjunction of RDN-biconditionals Ψ is structurally minimal entails that it states the

same as δ’s RDNB-conjunction and that it does not contain an equivalent proper substructure,

which, in turn, means that Ψ and all of its substructures return different mosaics. It follows

that each conjunct Φi in Ψ has some ramification for the behaviour of the involved factors
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not shared by any other conjunct, and that, as a whole, Ψ accounts for the entire behavioural

variability inherent in δ.

Contrary to our example in Table 1b, the RDNB-conjunction of many mosaics can be

broken down into multiple structurally minimal conjunctions (for illustrations see section

5). In consequence, that a particular RDN-biconditional Φ1 is not contained in a particular

structurally minimal Ψ1 does not exclude that Φ1 is contained in another structurally mini-

mal conjunction Ψ2. Or differently, that Φ1 is not part of Ψ1 only means that Φ1 does not

have ramifications for the behaviour of the involved factors over and above the other RDN-

biconditionals in Ψ1, it does not, however, mean that Φ1 is structurally redundant simpliciter,

for it might be non-redundant relative to Ψ2. Φ1 is structurally redundant only if Φ1 is not

contained in any structurally minimal RDN-biconditional.

Structural redundancy. An RDN-biconditional Φi entailed by a Humean mosaic δ is struc-

turally redundant relative to δ iff Φi is not contained in any structurally minimal conjunction

of RDN-biconditionals relative to δ.

Any structurally redundant RDN-biconditional is redundant (simpliciter) to account for

the behaviour of the factors in Fδ, meaning it does not make a difference on the structural

level, that is, it does not track causation. By contrast, every RDN-biconditional that is con-

tained in some structurally minimal conjunction is structurally indispensable as it satisfies

the difference-making requirement on the structural level. Structural indispensability is nec-

essary but, as the next section will show, still not sufficient for causal interpretability.

4 Permanence

Real-life causal structures commonly are not as simple as the one in Figure 1a. Causes

amount to very complex conjunctions of factor values and, on the type level, there typi-

cally exist more than two alternative paths to one effect. To do justice to real-life causal

complexities while, at the same time, ensuring that Boolean dependency structures remain

manageable, Mackie (1974, 34-35, 63) relativizes regularities to what he calls a causal field,

that is, to a fixed configuration of context factors. A more realistic scenario than the one in

(6), thus, is that A, a, B, C, and c are mere parts of alternative causes of D and E within a

field F (where X1, X2, etc. and Y1, Y2 are placeholders for conjunctions and disjunctions,

respectively, of unmeasured factor values):

in F : (A∗B∗X1 + C∗X2 + Y1 ↔ D) ∗ (a∗X3 + c∗X4 + Y2 ↔ E) (7)
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In scientific discovery contexts, the constancy of the field, of course, is difficult to ensure,

which is why real-life data will often not be as noise-free as Table 1b. Hence, when causally

analysing data, strict Boolean dependencies can typically only be approximated. To this

end, CCMs provide various parameters of model fit (Ragin 2006). However, since the focus

of this paper is conceptual, we will not further discuss these methodological issues here.

Likewise, we abstain from making the field-relativity explicit and from using placeholders

for unmeasured conjunctions and disjunctions. Instead, we do justice to the complexity of

causal structures by assuming all Boolean dependency structures to be open for expansions,

that is, for the integration of further factors.

The remainder of this section will show that expanding Boolean dependency structures

provides an important additional handle to constrain their causal interpretability. What

counts as an RDN-biconditional is relative to the analysed factor set. That is, factors con-

tained in an RDN-biconditional relative to a set Fi may not be contained in an RDN-

biconditional relative to a superset Fj ⊃ Fi; and some sets faithfully reflect causation, while

others do not. To see this, reconsider the structure in Figure 1a and assume that it is analysed

without measuring the factor B, that is, relative to F2 = {A,C,D,E}. Consequently, one

causal path to D is missing from the analysis. The resulting list of empirically possible con-

figurations in Table 1c, thus, amounts to an incomplete Humean mosaic. It does not allow

for expressing the behaviour of D as a function of F2\{D}, because in the configurations

σ4 and σ6 all factors in F2\{D} are constant while D changes. The RDNB-conjunction of

Table 1c is structurally minimal and only features (3) and (4):

(a + c ↔ E) ∗ (a∗D + e ↔ C) (8)

Despite its structural minimality, (8) does not track causation, for C is not actually en-

dogenous in Figure 1a. The reason why (4) is not identified as spurious is that F2 is under-

specified, meaning that there exists a latent causal path to an endogenous factor that is not

constant in the corresponding causal field and, thus, induces a variation in the endogenous

factor that cannot be accounted for based on the factors in F2. In consequence, the Boolean

dependencies among the elements of F2 cannot be completely freed of redundancies.

