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Abstract 

The Winograd Schema (WS) challenge, proposed as an al-
ternative to the Turing Test, has become the new standard 
for evaluating progress in natural language understanding 
(NLU). In this paper we will not however be concerned with 
how this challenge might be addressed. Instead, our aim 
here is threefold: (i) we will first formally „situate‟ the WS 
challenge in the data-information-knowledge continuum, 
suggesting where in that continuum a good WS resides; (ii) 
we will show that a WS is just a special case of a more gen-
eral phenomenon in language understanding, namely the 
missing text phenomenon (henceforth, MTP) - in particular, 
we will argue that what we usually call thinking in the pro-
cess of language understanding involves discovering a sig-
nificant amount of „missing text‟ - text that is not explicitly 
stated, but is often implicitly assumed as shared background 
knowledge; and (iii) we conclude with a brief discussion on 
why MTP is inconsistent with the data-driven and machine 
learning approach to language understanding. 

 Introduction   

Consider the sentence in (1): 

 

(1)  Dave told everyone in school that he wants to be a 

   guitarist, because he thinks it is a great instrument. 

 

Short of having access to relevant background knowledge, 

quantitative (statistical, data-driven and machine learning) 

methods would, and with a high degree of certainty, erro-

neously resolve “it” in (1) since the correct referent is not 

even in the data, but, as a 5-year old would correctly infer, 

is an object that is implicitly implied by the semantic and 

cognitive content of the text: a-guitarist-plays-a-guitar and 

a-guitar-is-a-musical-instrument. Undoubtedly, it is this 

kind of thinking that Alan Turing had in mind when he 

posed the question “Can Machines Think?” (Turing, 1950), 

suggesting further that a machine that intelligently com-
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municates in ordinary spoken language, much like humans 

do, must be a thinking machine1. As recently suggested by 

Levesque et. al. (2012), however, the Turing Test left room 

for the possibility of some systems to pass the test, not 

because anything we might call thinking is going on, but 

by trickery and deception. As Levesque et. al. point out, 

systems that have participated in the Loebner competition 

(Shieber 1994) usually use deception and trickery by 

throwing in “elaborate wordplay, puns, jokes, quotations, 

clever asides, emotional outbursts,” while avoiding clear 

answers to questions that a 5-year old would be very com-

fortable in correctly answering. In addressing these short-

comings, Levesque et. al. suggested what they termed the 

Winograd Schema (WS) challenge, illustrated by the fol-

lowing example2.  

 

(2)  The city councilmen refused the demonstrators a  

  permit because they 

  a.   feared violence. 

  b.  advocated violence. 

 

The question posed against this sentence would be: what 

does “they” refer to in (2a), and what does it refer to in 

(2b)? The answer seems so obvious to humans that reason 

using relevant commonsense background knowledge (e.g., 

                                                 
1 Although this is not the subject of this paper, we unequivocally concur 
that language, that infinite object that is tightly related to our capacity to 
have an infinite number of thoughts, is the ultimate test for thinking ma-
chines. Thus, while several accomplishments in computation are usually 
attributed to AI, most of these tasks deal with finding a near optimal solu-
tion from a finite set of possibilities and are hardly performing what we 
might call thinking. For example, and although the search space is very 
large, playing chess is ultimately a matter of scoring more paths than the 
opponent, thus making the probability of winning in the long run certain. 
The same can also be said of pattern (sound and image) recognition sys-
tems that, essentially, find regularities in data. True human-level scene 
analysis, beyond lower level recognition that the most primitive of species 
can perform, would also require reasoning similar to that required in 
language understanding. In this regard we believe the recently proposed 
visual Turing Test (Geman et al., 2014) is a step in the right direction. 
2 The example in (2) was originally discussed by Terry Winograd (1972), 
after whom the challenge was named. 
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demonstrators are more prone to advocate violence than 

the governing body of a certain city, while the latter are 

more likely to fear the violence) and thus a machine that 

correctly resolves such references would be performing 

what we might call thinking. Levesque points out however 

that care should be taken in the design of such queries so as 

to avoid the pitfalls of the original Turing Test, namely that 

a program should not be able to pass the test by performing 

simple syntactic level and pattern matching computations. 

For example, simple word co-occurrence data obtained 

from a corpus analysis might be all that is needed to make 

the correct guess in (3), while the same is not true in (4). 

 

(3)  The women stopped taking the pills because they were 

  a.  pregnant. 

  b.  carcinogenic. 

