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Abstract

We provide a novel perspective on “regularity” as a property of representations of the Weyl
algebra. We first critique a proposal by Halvorson [2004, “Complementarity of representa-
tions in quantum mechanics”, Studies in History and Philosophy of Modern Physics 35(1),
pp. 45–56], who argues that the non-regular “position” and “momentum” representations of
the Weyl algebra demonstrate that a quantum mechanical particle can have definite values
for position or momentum, contrary to a widespread view. We show that there are obstacles
to such an intepretation of non-regular representations. In Part II, we propose a justification
for focusing on regular representations, pace Halvorson, by drawing on algebraic methods.

1. Introduction

It is standard dogma that, according to quantum mechanics, a particle does not, and indeed

cannot, have a precise value for its position or for its momentum. The reason is that

in the standard Hilbert space representation for a free particle—the so-called Schrödinger

Representation of the Weyl form of the canonical commutation relations (CCRs)—there

are no eigenstates for the position and momentum magnitudes, P and Q; the claim follows

immediately, from this and standard interpretational principles.1
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1Namely, the Eigenstate–Eigenvalue link, according to which a system has an exact value of a given
property if and only if its state is an eigenstate of the operator associated with that property. The Eigenstate-
Eigenvalue link has a long and distinguished history (Gilton, 2016), but it is not without its detractors (Fine,
1973; Wallace, 2012).
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But not everyone accepts this simple argument. In particular, Hans Halvorson (2004)

has argued that there is, after all, a sense in which a quantum particle may have a definite

position or momentum. As Halvorson points out, the Schrödinger representation is not the

only possible representation of the Weyl CCRs; there are other representations available,

and in these other representations one can have eigenstates for a position operator or a

momentum operator. These alternative representations have been largely neglected because

there is a theorem, known as the Stone-von Neumann theorem, which implies that there is

a unique representation (up to unitary equivalence) of the Weyl CCRs with the property

of regularity. Since regularity is often taken to be a desirable or important feature of a

representation, many physicists and philosophers of physics take the Stone-von Neumann

theorem to establish uniqueness, full stop. But, Halvorson contends, requiring regularity is

precisely to beg the question against the advocate of definite momentum and position states.

And insofar as the latter are of conceptual significance, regularity is a suspect assumption.

Halvorson goes on to argue that these alternative position and momentum representa-

tions are significant: in particular, they make precise certain insights often attributed to

Niels Bohr, related to the so-called Principle of Complementarity. According to this princi-

ple, a particle may be said to have a definite, precise position; or it may be said to have a

definite momentum. But it cannot have both. And this is precisely what one finds with the

position and momentum representations: in the position representation there exists a posi-

tion operator with eigenstates, but there does not exist a momentum operator at all. And

vice versa for the momentum representation. On this reconstruction, then, Bohr’s principle

identifies a formal feature of our descriptions of quantum systems, related to a limitation on

our ability to represent, once and for all, all of the properties we take a (classical) particle

to have.

We will not engage further with Halvorson’s arguments concerning Bohr.2 Instead, we

2Halvorson himself does not engage in Bohr exegesis in his paper. Bohr is not even cited!
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take Halvorson to have raised an important question concerning the status and interpretation

of the regularity assumption necessary for the Stone-von Neumann theorem.3 Our goal is

to address this question. We do so in two papers, of which this one is the first.4

In the present paper, we offer a critical response to Halvorson’s proposal. We first argue

that admitting non-regular Hilbert space representations of the Weyl CCRs as somehow on

par with the standard Schrödinger representation leads to difficulties, particularly once one

considers dynamics. We then argue that there is a more charitable interpretation of Halvor-

son’s view on which one steps back from the representations and considers the relationship

between regular and non-regular states on a particular abstract algebra. We conclude this

paper by arguing that whether one should take Halvorson’s definite position and momentum

states to have physical significance depends sensitively on which algebra one takes to cor-

rectly represent the physical magnitudes associated with a quantum particle. In the sequel,

we provide an argument that one should adopt a different algebra, and then argue that the

considerations motivating this alternative choice provide independent grounds for taking the

states and quantities of the Schrödinger representation to be the physically significant ones.5

