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Abstract: It is generally accepted that, in the cognitive sciences, there are both 

computational and mechanistic explanations. We ask how computational 

explanations can integrate into the mechanistic hierarchy. The problem stems from 

the fact that implementation and mechanistic relations have different forms. The 

implementation relation, from the states of an abstract computational system (e.g., 

an automaton) to the physical, implementing states is a homomorphism mapping 

relation. The mechanistic relation, however, is that of part/whole; the explanans in a 

mechanistic explanation are components of the explanandum phenomenon. 

Moreover, each component in one level of mechanism is constituted and explained 

by components of an underlying level of mechanism. Hence, it seems, computational 

variables and functions cannot be mechanistically explained by the medium-

dependent properties that implement them. How then, do the computational and 

implementational properties integrate to create the mechanistic hierarchy? After 

explicating the general problem (section 2), we further demonstrate it through a 

concrete example, of reinforcement learning, in cognitive neuroscience (sections 3 

and 4). We then examine two possible solutions (section 5). On one solution, the 

mechanistic hierarchy embeds at the same levels computational and 

implementational properties. This picture fits with the view that computational 

explanations are mechanism sketches. On the other solution, there are two separate 

hierarchies, one computational and another implementational, which are related by 

the implementation relation. This picture fits with the view that computational 

explanations are functional and autonomous explanations. It is less clear how these 

solutions fit with the view that computational explanations are full-fledged 

mechanistic explanations. Finally, we argue that both pictures are consistent with 

the reinforcement learning example, but that scientific practice does not align with 

the view that computational models are merely mechanistic sketches (section 6).  
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1. Introduction 1 

The question of how different explanations in the cognitive sciences relate to each 2 

other is widely debated (Kaplan and Craver, 2011; Piccinini and Craver, 2011; 3 

Piccinini, 2015; Shapiro, 2017). We focus here on the relations between mechanistic 4 

explanations and computational explanations in the neuro-cognitive sciences. 5 

Mechanistic models describe the phenomenon’s underlying mechanism. Often, they 6 

are considered explanatory because they describe a relevant causal structure, 7 

namely, the causal structure that underlies the explanandum. Moreover, there is a 8 

hierarchy of mechanistic explanations - each component in a mechanistic 9 

explanation is itself explained mechanistically. Computational explanations are 10 

similar to mathematical explanations in that they describe phenomena in abstract – 11 

mathematical or formal – terms. Computational explanations, however, are abstract 12 

in a further sense. They arguably describe abstract, “medium-independent”, 13 

features. Thus, in computational explanations both the describing terms and the 14 

described objects/properties are abstract.  15 

Several authors have recently suggested that computational explanations are a 16 

species of mechanistic explanation (Kaplan, 2011; Kaplan and Craver, 2011; Piccinini 17 

and Craver, 2011; Milkowski, 2013; Piccinini, 2015; Boone and Piccinini, 2016; Coelho 18 

Mollo, 2018; Dewhurst, 2018). The focus of most of these accounts is the neuro-19 

cognitive sciences, in which computational models and explanations are central to 20 

the scientific investigation. Though the accounts are different in detail, they all share 21 

the starting point that computational explanations are in some sense abstract, 22 

whereas mechanistic explanations describe causal relations between physical 23 

entities. Each account offers a unique way to bridge the apparent disparity between 24 

computational and mechanistic explanations. 25 

Whether computational models are indeed mechanistic is still under controversy 26 

(Huneman, 2010; Piccinini and Craver, 2011; Weiskopf, 2011; Kaplan, 2011; Kaplan 27 

and Craver, 2011; Lange, 2013; Chirimuuta, 2014, 2018; Bechtel and Shagrir, 2015; 28 

Rathkopf, 2015; Craver, 2016; Shagrir and Bechtel, 2017; Shapiro, 2017; Craver and 29 

Povich, 2017; Egan, 2017). Here we do not focus on this controversy (though our 30 



analysis might have some implications regarding the nature of computation). Our 31 

concern is with the integration of computation – mechanistic or not – within the 32 

hierarchy of mechanistic explanations. The concern arises from the disparity 33 

between the implementation (or realization) relation and the explanans-34 

explanandum relation in mechanistic explanations. The implementation relation 35 

from the states of an abstract computational system (e.g., an automaton) to the 36 

states of its implementing physical system is a homomorphism mapping relation, so 37 

that each distinct computational state is mapped onto a distinct physical state, which 38 

realizes it. The mechanistic relation, however, is that of part/whole. The explanans in 39 

a mechanistic explanation are components of the explanandum phenomenon. 40 

Moreover, each component in one level of mechanism is constituted and explained 41 

by components of another, underlying, level of mechanism. Hence, it seems, 42 

computational states are realized in some physical structures, but they do not stand 43 

in part/whole relations to them and therefore they cannot be mechanistically 44 

explained by the same structures. So, the question is: how do computational states 45 

integrate with implementational states to form the mechanistic hierarchy? 46 

Before turning to address this question, we want to describe the main features of 47 

mechanistic and computational explanations. Mechanistic explanations have three 48 

main features: they are causal, decompositional and hierarchical. They are causal in 49 

that they explain phenomena by describing their underlying mechanism. Consider 50 

the reflex that is responsible for keeping the direction of gaze constant when the 51 

head is rotated horizontally. It is called the horizontal vestibulo-ocular reflex. Its 52 

function is explained by reference to an underlying mechanism whose inputs are the 53 

effects of head movements on the vestibular organ and whose outputs are given to 54 

the ocular muscles. Within the mechanism there are feedforward inhibitory and 55 

excitatory synaptic connections, so that each pre-synaptic neuron causally affects 56 

the post-synaptic neurons through the synaptic connections (Kandel et al., 2013, 57 

chap. 40). Mechanistic explanations are decompositional because the explanandum 58 

phenomenon is explained in terms of its components, their organization and their 59 

activities (functions). In our example the constant gaze when the head is rotated is 60 

explained by appeal to the specific synaptic connections between neurons, as well as 61 



the neurons’ change in firing rate in response to their synaptic inputs. Finally, 62 

mechanistic explanations are hierarchical: each explaining component in one level is 63 

itself the explanandum for another level of mechanism. Accordingly, the release of 64 

neurotransmitter to the synapse by the pre-synaptic neuron, is also explained 65 

mechanistically (see (Piccinini and Craver, 2011)). Our focus here is the third feature 66 

of mechanistic explanations, namely, the mechanistic hierarchy. An important point 67 

about the hierarchy is that each level in the hierarchy is a mechanistic explanation.  68 