Plainly, whether a factor set Fδ is underspecified depends on the underlying causal struc-

ture. Accordingly, in the conceptual context of analysing causation or in the epistemic con-

text of searching for the causal structure behind Fδ, Fδ cannot be assumed to be free of

underspecification (for this would presuppose clarity on causation and the causal structure

behind Fδ). Fortunately, neither context requires such an assumption because by gradu-
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ally expanding factor sets spurious regularities are identified. When F2 is expanded to F1,

there no longer are any varying latent paths. Thus, D becomes expressible as a function of

F1\{D}, meaning that (2) follows, which, as we have seen in the previous section, reveals

the spuriousness of (4). Generally, regularities that appear to be of a difference-making type

relative to a set Fδ, but in fact are spurious, are identified as such in the course of gradual

expansions of Fδ.

But in order to reliably reveal the spuriousness of Boolean dependencies, expansions of

factor sets must be suitable for causal modelling. A suitable expansion F′δ′ of a factor set

Fδ is a superset of Fδ, which is the result of introducing factors into Fδ representing natural

properties that are modally independent of one another and of the properties represented

by the elements of Fδ. A suitable expansion F′δ′ of Fδ reveals that an RDN-biconditional

Πi ↔ B, which is structurally indispensable relative to Fδ, features redundancies or is itself

redundant if there does not exist a structurally indispensable RDN-biconditional Πj ↔ B

over F′δ′ such that all components of Πi are also components of Πj . If there does not exist a

suitable expansion F′δ′ revealing redundancies in (or of) Πi ↔ B, Πi ↔ B is permanently

redundancy-free. A structurally indispensable RDN-biconditional tracks causation only if it

is permanently redundancy-free.

5 Ambiguities

Before we can assemble the analytical tools developed above in a new regularity theory,

we have to introduce a metaphysical background assumption that, although needed to con-

sistently implement (NR), has not been made transparent in the literature so far. The need

for that assumption arises from the problem of model ambiguities, which is a widespread

phenomenon in all causal modelling frameworks (e.g. Spirtes et al. 2000, 59-72; Eberhardt

2013). A regularity theory is confronted with a model ambiguity when a mosaic entails more

than one RDN-biconditional for at least one effect Z. Two cases must be distinguished: ei-

ther (i) it is possible to interpret the different RDN-biconditionals of Z as representing (dis-

tinct aspects/levels of) one and the same causal structure or (ii) that is not possible. In case

(i), we shall speak of a mere functional ambiguity, whereas case (ii) amounts to a genuine

causal ambiguity.

We illustrate case (i) with the configurations in Table 2a, again over the factor set F1 =

{A,B,C,D,E}. The only factors in that table whose behaviour can be expressed as a

function of other factors in F1 are C and E. This is the RDNB-conjunction of Table 2a:
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# A B C D E
σ1 0 0 0 0 0
σ2 1 0 1 0 1
σ3 0 1 1 0 1
σ4 1 1 1 0 1
σ5 0 0 0 1 1
σ6 1 0 1 1 1
σ7 0 1 1 1 1
σ8 1 1 1 1 1

(a)

C D

E

A B

(b)

C

D

E

A B

(c)

Figure/Table 2: Table (a) entails two non-equivalent RDN-biconditionals for E. Structures
(b) and (c) both return Table (a).

(A + B ↔ C) ∗ (C + D ↔ E) ∗ (A + B + D ↔ E) (9)

That is, two RDN-biconditionals for E are entailed; one expressing E as a function of C
(and D) and another one expressing it as a function A + B (and D). However, in light of

the first conjunct of (9), which states the equivalence of C and A + B, these two RDN-

biconditionals can be transformed into one another by interchanging C and A + B. Hence,

they have exactly the same ramifications for the behaviour of the factors in F1, which, in

turn, entails that (9) contains redundant proper parts, meaning it is not structurally minimal.

It can be broken down into two structurally minimal conjunctions:

(A + B ↔ C) ∗ (C + D ↔ E) (10)

(A + B ↔ C) ∗ (A + B + D ↔ E) (11)

When causally interpreted, (10) expresses the causal chain in Figure 2b and (11) the

common-cause structure in Figure 2c—the core difference being that C is a cause of E in

the former but not in the latter structure.

This type of ambiguity is ubiquitous in deterministic causation. Baumgartner (2008a) has

dubbed it the causal chain problem: to every deterministic chain there exists an empirically

indistinguishable common-cause structure. In a nutshell, the reason is that the behaviour

of an outcome Z in a deterministic chain can be expressed as a function f1 of Z’s direct

causes, which, in turn, are functions of their own direct causes; it follows that Z can also

be expressed as a function f2 that is the result of replacing some of Z’s direct causes in f1
by their direct causes (i.e. Z’s indirect causes) and eliminating redundancies. Baumgartner

(2008a) proposes to solve the causal chain problem by (suitably) expanding factor sets to
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# A B C D
σ1 0 0 0 0
σ2 0 0 1 0
σ3 1 1 1 0
σ4 1 0 0 1
σ5 0 1 0 1
σ6 1 1 0 1
σ7 1 0 1 1
σ8 0 1 1 1