 

(4)  The trophy would not fit into the brown suitcase  

  because it was too 

  a.  small. 

  b.  big. 

 

Levesque calls the query in (4) “Google-proof”, since hav-

ing access to a large corpus would not help here as the fre-

quencies of the antonyms “small” and “big” in similar con-

texts should in principle be the same, as studies have indi-

cated (e.g., Kostic, 2017). This is not the same in (3), how-

ever, where a purely quantitative system would pass many 

queries based on simple co-occurrence data; for example,  

the likelihood of carcinogenic co-occurring with „pills‟ 

should be much higher than its co-occurrence with „wom-

en‟ (and similarly for the other combination). Another im-

portant point Levesque makes in proposing the WS chal-

lenge is avoiding posing queries that are either too obvious, 

or too difficult. The latter could happen, for example, if the 

questions posed required knowledge of a special vocabu-

lary that only specialized domain experts might know. Es-

sentially, good WS sentences should be ones that a 5-year 

old would be able to effortlessly answer – or, as Levesque 

puts it, “a good question for a WS is one that an untrained 

subject (your Aunt Edna, say) can answer immediately”. 

The question of what makes a good WS sentence is thus 

crucial. In the next section we suggest how this question 

can be more formally and systematically answered. 

Situating the Winograd Schema in the Data-

Information-Knowledge Continuum 

To systematically deal with Levesque‟s concern of not 

posing questions that are too easy or too difficult we con-

sider such questions at a higher-level of abstraction. All 

WS queries share the following features: 

 

a) there are two noun phrases in a WS sentence 

b) there is a reference made to one of these noun phrases 

c) the question involves determining the right referent 

 

This template applies to four scenarios that correspond to 

the distance of the relevant information needed to resolve 

the reference (how far is the relevant information from the 

surface data). In general, the reference (i) can be resolved 

by simple lexical and/or syntactic information available in 

the (data of the) sentence itself (Level 1); (ii) can be re-

solved by semantic information in the form of properties or 

attributes of some of the data in the sentence (Level 2); (iii) 

can only be resolved by reasoning at the pragmatic level by 

accessing commonsense background knowledge about the 

entities and relations mentioned in the sentence (Level 3); 

or (iv) cannot be resolved at all unless the overall intent 

and discourse is brought to light (Level 4) (see Figure 1). 

Below we discuss Levels 1 through Level 3 in some detail. 

We will not be concerned here however with sentences at 

Level 4, where the reference cannot be re-solved unless 

additional discourse-level information is brought to light, 

as is the case in the sentence „Jon told Bill that he wasn’t 

selected by the committee‟. 

The Syntactic/Data Level 

This is the level at which only one of the two noun phrases 

is the correct referent and where simple lexical/syntactic 

information available in the data is enough to resolve the 

reference. Here are two typical examples: 

 

(5)  a. John informed Mary that he passed the exam.  

  b. John invited his classmates for his birthday party,  

         and most of them showed up. 

 

The references in (5a) and (5b) can be easily resolved us-

ing information that is readily available as attributes of the 

lexical data - in particular, the references in (5) can be re-

solved by ensuring gender (male/female/neutral) and 

number (singular/plural) agreement. 

The Semantic/Information Level 

At this level the information required is not readily availa-

ble as attributes of the lexical data, but is one step away, in 

the form of relations between the various lexical items in 

the data. (6) is a typical example illustrating this situations: 

 

(6)  Our graduate students published 20 papers this year 

  and, apparently, few of them 

  a.  authored some books 

  b.  appeared in top journals 

 

The reference in (6) can be easily resolved using the type 

constraints (or „selectional restrictions‟) AUTHOR(content, 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The Winograd Schema situated in the data-information-knowledge continuum 

 

publication) and APPEARIN(content,publication) enforc-

ing the following: humans, and not papers, author content, 

and it is content, and not students, that appear in a publica-

tion. What should be noted at this point is that, once the 

relevant information becomes available, resolving the ref-

erence in both levels 1 and 2 is certain: the plausibility of 

all, but one referent only, becomes 0. For example, in (5a) 

and (6a) we have the following, respectively: 
 

P(he=John) = P(gender(he) = gender(John)) = 1 

P(he=Mary) = P(gender(he) = gender(Mary)) = 0 

 P(he=John) > P(he=Mary) 
 

P(them=students) = P(AUTHOR(student, book)) > 0 

P(them=papers) = P(AUTHOR(paper, book)) = 0 

 P(them=students) > P(them=papers) 

 

To reiterate, the resolution of the reference in levels 1 and 

2 is certain - once the relevant information becomes avail-

able, one referent becomes valid while all others will not 

even be „possible‟ candidates. The situation is quite differ-

ent at Level 3, however, as discussed below. 