Computational explanations are taken to be abstract in that they refer to abstract, 69 

"medium-independent", properties. This claim is fairly uncontroversial.1 What 70 

perhaps is more controversial is the claim that computational explanations refer only 71 

to abstract, formal properties. Some authors argue that computational explanations 72 

also refer to semantic properties, namely to the specific content of the states 73 

(Shagrir, 2006; Sprevak, 2010); others might insist that computational explanations 74 

also refer to some implementational, medium-dependent, properties (Some of the 75 

writings of (Kaplan, 2011, 2017; Dewhurst, 2018) may be interpreted this way). We 76 

will not get into the debate about the nature of physical computation. Our concern is 77 

with the integration of abstract states and properties of computation in the 78 

mechanistic hierarchy2. We take abstract here to mean ‘medium-independent’ in the 79 

sense that they can be implemented in very different physical media (e.g., both in 80 

brains and in computers). We will refer to these states and properties as 81 

computational. But by this we assume in no way that computational states and 82 

processes are only abstract.   83 

 84 

                                                           
1 There are, however, different ways to account for the nature of these “medium-independent” 
properties. Fodor (1975) and Stich (1983) describe them as “syntactic” properties, and Fodor (1994) 
accounts for the latter in terms of high-level physical properties. Haugeland (1981) describes them as 
“formal” (see also (Fodor, 1980)). Piccinini (2015) describes computational properties as 
“mathematical” or “formal”, and others have suggested that, regarding computations, the relevant 
physical properties of the implementing physical systems are only their degrees of freedom (Piccinini 
and Bahar, 2013; Coelho Mollo, 2018).    
2 While it seems straightforward to associate the computational explanations discussed here with 
Marr’s computational level (1982), algorithmic descriptions of a system can also be abstract and 
computational in the meaning we discuss here, as long as they are ‘medium-independent’. These 
algorithmic descriptions are more similar to mechanistic explanations in that they usually decompose 
the explanandum into its parts, while computational level explanations describe ‘what’ function the 
system performs and ‘why’ (Shagrir and Bechtel, 2017). 



2. The computational and implementational hierarchies 85 

Let us turn to the problem of integrating computational states and properties within 86 

the mechanistic hierarchy. As a warm-up, let us look at the way Piccinini describes 87 

this integration. Piccinini (2015), who defends the view that computational 88 

explanations are mechanistic, takes those computational levels to be levels of 89 

mechanism. In a crucial paragraph in his book he says the following:  90 

The mechanistic account flows naturally from these theses. Computing 91 

systems, such as calculators and computers, consist of component parts 92 

(processors, memory units, input devices, and output devices), their function 93 

and organization. Those components also consist of component parts (e.g., 94 

registers and circuits), their function, and their organization. Those, in turn, 95 

consist of primitive computing components (paradigmatically, logic gates), 96 

their functions, and their organization. Primitive computing components can 97 

be further analyzed mechanistically but not computationally (2015, pp. 118–98 

119). 99 

Now, we think that it is uncontroversial that Piccinini describes here levels of 100 

computation that relate to each other in a part/whole relation. As Piccinini depicts it, 101 

computers consist of processors, memory etc., which in turn consist of registers and 102 

circuits, which in turn consist of logic gates (figure 1).  103 

Figure 1 – The computational hierarchy 104 



 105 

However, Piccinini does make a controversial claim, namely that computational 106 

explanations are mechanistic. This claim has been criticized on three main grounds. 107 

Some critics argue that, even if some computational explanations are 108 

decompositional as in the described case, there are other cases in which 109 

computational explanations do not decompose the explananda into components, 110 

but instead refer to general structural or topological properties of the system, and so 111 

are not mechanistic (Huneman, 2010; Rathkopf, 2015; but see Craver, 2016). A 112 

second criticism is that computational explanations do not always aim to reveal 113 

causal structures. Egan (2017) suggests that computational models are explanatory 114 

because they are abstract and normative. Chirimuuta (2014) suggests that some 115 

computational models explain why a computation takes place by appeal to efficient 116 

coding principles, and Shagrir and Bechtel suggest that some computational models 117 

also explain the existence of a computation by appeal to environmental constraints 118 



(Bechtel and Shagrir, 2015; Shagrir and Bechtel, 2017). According to these two 119 

criticisms, computational explanations are not wholly mechanistic, but it still may be 120 

that some computational explanations, which refer to medium-independent 121 

properties, are decompositional, and therefore may be mechanistic. 122 

Other critics argue that, even when computational explanations involve 123 

decomposition, the resulting levels of computation are not levels of mechanisms. 124 

Instead, they argue that these levels are functional; they are part of a functional 125 

analysis which explains the capacity (Fodor, 1968; Cummins, 1983, 2000). These 126 

critics would agree that the levels are decompositional, relating to each other in a 127 

part/whole fashion, which is perfectly consistent with the functional account of 128 

computational explanations. They would also agree that the pertinent computational 129 

properties are "medium-independent", at least in the sense that they refer to 130 

abstract and not to medium-dependent, implementational, properties. The critics 131 

would argue, however, that the divide between the abstract/medium-independent 132 

properties and implementational properties is indicative of the divide between 133 

functional and mechanistic explanations (Weiskopf, 2011; Shapiro, 2017). Because 134 

functional and implementational entities are inherently different, computational and 135 

mechanistic explanations take place in different levels of explanation. Piccinini 136 