We begin, in section 2, by presenting some mathematical background concerning the

Weyl CCRs and the Schrödinger representation. In section 3 we describe the non-regular

representations Halvorson discusses. We then present, in section 4, some difficulties that

arise if one tries to understand the position and momentum representations as together

describing the space of physically possible states, as one might usually interpret a Hilbert

3Actually, if one relaxes the regularity condition only slightly, then one can still arrive at a generalization
of the Stone-von Neumann theorem; see Cavallaro et al. (1999). However, now instead of having a unique
representation, one only arrives at a classification of the inequivalent representations, including the non-
regular ones.

4The second is (Feintzeig and Weatherall, 2018). Both papers are written to be read independently,
though they complement one another. Aside from length and partial independence of the arguments, one
reason for splitting the paper into two parts is that the present paper requires less (and different) technicalia
than the sequel, and so the two articles present matters at somewhat different levels.

5While we do not address these ideas in the present manuscript, our discussion in the sequel will also
engage with the ideas Halvorson explores in an earlier paper (Halvorson, 2001), presented in response to
Teller (1979); and with the response to Halvorson by Ruetsche (2011).
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space representation of a quantum system. In section 5, we present a different reading of

Halvorson’s proposal that we take to be more promising, and then sketch an argument that

the success of this proposal turns on Halvorson’s choice of algebra. We conclude in section

6 with a discussion of what has been accomplished in this paper, and a description of what

we believe remains to be done in the sequel.

2. The Weyl CCRS and the Schrödinger Representation

The standard procedure for constructing a quantum theory of some physical system—at least

one with finitely many degrees to freedom—is to identify a Hilbert space H of (pure) states

of the system, along with some *-algebra of operators on that Hilbert space, the self-adjoint

elements of which represent the physical magnitudes associated with the system. Generally

this *-algebra is determined by requiring that it be generated by (or at least, contain) some

collection of operators that together satisfy specified algebraic relations, known as canonical

commutation relations (CCRs), that are expected to hold between the physical magnitudes

defining the system in question.

For instance, it is natural to take the quantities position and momentum to be the

defining magnitudes for a single particle moving in one dimension. (We limit attention to

a particle in one dimension in what follows for simplicity, though one can extend these

arguments to more general cases.) Following Dirac and others, building on an analogy with

the Poisson bracket for position and momentum in a classical description, one requires that

any operators Q and P representing position and momentum, respectively, must satisfy the

following CCR:

[Q,P ] = iI, (1)

where the brackets are the commutator, I is the identity operator, and where we are working

in units where ~ = 1. Thus, to represent a single particle in one dimension, one would like
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to find a Hilbert space H and ∗-algebra of operators acting on H containing self-adjoint

operators P and Q satisfying this relation.

This can be done (Dubin et al., 2000)—but it turns out to be inconvenient on technical

grounds. The reason is that operators Q and P on any Hilbert space H satisfying the CCR

can be shown to be, in general, unbounded, which means that for any number K ≥ 0, one

can always find a unit vector ϕ in H such that ||Qϕ|| > K (and likewise for P ). Working

with unbounded operators adds many complications, including, for instance, that they are

not defined on all vectors in the Hilbert space on which they act, and that the collection of

all unbounded operators on a Hilbert space do not generally form a vector space, much less

an algebra. Bounded operators, by contrast, are far more convenient to work with.