(a)

# A B C D E
σ1 0 0 0 0 0
σ2 1 0 0 0 0
σ3 0 0 1 0 0
σ4 1 0 1 0 0
σ5 1 1 1 0 0
σ6 0 1 0 1 0
σ7 1 1 0 1 0
σ8 0 1 1 1 0
σ9 0 0 0 0 1
σ10 0 0 1 0 1
σ11 1 1 1 0 1
σ12 1 0 0 1 1
σ13 0 1 0 1 1
σ14 1 1 0 1 1
σ15 1 0 1 1 1
σ16 0 1 1 1 1

(b)

A∗b+ a∗B + A∗c↔ D (12)
A∗b+ a∗B +B∗c↔ D (13)

A∗b∗E + a∗B +B∗c↔ D (14)

Table 3: Table (a) entails two logically equivalent RDN-biconditionals for D. Table (b)
results from (a) by expansion and entails only one RDN-biconditional for D.

check whether the ambiguities disappear. In our example, if the dependence between C and

E vanishes in mosaics over supersets of F1,C is not a cause ofE and the underlying structure

is of common-cause form. If, by contrast, that dependence is permanent across factor set

expansions, the underlying structure is a chain. In that case, both RDN-biconditionals of E

track causation: one expresses direct causation, the other indirect causation. That means both

structurally minimal conjunctions (10) and (11) can be causally interpreted jointly, which is

why they constitute a mere functional ambiguity.

It does not hold generally, however, that multiple RDN-biconditionals with identical

consequents can be causally interpreted jointly. To illustrate case (ii), consider Table 3a

over F3 = {A,B,C,D}. The RDNB-conjunction of Table 3a consists of two RDN-

biconditionals for D, (12) and (13), which are logically equivalent. When causally inter-

preted, they both identify the following set of causally relevant factor values {A, a,B, b, c}.
However, they place a different Boolean ordering over these causes: according to (12), the

set of alternative causes of D is {A∗b, a∗B,A∗c}; according to (13), it is {A∗b, a∗B,B∗c}.
If (12) and (13) are causally interpreted jointly, it follows that D has four alternative causes:

A∗b, a∗B, A∗c, and B∗c. Such an interpretation, however, violates the difference-making

requirement subject to which a cause must make a difference to its effect when all alternative

causes are absent: there does not exist a difference-making pair for cw.r.t.D in Table 3a such
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that the background constantly features A ∗¬(A∗b+a∗B+B∗c) or B ∗¬(A∗b+a∗B+A∗c).

That is, (12) and (13) cannot both be causally interpreted; only one of them possibly tracks

causation. But in light of their logical equivalence it is completely undetermined which one.

Table 3a thus yields a proper causal ambiguity.

If Table 3a records the possible configurations of the factors in F3 relative to some field,

in which further relevant factors are constant, the ambiguity between (12) and (13) can be

resolved by suitably expanding F3. To make this concrete, suppose that integrating the

factor E into F3 yields the mosaic in Table 3b, which contains Table 3a as a proper part

(highlighted with grey shading). Whenever the added factor E takes the value 1, the factors

in F3 are instantiated in the configurations recorded in Table 3a; but when E takes the value

0, further configurations are possible. Table 3b only entails one RDN-biconditional for D,

viz. (14). That is, while it is impossible to determine whether D is caused by A∗c or B∗c

relative to Table 3a, Table 3b resolves that ambiguity in favour of B∗c.

Contrary to the case of functional ambiguities, the resolvability of causal ambiguities

is crucial for a regularity theory aiming to spell out causation in difference-making terms.

If Table 3a could not be expanded (say, because it is complete), (12) and (13) would be

permanently redundancy-free, both internally and structurally, which would entail that they

both identify difference-makers of D. As we have seen above, however, that cannot be

true because it would violate the difference-making requirement. Therefore, in order to

consistently exploit the idea that causes must make a difference to their effects when all

alternative causes are absent, Table 3a must be expandable such that the ambiguity between

(12) and (13) is resolved.

While it is easy to devise artificial toy worlds (e.g. in thought experiments targeting

the adequacy of theories of causation) without determinate causal structures, we take it as

a given that our world is not of this kind. Its causal makeup may be beyond our epistemic

reach, but it is ultimately one determinate makeup. A regularity theory, therefore, needs to be

underwritten by the metaphysical background assumption that causal ambiguities are always

due to an insufficient evidential basis, rather than to the ultimate causal indeterminateness of

the world. In principle, causal ambiguities can always be resolved by expanding factor sets.

In other words, we assume causal uniqueness for complete mosaics:

Causal Uniqueness (CU). Every complete Humean mosaic corresponds to one determinate

causal structure.