(2015) in turn rejects the functional/mechanistic distinction, arguing that functional 137 

explanations are sketches of mechanism (Piccinini and Craver, 2011). Moreover, he 138 

argues that computational explanations are (ideally) both abstract and full-fledged 139 

mechanistic. They are abstract in the sense that they refer to medium-independent 140 

properties. They are mechanistic in the sense that the medium-independent 141 

properties constrain the implementation ((Piccinini, 2015) But see Shapiro (2017) for 142 

criticism).  143 

We put aside the question of whether the computational level – as a level of 144 

abstract, medium-independent, properties – sufficiently constrains implementation 145 

to be considered mechanistic. We want to highlight a different issue that Piccinini 146 

and others do not discuss, namely, the way that computational (medium-147 

independent) and implementational (medium-dependent) properties relate to each 148 

other in the mechanistic hierarchy.  149 



The picture depicted by Piccinini raises two (related) issues. The first pertains to the 150 

primitive computing components. Piccinini says that “primitive computing 151 

components can be further analyzed mechanistically but not computationally”. He 152 

means that we can further analyze the logic gates in terms of non-computational, 153 

medium-dependent properties. The difficulty is that the logic gates are also 154 

implemented in some medium-dependent properties. The inputs and outputs of 155 

logic gates – typically characterized as 1s and 0s – are often implemented in systems 156 

with specific voltages. The implementing physical objects with specific voltages, 157 

however, are not parts of the digits. More generally, implementation is often 158 

characterized as a mapping homomorphism relation from the states of an abstract 159 

computing system (e.g., an automaton) to groups of states of a physical system. For 160 

example, there is a mapping from the digits 0 and 1 to the sets of voltages, 0-5 volts 161 

and 5-10 volts. The sets of voltages, however, are not themselves the mechanism 162 

that constitute the digits. The question raised, then, is about the relations between 163 

the medium-independent properties that analyze computation in the mechanistic 164 

explanation and the medium-dependent properties that implement computation. 165 

The first ones, the analyzing properties, seem to be parts of the digits, whereas the 166 

second ones, the implementing properties, are not. Are these the same properties 167 

and how do they relate to each other?  We expect a part-whole mechanistic analysis, 168 

but we can only find in this stage an implementation-relation and not a part-whole 169 

relation, so how can logic gates be explained mechanistically?  170 

A second issue concerns the non-primitive computing components. The components 171 

of a higher-level computation are analyzed by an underlying computational level. But 172 

they are also implemented in some medium-dependent properties. How are these 173 

underlying properties – the computational and implementational – related? Take the 174 

computational level that consists of “component parts (e.g., registers and circuits), 175 

their function, and their organization”. Let us call it Cn. The components of Cn can be 176 

analyzed, computationally, by the computational components of an underlying 177 

computational level Cn-1 (e.g., logic gates). However, the computational components 178 

of Cn are also implemented in some medium-dependent properties that belong to 179 

some mechanistic level, Pk. But how are Pk and Cn-1 related in the mechanistic 180 



hierarchy? Moreover, Pk itself is part of a hierarchy, P0, P1, P2,… So, there are two 181 

hierarchies, one computational, C1, C2,… and one implementational, P0, P1, P2,… 182 

(figure 2).  183 

 184 

Figure 2 The computational and implementational hierarchies 185 

 186 



Several issues are worthwhile addressing regarding this picture. First, in some cases 187 

computational explanations are not decompositional (Huneman, 2010; Chirimuuta, 188 

2014; Bechtel and Shagrir, 2015; Rathkopf, 2015; Egan, 2017; Shagrir and Bechtel, 189 

2017), and therefore are not hierarchical. Although in such cases we will not find two 190 

or more hierarchies, the question of how the single-level computational explanation 191 

is integrated into the implementational hierarchy persists. 192 

We would also like to note that much of the structure of these two hierarchies and 193 

their relations depends on how one defines ‘a level of explanation’. There is 194 

practically unanimous agreement that in the scientific investigation of cognitive 195 

capacities both the underlying computation and the underlying implementation 196 

should be addressed eventually. The question that is under debate addresses the 197 

relevant details for a complete explanation of a capacity at a specific level. According 198 

to the mechanistic framework, a complete explanation at each level will include all 199 

the causally relevant relations and activities that constitute the explanandum 200 

capacity.  201 

Our question then is how the computational, medium-independent properties and 202 

their implementational, medium-dependent, properties relate to each other in the 203 

scientific explanation.3 Do we really find two hierarchies, one computational and one 204 

implementational, in which each level in each hierarchy is a complete explanation? 205 

And if this is indeed the case, then how do the two hierarchies relate to each other?  206 

3. A hierarchical computational model for reinforcement learning 207 

It could be argued that the two hierarchies we describe in the decomposition of the 208 

computer are the result of a specific man-made design, and that the observations 209 

from a computer cannot be generalized to the cognitive sciences. For this reason, it 210 

                                                           
3  One can also ask how the implementational hierarchy is decomposed. Depending on one’s view of a 
level of explanation, the implementational hierarchy will include different details. It can include 
merely a reference to the physical structures that underlie the computational function. Alternatively, 
this hierarchy can also describe functions executed by these structures, albeit, medium-dependent 
functions. To illustrate, diodes, which are used on occasion to build logic gates in computers, have the 
function of passing electric current in exactly one direction. Description of such functions can be a 
part of the implementational hierarchy, because such functions are not abstract, but instead describe 
medium-dependent processes. In both cases the decomposition of the implementational hierarchy 
will depend on some function, in the first case it is the computational function, and in the second it is 
the medium-dependent function (which may or may not coincide with the computational function). 