There is, however, a trick—originally due to Weyl (1950)—that one can perform to get

around introducing unbounded operators, at least in the first instance. Consider, instead

of Q and P , one parameter groups a 7→ Ua and b 7→ Vb. We think of Ua and Vb as “formal

exponentiations” of Q and P respectively, so that for any a ∈ R, Ua = eiaQ, and for any

b ∈ R, Vb = eibP . Then, by the formal properties of the exponential we should expect that

if Q and P satisfy the CCR above, Ua and Vb should satisfy:

UaVb = e−iabVbUa (2)

for all a, b ∈ R. The relationship expressed in Eq. (2) is known as the Weyl form of the

CCRs (Petz, 1990; Clifton and Halvorson, 2001). Unlike the operators Q and P , one would

expect operators Ua and Vb satisfying Eq. (2) to be bounded, again by formal properties

of the exponential, and so it should be possible to find operators in B(H ) that satisfy the

Weyl CCRs.

And indeed, it is possible. Let µ be the Lebesgue measure on R. A function ψ : R→ C

is square-integrable if
∫
R |ψ|

2dµ <∞. Given two square-integrable functions ψ : R→ C and
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ϕ : R→ C, we write ψ ∼ ϕ if
∫
R |ψ − ϕ|

2dµ = 0. Let [ψ] be the set {ϕ : ϕ ∼ ψ}. Let L2(R)

be the Hilbert space of equivalence classes (mod ∼) of square integrable functions from R

to C, with inner product defined by 〈[ϕ], [ψ]〉 =
∫
R ϕψdµ. (In what follows we will drop the

square brackets, and understand all operations to be defined almost everywhere with respect

to the Lebesgue measure on R. In other words, we will refer to an element [ϕ] of H by a

representative ϕ of the equivalence class.)

There exists a representation of Ua and Vb on H = L2(R). We can express this rep-

resentation explicitly as follows. Define the operator Ua to act on any vector ϕ in H as

Uaϕ(x) = eiaxϕ(x), for all x ∈ R; and define Vb as Vbϕ(x) = ϕ(x + b), for all x ∈ R. These

operators are bounded and defined on all of H . Moreover, they manifestly satisfy the Weyl

form of the CCRs, since for all ϕ ∈ L2(R),

UaVbϕ(x) = Uaϕ(x+ b) = eiaxϕ(x+ b) = e−iabeia(x+b)ϕ(x+ b) = e−iabVbUaϕ(x)

The representation just defined is known as the Schrödinger representation of the Weyl

CCRs. It has the following nice property: the maps a 7→ 〈ϕ,Uaψ〉 and b 7→ 〈ϕ, Vbψ〉 (which

are just complex functions of one variable) are continuous for all ϕ, ψ ∈ H . Whenever a

representation has this property, it is called regular. The Schrödinger representation is the

(essentially) unique representation of the Weyl CCRs with this property, in the following

sense. Two representations ({a 7→ Ua}, {b 7→ Vb}) on H and ({a 7→ U ′a}, {b 7→ V ′b}) on

H ′ are unitarily equivalent if there is a unitary transformation W : H → H ′ (i.e. a W

such that 〈Wϕ,Wψ〉H ′ = 〈ϕ, ψ〉H for all ϕ, ψ ∈ H ) such that W ◦ Ua ◦W−1 = U ′a and

W ◦ Vb ◦W−1 = V ′b . We then have the following result:6

Theorem 1 (Stone-von Neumann). If ({Ua}, {Vb}) is an irreducible7 regular representation

6For more on the Stone-von Neumann Theorem, see Mackey (1949); Rieffel (1972); Petz (1990); Summers
(1999); Clifton and Halvorson (2001); Ruetsche (2011).

7Recall that a representation ({Ua}, {Vb}) is irreducible just in case there are no nontrivial subspaces left
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of the Weyl relations, then it is unitarily equivalent to the Schrödinger representation.

The Schrödinger representation has the following feature: there exist, on H , unbounded

operators Q and P , defined on a common dense subset of H , that satisfy the CCRs in Eq.