One corollary of (CU) deserves separate mention: (CU) ensures that complete mosaics

entail dependency structures with at least two minimally sufficient conditions for each effect.
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The reason is that, as we have seen in section 2 (p. 8), Boolean dependency structures asX ↔
B induce a symmetry of determination leaving the direction of causation ambiguous. Subject

to (CU), all RDN-biconditionals entailed by complete mosaics have a minimal complexity

of X1 +X2 ↔ B, which exhibits an unambiguous direction of determination.

Being a background assumption, (CU) specifies a precondition for a regularity theory

to apply. If there exist worlds whose complete mosaics give rise to causal ambiguities, a

regularity theory does not apply to them. That either means that there is no causation in

such worlds or, if there is, that another theoretical framework (viz. a non-difference-making

theory) needs to be invoked. We do not want to speculate about the existence of worlds with

indeterminate difference-making relations. What matters for our purposes is merely that our

world is not of this kind. In the end, a regularity theory achieves its aim if it succeeds in

analysing causation in the actual world.

6 A new regularity theory

We have now collected all ingredients for a new regularity theory of causation. To present

that theory, we will proceed in two steps. First, we introduce the notions of a minimal

theory and of an atomic minimal theory, and second, we define causal relevance in terms of

containment in permanently redundancy-free atomic minimal theories.

Roughly, a minimal theory is a structurally minimal conjunction of (one or more) RDN-

biconditionals. As shown above, the minimality of such a conjunction hinges on the su-

perordinate dependency structure in which it is embedded, which, in turn, depends on the

Humean mosaic over an analysed factor set. A Humean mosaic δ over a set Fδ is a set of the

empirically possible value configurations of the factors in Fδ. The anti-necessitarian tradi-

tion in which regularity theories are embedded provides an actualist rendering of the notion

of an empirically possible configuration. Causation then supervenes on the actually existing

distribution of matters of fact, which, in turn, is a brute fact of our world. If Fδ contains

exogenous factors on all causal paths in the structure ∆ behind δ, the corresponding mo-

saic δ is complete. Subject to (CU), every complete mosaic is underwritten by exactly one

causal structure ∆. Complete mosaics allow for complete redundancy elimination. Hence,

a minimal theory entailed by a complete δ is free of all redundancies and, thereby, identifies

Boolean difference-makers—it is guaranteed to truthfully reflect ∆.

However, causal relevance cannot simply be defined in terms of minimal theories entailed

by complete mosaics. The reason was anticipated in section 4: clarity on mosaic complete-

ness presupposes clarity on causal paths, which is exactly what a theory of causal relevance
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is supposed to supply and thus, on pain of circularity, cannot presuppose. This problem could

be avoided by resorting to all-encompassing world-mosaics featuring the empirically possi-

ble value configurations of all (modally independent) factors throughout spacetime. World-

mosaics do not presuppose clarity on causation and still, as no causal paths can be latent in

world-mosaics, allow for complete redundancy elimination. However, analysing causation

in terms of minimal theories entailed by world-mosaics would yield a theory according to

which causation between any pair of factor values depends on the distribution of matters of

fact throughout spacetime. Such a theory would not be methodologically implementable,

as it would induce infeasible demands on data collection and processing. In fact, however,

mosaics as the ones in Tables 1b, 2a, and 3b, which fall far short of world-mosaics, pro-

vide reliable evidence on causal relations; and indeed, configurational comparative methods

(CCMs) exploit that evidence. Since a core purpose of the theory developed here is to con-

ceptually underwrite CCMs, avoiding the circularity threat by defining causation in terms of

world-mosaics is not an option for us.

Accordingly, in the first step of our analysis, we neither confine the notion of a minimal

theory to complete mosaics nor to world-mosaics. A minimal theory inferred from a mosaic

δ over any factor set—whether underspecified or not—amounts to a transparent represen-

tation of the difference-making evidence contained in δ, which is the chief characteristic of

causation for a regularity theory. If δ is complete, that evidence is faithful to the underly-

ing causal structure ∆, but if δ is incomplete, it may misleadingly suggest the causal nature

of some dependencies which in fact are spurious. As shown in section 4, however, factor

set expansions gradually rectify minimal theories entailed by a misleading δ by eliminating

spurious dependencies and, thereby, ‘zooming in’ on the true ∆—thus the aforementioned

second step in our analysis.

Building on the conceptual inventory previously introduced, the following is our defini-

tion of the notion of a minimal theory (simpliciter).

Minimal Theory. Let δ be a Humean mosaic over the factor set Fδ. A minimal theory for

δ over Fδ is a conjunction Ψ = Φ1∗ . . . ∗Φn, 1 ≤ n, of RDN-biconditionals such that the

following conditions hold:

(a) Ψ is structurally minimal relative to δ,

(b) any two Φi and Φj in Ψ have different consequents.

Condition (a) entails that Ψ is logically equivalent to the RDNB-conjunction of δ (i.e. the

conjunction of all RDN-biconditionals entailed by δ) and that Ψ does not contain a logically
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equivalent proper part. While the purpose of that condition is clear (see section 3), condition

(b) requires explication.