is useful to examine the relation between computation and implementation in the 211 

mechanistic hierarchy with the help of an example from neuro-cognitive science. 212 

Reinforcement learning is a behavior in which the subject learns to choose specific 213 

actions according to their consequences, with the goal of maximizing rewards. It is 214 

widely investigated; it has received attention both from computer scientists who 215 

have suggested algorithms for action selection that maximize specific outcomes 216 

(Sutton and Barto, 1998), and from neural and cognitive scientists who have 217 

compared various reinforcement learning models with subjects’ behaviors (Mongillo, 218 

Shteingart and Loewenstein, 2014; Shteingart and Loewenstein, 2014) and searched 219 

for neural correlates of variables from reinforcement learning algorithms (Samejima 220 

et al., 2005; Li and Daw, 2011; Wang, Miura and Uchida, 2013). 221 

Reinforcement learning is a process that requires multiple different computations, 222 

and as such it can be viewed hierarchically. At the highest level, reinforcement 223 

learning is divided into four main processes, each involving its own computations: 224 

recognizing the subject’s state, evaluating potential actions, selecting an action, and 225 

reevaluating the action based on the outcome (Doya, 2008).   226 

Each one of these processes has been discussed in large bodies of literature and can 227 

be further decomposed in various ways. To provide more concrete examples we will 228 

discuss reinforcement learning in the context of a multi-armed bandit task, where 229 

there is only one state in which the subject repeatedly chooses between multiple 230 

actions, each associated with a certain magnitude and probability of reward. We 231 

describe here a simple and widely used algorithm for reinforcement learning, which 232 

is called Q-learning (because the values associated with the actions are called Q-233 

values) (Sutton and Barto, 1998). In a multi-armed bandit task, reinforcement 234 

learning has two main modules (instead of the four we originally mentioned), action 235 

reevaluation and action selection.  236 

Consider the module which is responsible for reevaluating an action after an 237 

outcome. In Q-learning, each Q-value is meant to reflect the expected reward 238 

associated with each action, also called the action-value. In order to learn this 239 

action-value, after each trial a variable called the reward prediction error (RPE) is 240 



computed. The RPE is the difference between the reward that was just received and 241 

the current value of the chosen action: 242 

𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑖 → 𝑅𝑃𝐸(𝑡) = 𝑅(𝑡) − 𝑉𝑖 (𝑡)   (1) 243 

Where 𝑅(𝑡) is the reward given at time 𝑡, 𝑎𝑖 is action 𝑖 and 𝑉𝑖 (𝑡) is the action-value 244 

of action 𝑖 at time 𝑡. Then, the value of the chosen action is updated by summing the 245 

previous value with a magnitude that is proportional to the RPE. Written formally: 246 

𝑖𝑓 𝑎𝑖 𝑤𝑎𝑠 𝑐ℎ𝑜𝑠𝑒𝑛 → 𝑉𝑖 (𝑡 + 1) = 𝑉𝑖 (𝑡) + 𝛼 ∙ 𝑅𝑃𝐸(𝑡)

𝑖𝑓 𝑎𝑖 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑐ℎ𝑜𝑠𝑒𝑛 → 𝑉𝑖 (𝑡 + 1) = 𝑉𝑖 (𝑡)
             (2) 247 

Where 𝛼 is a parameter that indicates the learning rate. The larger 𝛼 is, the more 248 

weight recent trials are given at the expense of previous trials. 249 

If we wish, we can continue this hierarchical computational explanation, by 250 

explaining how the components in eq. (1)-(2) are computed. For example, we can 251 

explain how the learning rate ‘𝛼’ is computed. We can also explain how the reward is 252 

evaluated, or what the initial conditions set for 𝑉𝑖(𝑡 = 0) are.  253 

Consider now the second module, the module that is responsible for selecting 254 

between different actions. The simplest kind of module would just select the action 255 

that has the highest value, according to the computation in eq. (2). However, this 256 

method may never sample actions that initially received lower values, even in cases 257 

where these lower values were underestimates of the true values. Therefore, it is 258 

generally agreed that some form of exploration is required, i.e., actions with lower 259 

values should be chosen with a non-zero probability. A common model that 260 

incorporates exploration into the choice is a ‘softmax’ function where actions with 261 

higher values have a higher probability to be chosen. The ‘softmax’ function is: 262 

𝑃(𝑎𝑖(𝑡)) =
𝑒𝛽𝑉𝑖 (𝑡)

∑ 𝑒𝛽𝑉𝑗 (𝑡)𝑛
𝑗=1

     (3) 263 

Where 𝑎𝑖 is action 𝑖, 𝑃(𝑎𝑖(𝑡)) is the probability of choosing action 𝑖 at time 𝑡, 𝑉𝑖 (𝑡) 264 

is the action-value of action 𝑖 at time 𝑡, 𝑛 is the number of possible actions, and 𝛽 is 265 

a parameter that determines the bias of the choice towards the higher valued 266 



actions. The components of this action selection function can also be further 267 

explained. For example, in this equation, the choice is stochastic. We can also 268 

provide a model for this stochasticity. Or we can explain the choice of 𝛽, which may 269 

be a constant, or change throughout learning. Fig. 3 presents a summary of the 270 

hierarchical model we described so far. 271 

Figure 3 The computational hierarchy of the Q-learning model 272 

 273 



Using the two modules described above, in a multi-armed bandit task, in which 274 

subjects choose between several actions repeatedly, it is possible to learn to choose 275 

the action that is associated with the largest expected reward most frequently. 276 

Hence, a popular theory in the cognitive sciences is that people employ a model 277 

similar to Q-learning in various instances of reinforcement learning tasks.  278 

Q-learning is not the only model that has been suggested for reinforcement learning, 279 

it has a few competitors at several different levels. First, some reinforcement 280 

learning algorithms do not compute the values of actions at all. Instead, learning is 281 

done directly on the ‘policy’: the probability of choosing each action. These are 282 

called direct-policy learning algorithms (Mongillo, Shteingart and Loewenstein, 2014; 283 