(1); moreover, these operators take their standard form: for any vector ϕ in their shared

domains, Qϕ(x) = xϕ(x) and Pϕ(x) = −i∂ϕ
∂x

. That these exist is a consequence of a basic

result known as Stone’s Theorem, which states that, given any (strongly) continuous one-

parameter group of unitary operators c 7→ Tc on a Hilbert space, there exists a self-adjoint

operator O that “generates” the group in the sense that Tc = eicO. The Weyl operators Ua

and Vb on L2(R) as we have defined them are strongly continuous one-parameter groups of

unitary operators; indeed, the strong continuity of these one-parameter families is equivalent

to the regularity condition.8 Thus the generators Q and P , respectively, of a 7→ Ua and

b 7→ Vb exist, and are guaranteed to satisfy Eq. (1).

The operators Q and P in the Schrödinger representation can thus be taken to correspond

(respectively) to the position and momentum magnitudes of a particle with one degree

of freedom. Moreover, it follows immediately from the Stone-von Neumann theorem and

Stone’s theorem that any other regular representation of the Weyl CCRs will likewise admit

operators Q and P satisfying Eq. (1); and that, since any representation of Q and P will

give rise, via exponentiation, to a strongly continuous representation of the Weyl CCRs, the

Schrödinger representation is the unique representation, up to unitary equivalence, of the

canonical commutation relations for Q and P as well.

We conclude this section by capturing the sense in which, in the Schrödinger repre-

sentation, particles cannot have definite values for position or momentum. By the spectral

invariant by all operators Ua and Vb.
8Recall that a one parameter family of operators c 7→ Tc on H is strongly continuous if, for every ϕ ∈H

and c0 ∈ R, limc→c0 ||Tcϕ−Tc0ϕ|| = 0. It is weakly continuous if c 7→ 〈ϕ, Tcψ〉 is continuous for all ϕ,ψ ∈H .
Weak and strong continuity are equivalent for one parameter families of unitaries. Observe that regularity
asserts that the one parameter families a 7→ Ua and b 7→ Vb are both weakly continuous, and thus also
strongly continuous.
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theorem (Reed and Simon, 1980; Kadison and Ringrose, 1997), Q is associated with a unique

projection valued measure EQ on R such that

Q =

∫
R
x dEQ(x)

For any (Borel) measurable subset S of R, the projection EQ(S) is standardly interpreted

as the projection associated with the proposition that the particle is in the region S. As

one can check, the projection EQ(S) can be defined on L2(R) by EQ(S)ϕ(x) = χS(x)ϕ(x)

where χS is the characteristic function of S. It follows that for all λ ∈ R, EQ({λ}) = 0

(since for any ϕ ∈ L2(R), EQ({λ})ϕ vanishes almost everywhere and hence EQ({λ})ϕ ∼ 0).

Under the standard interpretation of projections, it follows that the truth value assigned to

any proposition of the form “the particle is located at the point λ” is always “false”. One

standardly interprets this as the statement that a particle cannot be located at the point λ,

which captures the claim with which we began the paper. Similar claims hold for momenta.

3. Halvorson on Non-regular Representations

In the previous section, we described the standard argument that takes one from the CCR,

given by Eq. (1), to the Schrödinger representation. As we described, the Schrödinger

representation is the unique regular representation, up to unitary equivalence, of the Weyl

form of the CCRs; and in this representation, there is a precise sense in which particles

cannot have definite values for position or momentum. But as Halvorson points out, these

claims rely on the regularity condition—and “the regularity assumption begs the question

against position-momentum complementarity” (Halvorson, 2004, p. 49). In particular, if

one considers representations of the Weyl form of the CCRs that fail to satisfy the regularity

condition, the results described above fail. In fact, one can find representations in which

particles can have definite values for position or momentum (Beaume et al., 1974).
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Let `2(R) denote the (non-separable) Hilbert space of square summable (as opposed to

square integrable) functions from R into C, defined as follows. An element ϕ of `2(R) is a

complex-valued function ϕ of a real variable that satisfies ‖ϕ‖ =
∑

x∈R |ϕ(x)|2 < ∞ (this

implies ϕ is supported only on a countable subset of R). The inner product on `2(R) is given

by 〈ϕ, ψ〉 =
∑

x∈R ϕ(x)ψ(x). For each λ ∈ R, let χλ be shorthand for χ{λ}, the characteristic

function of the singleton set {λ}. Then {χλ : λ ∈ R} is an orthonormal basis for `2(R).