The Pragmatic/Knowledge Level 

This is the level at which „good‟ WS sentences are situat-

ed. Sentences at this level are those where the reference in 

question can, in theory, be resolved by either of the two 

noun phrases, and where the „most appropriate‟ referent is 

usually the one that is more plausible among all the possi-

ble candidates, and where the more plausible referent is 

the one that makes the final scenario being described more 

compatible with our commonsense understanding of the 

world. Care should therefore be exercised in not choosing 

WS sentences where the likelihood of both referents are 

near equal (these are the cases where the WS is too diffi-

cult), or where the likelihood of one is clearly much higher 

than the other (cases where the WS is too easy). Shown in 

table 1 below are examples that illustrate WS sentences at 

the pragmatic (knowledge) level. 

 There are several important things to note here: (i) un-

like the situation in Level 1 and Level 2, referents in the 

examples of table 1 are both, in theory, and equally, possi-

ble (i.e., P(referent1) > 0 and P(referent2) > 0) although 

the plausibility of one is higher than the other - i.e., 

P(referent1) > P(referent2) or P(referent2) > P(referent1)3; 

and (ii) unlike the situation in levels 1 and 2, the references 

in table 1 cannot be resolved by simple attributes (or rela-

tions between attributes) of the lexical items in the sen-

tence data, but requires some background knowledge. For 

example, if SHOT(x, y) holds between some x and some y, 

then it is more likely for x to try to escape and more likely 

for y to try to arrest x. Similarly, if ~LIFT(x, y) is true - that 

is, if x cannot lift y, then TOO-HEAVY(y) is more likely than 

TOO-HEAVY(x), and if ~FIT(x,y) then TOO-SMALL(y) is more 

likely than TOO-SMALL(x), and TOO-BIG(x) is more likely 

than TOO-BIG(y), etc. 

 To summarize, ideal WS sentences are those where both 

referents are in theory possible, and where the information 

required  to resolve  the reference cannot be  obtained from 

                                                 
3 While P(x) is the probability of x, we use P(x) to refer to the plausibility 
of x which (for our purposes) is the degree to which x is compatible with 
our commonsense view of the world (the exact nature of P in the context 
of language understanding is of course an interesting topic on its own). 



 

 

Table 1. WS sentences and the plausibility of the two (equally possible) referents. 

 

syntactic data nor from semantic information, but is ob-

tained from background knowledge that, once available 

makes one of the possible referents more plausible. 

The ‘Missing Text Phenomenon’: is the Wino-

grad Schema just a Special Case? 

Having discussed the Winograd Schema (WS) in some 

detail, suggesting in the process where good WS sentences 

are situated, we would like to suggest here that WS sen-

tences are in fact special cases of a more general phenome-

na in natural language understanding that a good test for 

machine intelligence must also consider. 

 The sentences at Level 3 are good WS sentences specifi-

cally because these are typical examples where the chal-

lenge is to infer the missing text - text that is not explicitly 

stated but is assumed as shared commonsense knowledge. 

As Levesque (2012), noted: 

 

“You need to have background knowledge that is not ex-

pressed in the words of the sentence to be able to sort out 

what is going on … And it is precisely bringing this back-

ground knowledge to bear that we informally call think-

ing.” (Emphasis added) 

 

We wholeheartedly agree: what we call thinking in the 

process of language understanding is precisely that ability 

to determine the most plausible scenario among all possi-

ble scenarios, and this is done by having access to infor-

mation that is not explicitly stated in the text but is as-

sumed among a speakers of ordinary language as com-

monsense (background) knowledge. However, this „miss-

ing text phenomenon‟ (which we will refer to as MTP), of 

accessing background knowledge not explicitly stated in 

the text, is not specific to reference resolution, but is in fact 

the common denominator in many other linguistic phe-

nomena. Below we briefly discuss how the MTP is the 

source of semantic challenges involving a number of lin-

guistic phenomena other than reference resolution. 