Shteingart and Loewenstein, 2014). Second, in the Q-learning model the action 284 

selection function (eq. 3) utilizes the same action-values as the action reevaluation 285 

function (eq. 2). However, in some reinforcement learning algorithms, the action 286 

selection function does not employ the action-value estimates of the action 287 

reevaluation function. Instead, the only signal the action-selection function receives 288 

from the action-reevaluation function is the RPE. In these algorithms, these two 289 

modules are also called the ‘actor’ and the ‘critic’, respectively (Sutton and Barto, 290 

1998). A third issue concerns the complexity of Q-learning. It is argued that it is too 291 

simple to explain a wide variety of behaviors and therefore this original model has 292 

been developed into alternative, more complicated models (Botvinick, Niv and Barto, 293 

2009; Botvinick, 2012). Each of these three groups of competing models challenges a 294 

different part of the computational hierarchy of Q-learning. The first group of 295 

models challenges whether there is an action reevaluation function at all, the second 296 

group of models questions the relation between the action selection and the action 297 

reevaluation functions and the third presents alternatives to the structure within 298 

each function. 299 

We believe that the point is clear, the Q-learning model is hierarchical in nature. 300 

Furthermore, all properties discussed in the Q-learning model are medium-301 

independent: they do not necessitate a specific physical structure. In fact, they are 302 

abstract enough that they can be both implemented in computers and, as many 303 



scientists hypothesize, in brains (Schultz, Dayan and Montague, 1997; Doya, 2000, 304 

2008; O’Doherty et al., 2004; Samejima et al., 2005).  305 

4. The computational and implementational hierarchies of reinforcement learning 306 

A great deal of scientific research has been dedicated to the characterization of the 307 

neural correlates of the Q-learning model (Hollerman and Schultz, 1998; Doya, 2000, 308 

2008; Samejima et al., 2005; Ito and Doya, 2009; Kable and Glimcher, 2009; Tai et al., 309 

2012; Wang, Miura and Uchida, 2013). Experimental evidence has implicated the 310 

basal ganglia, a group of several subcortical nuclei, including the striatum, pallidum 311 

and substantia nigra, in decision making, and specifically in the context of 312 

reinforcement learning (Doya, 2000). With regard to the different modules of 313 

reinforcement learning, the coding of state and possible actions in each state has 314 

been attributed to the cortex, the calculation of the expected reward associated 315 

with each action (action reevaluation) has been attributed to the striatum, action 316 

selection has been attributed to the pallidum, etc. In Fig. 4 you can see a scientific 317 

hypothetical model which describes the implementation of the computational 318 

modules in reinforcement learning.  319 

Figure 4. The implementational model for reinforcement learning. Adopted from 320 

(Doya, 2008). Legend is taken from the original paper. 321 



 322 

The attribution of specific computational properties to brain areas corresponds to 323 

their connectivity patterns. On the Q-learning model we expect action-values to play 324 

a part in the action selection function (eq. 3). On our implementational model 325 

striatal neurons represent action-values and pallidal neurons are responsible for 326 

action selection. Indeed, in line with the computational model, we see that striatal 327 

neurons target and causally affect pallidal neurons. Hence, on this description, 328 

abstract computational relations are translated into causal relations between 329 

physical brain areas.4 330 

One can wonder about the model on the right-hand side of Fig. 4. While the model 331 

on the left-hand side clearly describes causal relations between brain areas, the 332 

model on the right-hand side is abstract and is termed functional by (Doya, 2008). 333 

Although its drawing is abstract, this model is committed to specific brain areas, 334 

sometimes describing brain areas without an apparent function (such as the 335 

Thalamus). For this reason, it would be difficult to consider this model a functional 336 

analysis, as described by (Fodor, 1968; Cummins, 1983, 2000). Furthermore, this 337 

                                                           
4 Some may argue that relations between computational components can already be considered 
causal relations. We discuss the possible outcomes of this position in section 5.  



model is committed to specific media, namely, brain areas, and therefore it does not 338 

describe medium-independent properties. For this reason, we consider it an 339 

implementational model. However, for those who believe that computational 340 

models are both complete mechanistic explanations and medium-independent 341 

(Piccinini, 2015), this model, which focuses on the abstract functions of specific brain 342 

areas, may be similar to what they have in mind5.  343 

The components in the implementation described in Fig. 4 can be decomposed 344 

themselves into subparts, which correspond to parts of the computations. For 345 

example, there is experimental evidence that midbrain dopaminergic neurons that 346 

provide input to striatal neurons, encode the reward prediction error (RPE) (eq. 1), 347 

which is a component in the calculation of action-values (eq. 2) (Schultz, Dayan and 348 

Montague, 1997; Hollerman and Schultz, 1998). To provide another example, 349 

neurons in both the ventral and dorsal striatum receive inputs from midbrain 350 

dopamine neurons, which are taken to encode the RPE (note the arrow from the 351 

gray box to the red box in Fig. 4). Therefore, both are taken to play a role in reward 352 

prediction. Experimental findings have suggested that neuronal activity in the 353 

striatum can be divided into two anatomically and functionally separate parts of 354 

reward prediction: the dorsal striatum plays a role in associating stimuli with 355 

responses, corresponding primarily to an ‘actor’ (action selection) module, while the 356 

ventral striatum plays a role in updating the predictions of future rewards expected 357 

in each state, corresponding to a ‘critic’ (action reevaluation) module (O’Doherty et 358 

al., 2004). 359 

We see in this example two distinct hierarchies, one computational and one 360 

implementational. Parts of the computational hierarchy can be seen in Fig. 3. This 361 

hierarchy is abstract, medium-independent and can be discussed without mention of 362 

any brain structures. We can also see an implementational hierarchy, part of it is 363 

depicted in fig. 4, where brain structures are decomposed into functionally and 364 

anatomically individuated components. In some scientific publications we even see 365 