There exists a non-regular “position” representation of the Weyl form of the CCRs on

`2(R). For all a, b ∈ R, we introduce unitary operators Ua and Vb on `2(R) by defining their

action on the orthonormal basis {χλ : λ ∈ R} and extending linearly and continuously to

all of `2(R): for each λ ∈ R, let Uaχλ = eiaλχλ; and let Vbχλ = χλ−b. One can verify that,

for all a, b ∈ R, Ua and Vb, so defined, satisfy Eq. (2).

One can also check that, for all λ ∈ R, ‖Uaχλ − χλ‖ → 0 as a → 0, which implies

a 7→ Ua is (strongly) continuous and, by Stone’s theorem, there is an (unbounded) self-

adjoint operator Q on `2(R) such that Ua = eiaQ for all a ∈ R. Moreover, this operator Q is

such that for all λ ∈ R, Qχλ = λχλ. In other words, the basis vectors χλ are eigenvectors for

the position operator; we may likewise define a family of one dimensional spectral projections

EQ
{λ} for Q. Unlike in the Schrödinger representation, these projection operators do not

vanish, and hence the proposition “the particle has position λ,” for some given λ, is not

necessarily false. In this sense, the position representation allows one to characterize states

in which a particle has a definite position.

But this representation has the following striking property: we cannot make sense of a

momentum operator at all. In particular, for any λ ∈ R, Vbχλ is a unit vector orthogonal

to χλ for all b 6= 0. This means ‖Vbχλ − χλ‖ = 2 for all b 6= 0, and hence Vbχλ does not

converge to χλ as b → 0. Thus, b 7→ Vb is not strongly continuous, which implies that

the representation is not regular. It also means we cannot invoke Stone’s theorem to find a

generator of the unitary group Vb. Indeed, as Halvorson (2004) shows, there is no self-adjoint
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operator P on `2(R) such that Vb = eibP for all b ∈ R. Thus the momentum operator P does

not exist in this representation.

The same construction may be used, by switching the roles placed by Ua and Vb, to

produce a non-regular “momentum” representation. In such a representation, there is a self-

adjoint, unbounded operator P on `2(R) that generates the one parameter group Vb. This

operator is a momentum operator; the vectors χλ are now understood as definite momentum

eigenstates. But in this representation, for the same reasons as those just given, there is no

self-adjoint operator Q that generates Ua. In other words, the position operator Q does not

exist in this representation.

Thus, if we relax the requirement of regularity, we can construct representations in which

there are definite position states, and we can construct representations in which there are

definite momentum states. But the representation with definite position states does not

have a momentum operator, much less definite momentum states; and the representation

with definite momentum states does not have a position operator. In fact, these features of

the representations we have just constructed turn out to be general. We have:

Theorem 2. (Halvorson, 2004, Thm. 1) In any representation of the Weyl form of the

CCRs, if Q exists and has an eigenvector, then P does not exist. If P exists and has an

eigenvector, then Q does not exist.

This is Halvorson’s central result concerning (non-) regularity.

4. The Physics of Non-regular Representations

Halvorson draws attention to the non-regular representations we have discussed, and he

indicates that they have some bearing on the interpretation of quantum theory. He writes,

for instance, that “Indeed, by employing non-regular representations of the CCRs, we can

make sense of Bohr’s claims about position-momentum complementarity” (Halvorson, 2004,
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p. 55). But he does not elaborate on this claim, and it is not clear how we are to understand

the non-regular representations he discusses in a way that leads to a satisfying interpretation.

Here we will describe a few views one might adopt, and offer some considerations against

accepting them.