As shown in the previous section, mosaics sometimes entail multiple RDN-biconditionals

with identical consequents, some of which—the causally ambiguous ones—cannot be

causally interpreted jointly. In order for a minimal theory Ψ to exhibit the difference-making

evidence in δ, Ψ must be a candidate representation of the causal structure behind δ. To this

end, it must not comprise any RDN-biconditionals that cannot be causally interpreted jointly.

The structural minimality restriction in (a) prohibits the concatenation of some causally am-

biguous RDN-biconditionals—for instance, of (12) and (13)—but not of all of them. There

exist structurally minimal conjunctions comprising RDN-biconditionals with identical con-

sequents. Such conjunctions cannot be interpreted as one causal structure because, in a

structurally minimal conjunction, two RDN-biconditionals with an identical consequent Z

have non-equivalent ramifications for the behaviour of Z. In deterministic causal structures,

where the behaviour of no outcome follows multiple non-equivalent functional patterns, this

amounts to a causal ambiguity with respect to Z.6 The purpose of condition (b), hence, is to

ensure that minimal theories do not comprise causally ambiguous RDN-biconditionals.

To make this concrete, consider Table 4a, which entails various RDN-biconditionals for

various outcomes (for an overview cf. the replication script in Appendix 2). One conjunction

of these RDN-biconditionals that satisfies condition (a) and, nonetheless, comprises two

RDN-biconditionals with identical consequents is the following:

(a + b + c ↔ D) ∗ (A + C ↔ E) ∗ (A + B ↔ E) (15)

(15) cannot be interpreted as one causal structure. The two RDN-biconditionals of E cannot

be seen as expressing direct and indirect causal relevance relations in a chain because the only

conceivable chain-interpretation of (15) would be thatB (resp. C) causesE via C (resp.B),7

but Table 4a entails no RDN-biconditionals for either B or C, which hence are exogenous.

Neither can A, B, and C be interpreted as alternative causes of E because that interpretation

violates the difference-making requirement: there is no pair of configurations in Table 4a

such that both A and B are absent and a variation of C is associated with a variation of

E. Subject to condition (b), the two RDN-biconditionals of E cannot be combined in one

6As (9) illustrates, not all conjunctions of RDN-biconditionals with identical consequents yield causal am-
biguities. (9), however, is not structurally minimal.

7There cannot be a chain from A (B) via B (A) to E because A and B are disjuncts in the same RDN-
biconditional, and disjuncts in an RDN-biconditional cannot be directly causally related, otherwise that an-
tecedent would contain redundancies.
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# A B C D E
σ1 0 0 0 1 0
σ2 1 1 1 0 1
σ3 1 0 0 1 1
σ4 1 1 0 1 1
σ5 1 0 1 1 1
σ6 0 1 1 1 1

(a) (b)

# A B C D E F G
σ1 0 0 0 0 0 0 0
σ2 0 0 0 0 0 1 0
σ3 1 0 0 1 0 0 1
σ4 0 1 0 0 1 0 1
σ5 0 0 1 0 1 0 1
σ6 0 1 1 0 1 0 1
σ7 1 1 0 1 1 0 1
σ8 1 0 1 1 1 0 1
σ9 1 1 1 1 1 0 1
σ10 1 0 0 1 0 1 1
σ11 0 1 0 1 0 1 1
σ12 1 1 0 1 0 1 1
σ13 0 0 1 0 1 1 1
σ14 1 0 1 1 1 1 1
σ15 0 1 1 1 1 1 1
σ16 1 1 1 1 1 1 1

(c)

Figure/Table 4: Table (a) entails two RDN-biconditionals for E. Figure (b) is a switching
structure with switch F , and Table (c) the corresponding mosaic.

minimal theory but must be allocated to different theories (cf. the script in Appendix 2).

More generally, whenever a mosaic δ yields a causal ambiguity, the RDNB-conjunction of

δ must be broken down in as many minimal theories as there are causal structures possibly

underwriting δ. The overall causal inference to be drawn from a δ entailing multiple minimal

theories Ψ1 to Ψn is (inclusively) disjunctive: the evidence in δ is such that Ψ1 or Ψ2 or . . . or

Ψn corresponds to the underlying causal structure ∆.

A minimal theory entailed by a mosaic δ rigorously implements (NR) relative to δ. To

properly read relations of Boolean difference-making off of minimal theories, a further spec-

ification is needed. To see this, consider the switching structure in Figure 4b with the mosaic

in Table 4c. The ultimate effect, G, has two alternative causes, D + E, which themselves

have two alternative causes each, A + B∗F for D and C + B∗f for E. Importantly, factor

F functions as a switch for the causal impact of B on D and E. The combination of B

and F causes D, and the combination of B and f causes E. But independently of F , B is

sufficient for G. Hence, factor F only makes a difference to whether the influence of B on