MTP and Hidden Events in Relational Nominals 

Consider the examples in (7) (Pustejovsky et. al., 1988): 

 

(7)  a.  John enjoyed [reading] the book 

  b.  John enjoyed [watching] the movie 

  c.  John enjoyed [smoking] the cigarette 

 

While John can, in theory, enjoy writing, publishing, buy-

ing, or selling a book, and enjoy directing, producing, buy-

ing, selling, a movie, etc., a 5-year old would immediately 

infer the [missing text] in (7) and precisely because the 

most plausible hidden verb is the one that is more con-

sistent with our commonsense understanding of the world: 

the most salient relation between people and books is 

„reading‟, that between people and movies is „watching‟, 

etc. If such examples were to be part of the WS challenge 

then a query posed against such sentences would be “what 

did John enjoy about the book” for (7a) and “what did John 

enjoy about the movie?” for (7b), where the answers to 

choose from could be two or more „possible‟ answers 

(reading/selling/buying, etc.) 

MTP and Prepositional Phrase Attachments 

Consider the sentence pairs in (8) which are examples of 

prepositional phrase (PP) attachments.  

 

(8)    I read a story about evolution in the last ten 

  a.  minutes. 

        b.  million years. 



 

 

Clearly, the most plausible interpretation of (8a) is „I read  

a story about evolution [and finished it] in the last ten 

minutes‟ while the correct interpretation of (8b) is „I read a 

story about evolution [that occurred] in the last ten mil-

lion years‟. Again, the ambiguity is due to the „missing 

text‟ that can only be uncovered using background com-

monsense knowledge: (i) evolution does not happen in 10 

minutes, but the act of reading a story could; and (ii) our 

commonsense understanding of the world precludes the 

reading of a story to take 10 million years. If such sentenc-

es were to be used in the WS challenge, then a good ques-

tion to (8a) and (8b) would be: what is that took ten 

minutes/million years (answers: evolution/reading)? 

MTP and Quantifier Scope Ambiguities 

In (9) we have an example where we need to resolve what 

is referred to in the literature as quantifier scope ambigui-

ties by, again, accessing the relevant commonsense back-

ground knowledge to infer the [missing text] that is not 

usually explicitly stated. 
 

(9)    John visited a [different] house on every street 

   in his neighborhood. 
 

Inferring the missing text is what allows us here to reverse 

the surface scope ordering and interpret (9) as „On every 

street in his neighborhood, John visited a house‟. If such 

questions were to be used in the WS challenge, then a good 

question for (9) would be: how many houses does (9) refer 

to (and the answers could be 1 and many) 

MTP and Metonymy 

What is referred to in the literature as metonymy is yet 

another example of where humans use commonsense 

background knowledge to infer the [missing text], as illus-

trated by the sentences in (10). 
 

(10)  a.  The omelet wants another beer. 

     The [person eating the] omelet wants another beer. 

b.  The car in front of us is annoying me, pass it please. 

  The [person driving the] car in front us is annoying  

      me, pass it please. 
 

For such sentences to be part of the WS challenge, a ques-

tion such as this can posed for the sentence in (10a): „what 

is the type of object that wants a beer?‟ And the alternative 

answers would be person/table. 

 The main point of this section was to illustrate that, be-

sides reference resolution, what we usually call thinking in 

language understanding almost always involves discover-

ing a significant amount of missing text that is not explicit-

ly stated but is assumed as shared background knowledge. 

The crucial question now is this: is the data-driven ap-

proach to language understanding consistent with MTP? 

Data-Driven Language Understanding? 

In this section we suggest that the „missing text phenome-

non‟ (MTP) places severe limitations on the data-driven 

and machine learning approaches to natural language un-

derstanding. The first argument is a technical one, and it is 

based on theoretical results where the equivalence between 

learnability and compressibility has been established - see, 

for example (David et. al., 2016) and the more recent (Ben-

David, et. al. 2019). Essentially, what these results tell us is 

that learnability can only occur if the data we are learning 

from is compressible (and vice versa). However, and as 

argued above at length, much of what we call thinking in 

the process of language understanding is about discovering 

the „missing text‟ (the text we leave out), and thus ordinary 

spoken language is not compressible as it is already highly 

(and optimally!) compressed. And given the equivalence of 

learnability and compressibility, thus, ordinary spoken 

language cannot be learned. What‟s at issue here is this: 

while the data-driven machine learning approach is an at-

tempt at generalizing and compressing the data by finding 

meaningful patterns, the language understanding problem 

is about uncompressing - in fact, it is about expanding and 

amplifying, by „uncovering‟ all the hidden text! It would 

seem therefore that the goal of machine learning and that 

of language understanding are at odds, to put it mildly! 