At first, when presented with multiple, unitarily inequivalent representations of the phys-

ical quantities of some quantum system, one might look to the now-large literature on unitary

inequivalence. Ruetsche (2011), for instance, characterizes two dominant views in this liter-

ature: those of the Hilbert space conservative and the algebraic imperialist.9 The algebraic

imperialist holds that one need not invoke Hilbert space representations of physical systems

at all (except, perhaps, for convenience): the physical significance of a quantum theory is

fully characterized by the abstract algebraic relationships between the magnitudes associ-

ated with that system, which are shared by all of the possible representations. (In this case,

that algebra would be the so-called Weyl algebra, generated by a 7→ Ua and b 7→ Vb; we

return to this algebra below.) Since Halvorson emphasizes the distinctive features of the

position, momentum, and Schrödinger representations, however, it seems that the represen-

tations themselves are supposed to play some substantive role on his account. And so, we

set the algebraic imperialist position aside in this section.

The Hilbert space conservative, unlike the algebraic imperialist, holds that to interpret

a quantum theory, one must first choose a Hilbert space and a collection of operators on

that Hilbert space that represent the physically salient quantities. The traditional view on

which the Schrödinger representation offers a complete description of the possible states and

magnitudes of the single free particle system is naturally construed as an instance of Hilbert

space conservativism. The conservative’s focus on Hilbert space representations suggests

9Ruetsche takes these terms from Arageorgis (1995); see also Feintzeig (2018b). A third position is that of
the so-called “universalist” (Kronz and Lupher, 2005), which may be thought of as a kind of middle ground
between the algebraic imperialist and Hilbert space conservative positions, although Feintzeig (2018b) argues
universalism is equivalent to imperialism.
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that this approach is closer to what Halvorson must have in mind. But the Hilbert space

conservative insists that there is a single physically salient Hilbert space representation

of a given physical system, such that the unit vectors in that Hilbert space represent the

physically possible pure states of the system, and the self-adjoint elements of (some *-algebra

of) the operators on that Hilbert space represent the observable quantities associated with

that system. It is not clear what to make of a proposal on which one has two Hilbert space

representations that are physically salient (or perhaps three—if we consider the Schödinger

representation).

So Halvorson’s proposal does not fit naturally into the established frameworks for inter-

pretation. It seems that he wants to say that the physical significance of the one particle

quantum system lies in its representations, but that one must consider multiple representa-

tions to fully describe the system. We suggest two possible readings of this view.

On one reading, to describe the full range of physical possibilities, we need to consider both

the position and momentum representations (and, perhaps, the Schrödinger representation),

in the sense that the possible (pure) states of a single free particle correspond to the unit

vectors in any of these representations.10 And the physical quantities correspond, say, to

those that can be suitably constructed from the operators Ua and Vb acting on each of these

Hilbert spaces. For some, but not all, of these physical states—namely, those that happen

to live in the position representation—one can define a definite position; for others, one can

define a definite momentum. This would capture a sense in which it is possible for a given

physical system to possess a definite value for position or for momentum, but, if the system

does possess such a value for one of these quantities, no meaningful assertions can be made

about the other quantity.

10This can be understood as a Hilbert space conservative approach, wherein one uses the Hilbert space
L2(R) ⊕ `2(R) ⊕ `2(R), with the associated reducible representation of the Weyl form of the CCRs given
by the direct sum of the Schrödinger, position, and momentum representations. Hilbert space conservatives
usually focus on irreducible representations, however, and so this proposal is unconventional.
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If this is the attitude we are meant to adopt, a number of questions arise. First, one might

expect that for systems in states that happen to lie in one or the other representation, one

can reason about those states in the ways we are accustomed to in non-relativistic quantum

theories—as in, say, the Schrödinger representation. For instance, one might expect that

the Schrödinger equation will hold, for some Hamiltonian H representing the free particle’s

energy. This would imply that one could implement the dynamics for the free particle as a

strongly continuous one parameter family c ∈ R 7→ Tc = eicH of unitary operators acting on

those states. But in fact, this cannot be done in all the representations under consideration.