G is mediated by D or by E but not to G itself. Nonetheless, F and f appear in minimal

theories with G as ultimate outcome. In total, Table 4c entails four minimal theories (which

constitute a functional ambiguity):
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(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (D + E ↔ G) (16)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (A+B + C ↔ G) (17)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (A+B + E ↔ G) (18)

(A+B∗F ↔ D) ∗ (C +B∗f ↔ E) ∗ (B + C +D ↔ G) (19)

That the factor F is contained in these minimal theories apparently must not be taken to

entail that F is a difference-maker ofG. F is not contained in minimally sufficient conditions

of G and, correspondingly, it does not appear in an RDN-biconditional for G in any of the

theories (16) to (19). That, in turn, shows that it is not membership in minimal theories

(simpliciter) that tracks difference-making relations, but membership in RDN-biconditionals

contained in minimal theories, which we label atomic minimal theories:

Atomic Minimal Theory. An atomic minimal theory Φ of B for a Humean mosaic δ over

the set of factors Fδ is an RDN-biconditional for B contained (as a conjunct) in a minimal

theory Ψ for δ over Fδ.

Now we are in a position to define causal relevance (type-level causation). We define

it not just for single factor values but for Boolean expressions in disjunctive normal form

(DNF). That, on the one hand, maximises generality but, on the other, bends ordinary speech

a bit. By ascribing causal relevance to a DNF as Z1∗Z2 +Z3 we mean (i) that Z1, Z2, and Z3

are causally relevant factor values, (ii) that Z1 and Z2 are jointly relevant, and (iii) that Z1∗Z2

and Z3 are alternatively relevant. Moreover, we say that a DNF Ω is contained in another

DNF Π iff every conjunction in Ω is a conjunct in a conjunction in Π, and any two disjuncts

in Ω are conjuncts in two different disjuncts in Π.

Causal Relevance (CR). Let Ω be a Boolean expression in DNF. Ω is causally relevant for

B iff there exists a set of (modally independent) factors Fδ containing B and all factors in

Ω, such that δ is a Humean mosaic over Fδ, and the following conditions hold:

(a) there exists an atomic minimal theory Π ↔ B for δ over Fδ such that Ω is contained in

Π,

(b) for every suitable expansion F′δ′ ⊃ Fδ and corresponding mosaic δ′: there exists an

atomic minimal theory Π′ ↔ B for δ′ over F′δ′ such that Ω is contained in Π′.

The core of (CR) can be less formally expressed as follows: Ω is causally relevant for B iff

Ω is contained in the antecedent of a permanently redundancy-free atomic minimal theory

of B. Ω can have any complexity. If Ω is a single factor value A, a conjunction A∗C, or
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a disjunction A + C, (CR) provides the conditions under which, respectively, A is causally

relevant, A and C are jointly relevant, and A and C are alternatively relevant for B.

Before discussing some implications of (CR) in the next section, two features of (CR)

deserve separate emphasis. First, (CR) is formulated against the background of (CU), which

ensures that suitably expanding factor sets will always resolve causal ambiguities. That is, if

an incomplete mosaic entails multiple minimal theories that cannot be causally interpreted

jointly, only as many will survive after expansion as can be causally interpreted jointly.

Second, causal relevance as defined in (CR) is non-transitive. It is possible for Z1 to be

causally relevant for Z2, which itself is causally relevant for Z3, without Z1 being causally

relevant for Z3. The switching structure in Figure 4a is a case in point. Presuming that the

minimal theory (16) is permanently redundancy-free, it follows that F is causally relevant

for both D and E, which are relevant for G, but F is not causally relevant for G.

7 Discussion

While (CR) draws on analytical tools from previous regularity theoretic proposals (Mackie

1974, Graßhoff and May 2001; Baumgartner 2008b, 2013), it assembles these tools in a

way that implicates a departure from an implicit consensus among its predecessors. The

latter all entail (or presuppose) that multi-effect structures can be modularly built up from

single-effect structures, meaning that, in order to identify the causes of some effect B, it

suffices to identify members of permanently redundancy-free sufficient and necessary condi-

tions ofB. This paper suggests that this modularity principle cannot be sustained. According

to (CR), the redundancy-freeness of Boolean dependency structures and, thus, their causal

interpretability cannot be assessed for single-effect structures individually but only for com-

plete multi-effect structures. As a result, (CR) entails a form of causal holism according to

which causation is a holistic property that supervenes on complete Humean mosaics and not

on proper parts thereof.

That holism has a number of notable ramifications. For instance, it yields that (CR) is

more restrictive in sanctioning the causal interpretability of Boolean dependency structures

than its predecessor theories: all dependencies that can be causally interpreted according to

(CR) can also be causally interpreted according to its predecessors but not vice versa. This is

particularly important in light of the fact that most of the classical objections levelled against

regularity theories since the times of Hume and Mill contend that these theories overgenerate,

meaning they stipulate the causal interpretability of regularities which in fact are spurious.