                                                           
5 If this is the case, some issues regarding this view should be resolved. Most importantly, how 
function can remain medium-independent when it is necessary to state the brain structure in which 
they occur (Haimovici, 2013). 



computational and implementational models for decision making (albeit slightly 366 

different models from the Q-learning model) depicted side by side, as in Fig. 5. 367 

Figure 5 Computational and implementational models, side by side. Adopted from 368 

(Botvinick, Niv and Barto, 2009). R(s): reward function; V(s): value function; δ: 369 

reward prediction error; π(s): policy (action-selection function). DA: dopamine; DLS, 370 

dorsolateral striatum; HT+: hypothalamus and other structures; VS, ventral striatum. 371 

 372 

The relation between these two hierarchies is that of implementation, throughout 373 

the scientific literature brain structures are described as ‘implementing’ (Ito and 374 

Doya, 2011), ‘realizing’ (Doya, 2008), ‘representing’ (Samejima et al., 2005) and 375 

‘encoding’ (Schultz, Dayan and Montague, 1997) computational properties. 376 

5. The relation between the computational and implementational hierarchies 377 

We found in our scientific example two hierarchies, like the ones described in Fig. 2. 378 

However, there are still many open questions about these hierarchies, both in 379 

general and in our example. How do these hierarchies relate to each other within the 380 

scientific explanation? How does this relation reflect the explanatory role of the 381 

computational and implementational models? Finally, what role do implementation 382 

relations and part/whole relations play in the explanation of cognitive phenomena?  383 

In this section, we suggest possible answers to these questions and investigate their 384 

merit. We relate these possible answers to the different views about abstractness 385 

and completeness of computational models. We do not aim to support one stance 386 

on this question, but instead wish to examine the consequence of the different 387 

positions about computational models as explanations and start a debate about 388 

these possible solutions. 389 



We can think of two ways to relate computation and implementation to each other 390 

within the mechanistic hierarchy. One is lumping together the implementational and 391 

the abstract properties in each level, namely C1 and P1, C2 and P2 and so on. Figure 392 

6 shows an example of this picture on the decomposition of a computer.  393 

Figure 6 A single combined mechanistic hierarchy. Each level includes both abstract 394 

and implementational properties that are related through implementation. The 395 

implementational properties are denoted by the drawings in the figure, while the 396 

computational properties are denoted by the words and arrows appearing on top of 397 

the implementational properties. 398 



 399 



On this picture we do not really have two separate hierarchies, but only one: The 400 

pertinent computational properties are lumped together with their 401 

implementational properties in the same level(s) of explanation (a similar structure 402 

of explanation is presented in (Harbecke, under review)). This simple solution implies 403 

that computational and implementational properties figure together in the same 404 

explanation and in the same levels of the mechanistic hierarchy. This solution is in 405 

tension with the view that computational explanations are autonomous from 406 

implementation and therefore do not require implementation details to be 407 

complete, but fits quite nicely with the picture on which computational explanations 408 

are sketches of mechanisms (some people, e.g., (Rusanen and Lappi, 2016; Shagrir, 409 

2016) interpret (Kaplan and Craver, 2011; Piccinini and Craver, 2011) as advocates of 410 

this position). On this picture, the computational sketches turn into a full-fledged 411 

mechanistic explanation only when we complement the sketches with the same-412 

level implementational properties. When both kinds of properties are mentioned 413 

then we have a full-fledged mechanistic explanation, hence a level of mechanism. 414 

The mechanistic hierarchy simply embeds within it, a sub-hierarchy of computational 415 

sketches.  416 

We can see two possible upshots of this construal, depending on one’s view of 417 

computational models as sketches. One may consider computational sketches to 418 

simply be partial descriptions of the implementational model and computational 419 

properties to simply be abstract facets of the implementing properties, stripped 420 

away from their medium-dependent aspects. On this formulation, when the 421 

implementing properties are described in an explanation, the computational 422 

properties, which are merely a part of the implementational properties, become 423 

redundant. We are left with an implementational hierarchy, partial descriptions of 424 

which are computational models. On such a view it is clear how there is only one 425 

mechanistic hierarchy – an implementational hierarchy. However, this view 426 

completely dismisses any explanatory value of computational descriptions that goes 427 

above implementational descriptions and some may argue that this is inconsistent 428 

with scientific practice, which often appeals to computational explanations as more 429 

than partial implementational descriptions (Haimovici, 2013). Alternatively, one may 430 



believe that computational sketches can include details and aspects which are not 431 

part of the implementational model. For example, that they address environmental 432 

constraints or efficient coding principles  (Chirimuuta, 2014; Bechtel and Shagrir, 433 

2015; Shagrir and Bechtel, 2017). Therefore, in the complete model both 434 

computational and implementational properties figure together. This view takes 435 

computational descriptions to be more than partial implementational descriptions, 436 

but it brings up the original problem discussed in this paper - how the unique 437 

computational properties relate to the implementational properties in each level of 438 

the hierarchy. 439 

A second option is to keep the two hierarchies apart (figure 7). The two hierarchies 440 

are related through the implementation relation. The computational properties of 441 

C1 are mapped (implemented by) to the implementational properties of P1, the 442 

computational properties of C2 are mapped to the implementational properties of 443 