But despite this (perhaps controversial) argument, the data-

driven/machine learning approach to language understand-

ing can be questioned on other grounds that are more rele-

vant to our discussion of the WS challenge. Consider again 

the sentence in (11), discussed above in Table 1. 
 

(11)   The trophy would not fit into the brown suitcase 

       because it was too big/small 
 

The most obvious way to learn how to resolve the refer-

ence in (10) using a purely data-driven/machine learning 

approach would be to, essentially, and given a large cor-

pus, find out the following probabilities: 
 

p11 = P(The trophy… because [the trophy] was too small)  

p12 = P(The trophy…because [the suitcase] was too small)  

p21 = P(The trophy … because [the trophy] was too big)  

p22 = P(The trophy … because [the suitcase] was too big)  
 

That is, a machine learning approach to resolving such 

references would essentially try to find out which replace-

ment is more probable. This general approach has indeed 

been tried by (Trinh and Le, 2018). As pointed out in (Sa-

ba, 2018b), however, such an approach will not scale as the 

replacement of the reference „it‟ by one of the referents and 

computing the probability of each replacement against a 

large corpus is not enough. For example, the preferred ref-

erent would also change if „would not fit‟ was replaced in 

(11) by „would fit‟, or „be-cause‟ was changed to „alt-



 

 

hough‟, etc. Moreover, and since data-driven approaches 

do not admit an ontological structure where similar objects 

are arranged in a type-hierarchy, another set of probabili-

ties would have to be computed for sentences where „tro-

phy‟ is replaced by „laptop‟, and where „suitcase‟ was re-

placed by „bag‟, etc. Simple calculations would show that a 

data-driven approach would need to process millions of 

examples, just to learn how references in sentences similar 

to (11) are resolved. What seems to be happening here is 

that a data-driven approach to language understanding 

would need to replace the „uncovering‟ of the missing data 

by a futile attempt at memorizing most of language - some-

thing that is theoretically, not to mention cognitively and 

computationally, implausible. 

Concluding Remarks 

In this paper we suggested where appropriate WS sentenc-

es are situated in the data-information-knowledge continu-

um. In particular, we suggested that „good‟ WS sentences 

are those that cannot be answered using syntactic data or 

semantic information, but can only be resolved at the 

pragmatic level by uncovering the missing text - text that is 

never explicitly stated but is assumed as shared back-

ground knowledge. We further suggested that this „missing 

text phenomenon‟ (MTP) is not specific to reference reso-

lution but to most challenges in the semantics of natural 

language and suggested further how the WS can be ex-

tended to include such linguistic phenomena. Against the 

backdrop of MTP we further argued that this phenomenon 

precludes data-driven and machine learning approaches 

from providing any real insights into the general problem 

of natural language understanding.  

 Another aspect of this work that could not be discussed 

here for lack of space is related to why ignoring MTP is 

perhaps the reason logical semantics might have faltered. 

To see the relation of MTP to problems in traditional logi-

cal semantics, consider (12a) and (12b).  
 

(12)   a.  Julie is an articulate person 

      ARTICULATE(Julie)  PERSON(Julie) 

          b.  Julie is articulate   ARTICULATE(Julie) 
 

(12a) and (12b) have different translations into first-order 

predicate logic, although the two sentences seem to have 

the same semantic and cognitive content. One way to re-

solve this semantic puzzle is to acknowledge the difference 

between ontological concepts - that are types in a strongly-

typed ontology, and logical concepts - that are the proper-

ties of and the relations between various ontological types. 

As such, the proper translation of (12a) and (12b) would be 

to assume that, in the context of being ARTICULATE, PER-

SON(Julie) is true, a priori - in other words, that the proper-

ty ARTICULATE is said of objects that are of type person:  

(13)   (1Julie :: person)(ARTICULATE(Julie)) 
 

That is, there is a unique object named Julie, an object that 

must of type person, and such that ARTICULATE is true of 

Julie. Embedding ontological types in our semantics in this 

manner allows us then to uncover all the missing text, as 

for example in (14). 
 

(14)  The omelet wants another beer 

       (o :: omelet)(b :: beer)  

                        (WANT(o :: person, b :: entity)) 
 

Note now that the „hidden text‟ can be uncovered by unify-

ing omelet with the expected type of WANT, namely 

person. This type unification should „pick out‟ the most 

salient relationship between person and omelet (a kind 

of food), resulting in the interpretation “the person EAT-

ING the omelet wants another beer”. Details of this 

work, that attempts to rectify a major oversight in logical 

semantics, namely how MTP was completely ignored, can 

be found in (Saba, 2018a). 
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