It follows that those overgeneration problems that have already been solved by (CR)’s pre-
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decessors are solved correspondingly by (CR); this concerns in particular the problems of

empty and single-case regularities (cf. e.g. Armstrong 1983) as well as the problem of distin-

guishing spurious from causal regularities as most famously instantiated in Mackie’s (1974,

83-87) ‘Manchester Factory Hooters’ example. For detailed discussions of these issues the

reader is hence referred to Graßhoff and May (2001) and Baumgartner (2008b, 2013).

Section 3 has shown, however, that one overgeneration problem has not been addressed

by (CR)’s predecessors. It can happen that the behaviour of exogenous factors is express-

ible in terms of RDN-biconditionals featuring their own effects. (CR)’s predecessors cannot

reliably distinguish between upstream and downstream regularities because they do not en-

sure that all substructures of a complex Boolean dependency structure make a difference

on the structural level. (CR) solves that problem by prohibiting the causal interpretation of

structurally redundant RDN-biconditionals.

Of course, regularity theories have also been objected to on the ground that they under-

generate in case of irreducible indeterminism (cf. e.g. Dowe and Noordhof 2004). While

standard interpretations of quantum mechanics advocate the existence of irreducibly inde-

terministic processes, non-standard interpretations disagree. Hence, there is no consensus

on whether our universe is deterministic or not. Moreover, even if irreducibly indeterminis-

tic processes exist, there are many open questions—as for instance raised by phenomena of

the EPR type—with respect to the causal interpretability of these processes (cf. e.g. Healey

2010). In the present context, we can sidestep these foundational questions, for, as indicated

in the introduction, regularity theories aim to capture the intuition that causation is a deter-

ministic form of dependence, that is, they analyse deterministic variants of causation (only).

The notion of causal relevance spelled out in (CR) must, hence, be understood in terms of

deterministic causal relevance. If there should turn out to exist irreducibly indeterministic

causal relevance relations, other theoretical frameworks would have to be invoked.

Another upshot of the causal holism entailed by (CR) is that unmistakable causal in-

ferences can only be drawn from complete Humean mosaics. It is, of course, questionable

whether complete Humean mosaics for other than artificial causal structures are ever avail-

able to human reasoners. That is, causal relevance as defined in (CR) can typically only

be approximated in scientific practice. Nonetheless, atomic minimal theories inferred from

incomplete mosaics transparently represent the causal evidence contained in those mosaics.

Even though, in the absence of complete mosaics, causal inferences run a risk of being re-

futed in the light of factor set expansions, such inferences become increasingly warranted the

longer memberships in minimal theories are stable throughout a series of expansions. That
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is, the inference to causal relevance as defined by (CR) is inherently inductive, which—we

contend—nicely captures the nature of causal inference in scientific practice.

Finally, as (CR) is the first regularity theory that eliminates structural redundancies and,

thus, provides the first notion of Boolean difference-making that rigorously implements

(NR), configurational comparative methods, as QCA or CNA, which output Boolean causal

models, are well-advised to understand causal relevance in terms of (CR). QCA focuses on

single-effect structures and considers building multi-effect structures as optional. (CR) calls

for a revision of that approach. Reliable Boolean causal inference not only requires expand-

ing the evidence base on the causes of single effects, but necessitates also aggregating single-

to multi-effect structures. While such an aggregation has always been an essential element

in the procedural protocol of CNA, CNA has, so far, conceived of this aggregation in too

simplistic a manner: it solely conjunctively concatenates minimal biconditionals inferred

from processed data. According to (CR), an additional iteration of (structural) redundancy

elimination is required.

We end with two caveats. First, note that (CR) does not distinguish between direct and

indirect causal relevance. In light of the non-transitivity of (CR)-defined causal relevance,

indirect relevance cannot simply be spelled out in terms of the transitive closure of direct rel-

evance, which, in turn, is accounted for in terms of containment in permanently redundancy-

free atomic minimal theories. Discriminating between direct and indirect relevance presup-

poses a notion of a causal chain, which, for reasons of space, we cannot properly introduce

here. Second, note again that (CR) provides a notion of type-level causation. Token-level

causation or actual causation must be cashed out in terms of a suitable spatiotemporal instan-

tiation of a type-level structure. Building a corresponding token-level account on the basis

of (CR) must also await another occasion.

Appendix 1

In this appendix, we prove Theorem 1, p. 9, which states the following equivalence:

(i) A∗X + Y ↔ B is an RDN-biconditional.

↔

(ii) There exist difference-making pairs for all factor values in A∗X + Y .

For our proof, recall that X stands for a (possibly empty) conjunction Zh∗ . . . ∗Zi, and Y for

a (possibly empty) disjunction Zj∗ . . . ∗Zk + . . . + Zm∗ . . . ∗Zn. Moreover, let A denote
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an arbitrary factor value on the left-hand side of the biconditional in (i). We prove both

entailment directions separately.