P2, and so on. While objects by the same name may appear in both hierarchies, such 444 

as CPUs and registers in Fig. 7, the computational hierarchy includes only abstract, 445 

medium-independent properties (e.g., digits in logic gates) and the implementational 446 

hierarchy includes physical, medium-dependent properties (e.g., voltages). Fig. 7 447 

presents a simple case where each computational level is mapped to each 448 

implementational level. In reality there might not be a perfect match between the 449 

hierarchies and computational properties at the same level may be implemented in 450 

implementational properties in different levels. However the structure of the 451 

implementation relation, in all cases in this picture there are two hierarchies and the 452 

computational properties in the computational hierarch are implemented by 453 

implementational properties in the implementational hierarchy. This solution is 454 

more hospitable to the notion that there is multiple realization of cognitive 455 

functions, since the same computational hierarchy can be related to (i.e., 456 

implemented in) different implementational hierarchies. 457 

Figure 7 Two separate hierarchies, one computational and one implementational, 458 

that are related through implementation. Each level in each hierarchy is a complete 459 

explanation of the phenomenon at the higher level. 460 



 461 

This picture fits quite nicely with the functional view of explanation, namely, the idea 462 

that computational explanations are full-fledged functional (yet non-mechanistic) 463 

explanations. According to this functional picture, computational explanations are 464 

distinct and autonomous from mechanistic explanations (Fodor, 1968; Cummins, 465 

1983), which fits with the solution in which the two hierarchies are distinct. 466 

Computational and implementational properties do not figure together in the 467 

decompositional explanation of the same capacities. Instead, only computational 468 

properties are part of the decomposition of computations. Implementational 469 

properties can still figure in explanations of computations, but these explanations 470 



will not be mechanistic because there is no part/whole relation between explanans 471 

and explanandum. While on this picture the two hierarchies are separate, they still 472 

constrain each other: the relevant implementational properties are determined 473 

according to the computational function, and the computational hierarchy must be 474 

one which can be implemented in the physical system. Despite these mutual 475 

constraints, those supporting this picture will argue that the computation performed 476 

as part of some cognitive capacity can be given a complete explanation at one level 477 

without any reference to implementation and that the implementation details 478 

explain a different aspect of this capacity, namely, how the capacity is implemented. 479 

That is, computational and implementational explanations answer different 480 

questions. 481 

On both pictures, primitive computing processes are analyzed mechanistically, if at 482 

all, only indirectly. The primitive computational components, e.g., logic gates, are 483 

implemented in some implementational properties, e.g., voltages, whereas only the 484 

latter can be further analyzed mechanistically. On the combined-hierarchy picture 485 

(Fig. 6), the computational properties will figure together with implementational 486 

properties in each level, until at some point the primitive computing processes can 487 

no longer be decomposed, and only implementational properties will continue to be 488 

decomposed in the hierarchy. On the separate-hierarchies picture (Fig. 7), the 489 

computational hierarchy will terminate at the primitive computing components. 490 

On both pictures, the implementation is not a part/whole relation and therefore the 491 

description of implementation cannot be taken as a mechanistic explanation. 492 

Nonetheless, these two pictures do differ in how they view the role of 493 

implementation in explanation in general. On the combined picture, both 494 

computational and implementational details figure together in one mechanistic 495 

hierarchy. Therefore, it is natural to take relations of implementation to not have an 496 

explanatory role. Instead, medium-dependent details are taken to explain by 497 

decomposition of the phenomena. On the separate-hierarchies picture 498 

implementation can be considered to have a non-mechanistic explanatory role: it 499 

explains how the explanandum, as well as the computational hierarchy are 500 

implemented (see (Coelho Mollo, 2018)). 501 



What about the view that computational explanations are both abstract and full-502 

fledged mechanistic explanations? It would be difficult to see how the first solution 503 

in Fig. 6 can be consistent with it; if computational explanations are complete 504 

mechanistic explanations why do they require additional implementation details in 505 

the same mechanistic level of explanation? The second solution in Fig. 7 is not 506 

necessarily inconsistent with this view. For example, if one takes computational 507 

states and properties to have causal powers, then one can view the computational 508 

hierarchy as a hierarchy of complete mechanistic explanations. However, on this 509 

view the role of the implementational hierarchy still needs to be explicated. A 510 

possible implication is that the overall mechanistic picture is more complex: We have 511 

different mechanistic hierarchies that apply to different properties of the same 512 

objects/components. But under this picture any computational capacity has at least 513 

two hierarchical explanations, and it is not obvious which one of them should be 514 

considered the mechanistic explanation. A possible way to elucidate this complex 515 

picture is to maintain that the implementational hierarchy explains how the 516 

computational hierarchy is implemented, rather than how the cognitive capacity is 517 

performed (Coelho Mollo, 2018). On this view, the computational hierarchy is the 518 

mechanistic hierarchy which decomposes the cognitive capacity and the 519 

implementational hierarchy is an appendix which explain the implementation of the 520 

computation. 521 

6. Some insights from reinforcement learning 522 

It can be useful to examine the relation between the hierarchies in reinforcement 523 

learning. When considering the computational and implementational hierarchical 524 

models for reinforcement learning, which solution best describes the relation 525 

between these hierarchies? We believe that evidence in this case is mixed and can 526 

support both suggested solutions for the relation between the hierarchies. On the 527 

picture seen on Fig. 6, each level combines computation and implementation into 528 

one mechanistic explanation. Therefore, we would expect the scientific investigation 529 

of lower levels to include a physical decomposition of the higher level, as occurs in 530 

mechanistic explanations. However, in our example the scientific investigation of the 531 

implementation of the computational hierarchy searches for the implementation of 532 



variables at various levels of this hierarchy, such as the representations of action-533 

value (Samejima et al., 2005), RPE (Schultz, Dayan and Montague, 1997) and learning 534 

rate (α in eq. 1) (Behrens et al., 2007). Often, the search for a lower-level variable 535 

such as the learning rate takes place in the absence of a scientifically supported 536 

neural correlate for the higher level computational variable of which it consists (In 537 

this case the calculation of action-value). Hence, the search for neural correlates 538 

here is more akin to searching for relations between two separate computational 539 

and implementational hierarchies than to physically decomposing mechanisms.   540 