(i)→ (ii):

(i) entails that A∗X + Y is minimally necessary for B. It follows that Y alone is not

necessary for B, which means that there exists a configuration σi featuring both B = 1 and

Y = 0. Still, as to (i), A∗X + Y is necessary for B. Since it holds that B = 1 while

Y = 0 in σi, σi must feature A∗X = 1 (otherwise B could not take the value 1 in σi). In

sum, σi features A = B = X = 1 and Y = 0. (i) moreover entails that A∗X is minimally

sufficient for B. It follows that X alone is not sufficient for B, which means that there exists

a configuration σj featuring A = B = 0 and X = 1. Factor B only takes the value 0 if all

of its other sufficient conditions in Y are absent, hence, Y = 0 in σj . In sum, σj features

A = B = Y = 0 andX = 1. The pair {σi, σj} is a difference-making pair for A w.r.t.B. As

A denotes an arbitrary factor value, the above argument can be repeated for every element

of A∗X + Y . This proves that if (i) holds, there exists a difference-making pair for every

factor value in A∗X + Y .

(ii)→ (i):

The notion of a difference-making pair is defined for the elements of antecedents (in DNF)

of true biconditionals of the form A∗X + Y ↔ B. Thus, (ii) entails that A∗X + Y ↔ B

is true, which, in turn, means that A∗X and every disjunct in Y is sufficient for B. As to

(ii), moreover, there is a configuration σj featuring A = B = Y = 0 and X = 1, meaning

that X alone is not sufficient for B. It follows that A is a non-redundant part of the sufficient

condition A∗X . Since A is an arbitrary factor value in A∗X + Y , this argument can be

repeated for every other conjunct of A∗X as well as for every conjunct of every disjunct in

Y , meaning that A∗X + Y is exclusively composed of minimally sufficient conditions of B.

Furthermore, (ii) entails thatA∗X + Y is necessary forB and that there exists a configuration

σi featuring A = X = B = 1 and Y = 0, meaning that Y alone is not necessary for B. In

other words, A∗X is a non-redundant part of the necessary conditionA∗X + Y . By the same

token, every disjunct in Y can be shown to be non-redundant, meaning that A∗X + Y is a

minimally necessary condition ofB. In sum, A∗X + Y is a minimally necessary disjunction

of minimally sufficient conditions of B, that is, an RDN-biconditional.
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Appendix 2
# R replication script

# ####################

# Required R package

library(cna)

# Fundamentals

# ------------

# Table 1b:

dat1 <- allCombs(c(2,2,2,2,2)) -1

(tab1b <- selectCases("(A*B + C <-> D)*(c + a <-> E)", dat1))

# Minimally sufficient conditions for D:

ana1 <- cna(tab1b, what="mac")

subset(msc(ana1), outcome=="D")

# RDN-biconditional for D:

subset(asf(ana1), outcome=="D")

# Structural redundancies

# -----------------------

# RDNB-conjunction for Table 1b:

ana1

# Structurally minimal conjunction of RDN-biconditionals:

minimalizeCsf(ana1)

# Test loop estimating the frequency of structural redundancies:

n <- 100

score <- vector("list", n)
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for(i in 1:n){

cat(i, "\n")

x <- randomCsf(full.tt(8), n.asf=3, compl=2)

y <- selectCases(x)

score[[i]] <- csf(cna(y, details = T, rm.dup.factors = F),1)

}

eval <- Filter(function(x) dim(x)[1] > 0,

lapply(score, function(x) subset(x, x$redundant==TRUE)))

# Structural redundancy ratio:

length(eval)/n

# Permanence

# ----------

# Table 1c:

(tab1c <- tt2df(tab1b)[,-2])

ana2 <- cna(tab1c)

# Structurally minimal conjunction of RDN-biconditionals:

minimalizeCsf(csf(ana2)$condition, dat1)

# Ambiguities

# ----------

# Table 2a:

(tab2a <- selectCases("(A+B<->C)*(C+D<->E)", dat1))

cna(tab2a)

# Tables 3a/b:

dat2 <- allCombs(c(2,2,2,2)) -1

(tab3a <- selectCases("A*b + a*B + A*c <-> D", dat2))

# Two structurally minimal RDN-biconditionals:

cna(tab3a)

# Ambiguity resolution through factor set expansion:

(tab3b <- selectCases("A*b*E + a*B + B*c <-> D", dat1))

cna(tab3b)

# A new regularity theory

# ----------------------

# Table 4a:

(tab4a <- selectCases("(a+b+c<->D)*(A+C<->E)*(A+B<->E)", dat1))

ana1 <- cna(tab4a, details=T)

# All RDN-biconditionals entailed by Table 4a:

asf(ana1)$condition

# All minimal theories for Table 4a:

(mt <- as.vector(minimalizeCsf(subset(csf(ana1, Inf),

exhaustiveness==1)$condition,dat1)$condition))

# Table 4c:

dat3 <- allCombs(rep(2,7)) -1

(tab4c <- selectCases("(A + B*F <-> D)*(C + B*f <-> E)*(D + E<->G)",

dat3))

cna(tab4c)
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