Moreover, scientific investigation of both hierarchies can and has been conducted 541 

separately. The Q-learning algorithm for reinforcement learning has been 542 

investigated both analytically (Watkins and Dayan, 1992) and behaviorally 543 

(Shteingart, Neiman and Loewenstein, 2013). These methods ignore the neural 544 

correlates of this model. Similarly, the basal ganglia have been investigated 545 

anatomically and functionally without addressing computational models for 546 

reinforcement learning (Hoshi et al., 2005). This suggests that a framework of two 547 

hierarchies, as presented in Fig. 7, is the appropriate one in this case. 548 

On the other hand, it can be argued that current scientific research is still preliminary 549 

and not indicative of the final form of a fully-fledged scientific explanation. Hints that 550 

such a form will include one combined mechanistic hierarchy can be found in the 551 

fact that scientific debates today about the plausibility of specific computational 552 

models of reinforcement learning often also appeal to the plausibility of the 553 

implementation of these models (Botvinick, Niv and Barto, 2009).  554 

Moreover, findings of implementation of specific computational variables can be 555 

used to support or refute abstract computational models. Recall the three challenges 556 

to the computational model we presented in the section 3. The first one suggested 557 

that instead of learning the values of the actions, there is ‘direct-policy’ learning 558 

where the probability of choosing each action (i.e., the policy) is reevaluated at each 559 

step. However, the finding that striatal neurons represent the expected reward 560 

associated with each action (Samejima et al., 2005) can be taken as support for the 561 



hypothesis that a Q-learning model is implemented in the brain, rather than a 562 

‘direct-policy’ model6.  563 

The finding in (O’Doherty et al., 2004) that striatal neurons can be divided into 564 

‘actor’ and ‘critic’ modules  can be used as evidence in the second challenge: 565 

whether the action selection and action reevaluation modules can be separated into 566 

‘actor’ and ‘critic’. It is also increasingly popular to suggest computational models 567 

that are informed by the structure of neural networks, with the purpose of 568 

suggesting models that are more biologically plausible (Mnih et al., 2016). Note that, 569 

even though physical structures are used as evidence in this debate, the questions 570 

pertain to the architecture of the abstract computational model, which can be 571 

implemented both in computers and in brains.  572 

Given these examples it can be argued that the practice of developing a complete 573 

explanation at each level of the explanatory hierarchy involves a close and reciprocal 574 

relation between the computational models and their possible implementation, and 575 

that computational models are not considered explanations until they have been 576 

shown to be implemented in the brain. This suggests that computation and 577 

implementation belong together in one level of the explanation. Therefore, the 578 

pictures presented in Figs. 6-7 are both still possible regarding this example. 579 

However, when considering whether computational descriptions are merely 580 

sketches of mechanisms, on the interpretation of sketches as partial descriptions of 581 

implementation, the evidence is more conclusive. We see that, in our example of 582 

reinforcement learning, evidence from scientific practice is strongly against the view 583 

of computational models as sketches. Moreover, scientific practice tends to take 584 

implementational details to explain the implementation of the computational model 585 

rather than the cognitive capacity directly. Often, when findings of neural correlates 586 

of reinforcement learning models are reported, they are reported as discoveries 587 

about the implementation of these models. Hence, such findings are taken to 588 

answer questions about how, and whether a specific computational model is 589 

implemented in the brain and they do not attempt to explain reinforcement learning 590 

                                                           
6 But see (Elber-Dorozko and Loewenstein, 2018) 



(or decision making in general) without appeal to some computational model. 591 

Perhaps the strongest indication for this is in experiments where there is some 592 

causal intervention on brain areas and behavioral changes are measured. If 593 

computational models are merely partial descriptions of implementation, they will 594 

be unnecessary in the interpretation of causal experiments, where the causal 595 

structure is already described in the results of the experiment. However, often, 596 

results in such experiments are interpreted in the framework of a computational 597 

model of reinforcement learning (Tai et al., 2012; Wang, Miura and Uchida, 2013; 598 

Lee et al., 2015). For example, (Tai et al., 2012) find that stimulation of striatal 599 

neurons causes a bias in choices, and they interpret these results by saying that 600 

stimulation of striatal neurons mimics changes in action-value. Hence, instead of 601 

utilizing the causal finding to explain the behavior of the subjects, (Tai et al., 2012) 602 

use their finding as an indication of implementation of action-value – a 603 

computational variable. Such a computational interpretation to causal results is 604 

difficult to explain if computational models are taken to be merely partial 605 

descriptions of causal mechanisms and is much more in line with the view that 606 

computational models have a unique explanatory value. Moreover, this scientific 607 

practice can be taken to support the claim that implementational details are taken to 608 

explain the computational model rather than the cognitive capacity itself. 609 

For this reason, we believe that our example does not support the view that 610 

computational models are partial descriptions or that computational models are 611 

explanatory only because they describe causal relations. Instead, this reinforcement 612 

learning example is more consistent with the view that computational properties 613 

play an invaluable role in the explanation of cognitive phenomena.  614 

Nonetheless, reinforcement learning is just one example of computational models of 615 

cognitive capacities. Future investigation of other computational models will be 616 

telling regarding the relation between computation and implementation. 617 

7 Conclusions 618 

After raising the problem of how computational explanations integrate in the 619 

mechanistic hierarchy, we analyzed reinforcement learning as an example of a 620 



computational model in neuroscience and reviewed two possible pictures of the 621 

relations between computation and implementation in the mechanistic hierarchy. 622 

On the one-hierarchy picture computational and their implementational properties 623 

reside in the same level(s) of explanation. On the two-hierarchy picture 624 

computational and implementational properties reside in different computational 625 

and implementational hierarchies. We concluded that both pictures are possible 626 

regarding the reinforcement learning example, but that scientific practice does not 627 

align with the view that computational models are merely mechanistic sketches.  628 
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