In particular, we will now show that there is a precise sense in which no suitably con-

tinuous free unitary dynamics can be defined on any representation with definite position

states—including the position representation. It is a direct consequence of this result that

there is no Hamiltonian one can use to characterize the dynamics of the free one particle

system in the position representation. It then follows that there cannot be some Hamilto-

nian operator that describes, once and for all, the “dynamics of the system” independent of

which representation the state of the system happens to fall in at a given time.11

Let M be a temporally oriented Galilean spacetime, i.e., an affine space of dimension ≥ 2

endowed with temporal and spatial (degenerate) metrics t and h, respectively (Malament,

2012; Weatherall, 2016). (We have been considering one spatial dimension thus far, but we

state this result more generally.) In what follows, we say that vectors ξ are timelike if t(ξ) 6=

0; otherwise they are spacelike. Now, consider structures of the form (H , p 7→ Ep, ξ 7→ Tξ).

Here, H is a Hilbert space. The map p 7→ Ep takes points in M to projection operators on

H ; the operator Ep is supposed to represent the proposition that the particle is located at

a particular point p in space and time. The map ξ 7→ Tξ is a unitary representation (not

necessarily continuous) of the translation group on M .

11To re-express this claim in the terms of footnote 10: there is no suitable unitary dynamics on the
(reducible) representation described in that note.
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One would expect the position representation to give rise to a structure (H , p 7→ Ep, ξ 7→

Tξ), as follows. First, take H to be the Hilbert space of the representation. This is a Hilbert

space of definite position states in space,12 and so some work will be necessary to associate

it with points of spacetime. Choose a point o. Take S—space—to be the three dimensional

affine space of points simultaneous with o, i.e., the points o + σ, for all spacelike vectors

σ. Define, for p ∈ S, p 7→ Ep to take points p to projections Ep as defined in section 3.

Finally, define spacelike translation operators through their action on definite position states

associated with points in S, which, recall, form a basis for H : take, for any spacelike vector

σ, Tσ to be the operator whose action on a definite position state χp is given by Tσχp = χp+σ.

This operator simply takes the state representing a particle at point p and returns the state

representing a particle at point p+ σ.

Finally, we would like to extend this construction to spacetime. If there were a suitable

free dynamics in this representation, one would expect it to give rise to assignments ξ 7→ Tξ

of unitary operators corresponding to temporal evolution (time translation) in the timelike

direction ξ. For example, given a unit timelike vector ξ, one might näıvely write down

a Newtonian dynamics in the position representation by defining Tcξϕ(x) = ϕ(x − cσ) for

c ∈ R the time elapsed. Here σ is a spacelike vector representing the 3-velocity of the system

relative to an observer with 4-velocity in the direction of ξ (i.e., given a 4-velocity ν for the

particle, σ = ξ − ν).13 We would then define projection operators corresponding to points

timelike related to S, by taking, for any q ∈ M , q 7→ Eq = TξEpT−ξ, where p ∈ S and ξ is

such that q = p+ ξ. And similarly we would define states by χq = Tξχp. We would find, for

instance, that for any vector η and any point q ∈M , we have Eqχq = χq and Tηχq = χq+η.

We can motivate this sort of construction also by considering the situation in the Schrödinger

12One could equally well begin by considering a position representation on l2(Rn), rather than l2(Rn−1),
and consider states on spacetime. The result below bears on this case, too.

13We remark that this is a näıve proposal because it seems there is no way to associate a 4-velocity ν
with such a particle. What we are describing is a sketch of how one might try to proceed; what we capture
below is a sense in which there is no way to succeed.
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representation. There, we can fix a unit timelike vector η and define Tcη = e−iP
2c/2, where

P is defined relative to η.14 Acting with this operator “translates” the system in time by

evolving its state, where the character of that evolution depends on the particle’s momentum.

If we are given a single one-parameter unitary family Tcη (where η is a unit timelike

vector and c ∈ R) representing timelike translation along one direction, we can use it to

reconstruct timelike translations along all other directions. Given any other unit timelike

vector ξ, we may define Tξ = TηTξ−η, where ξ− η is necessarily spacelike; in other words, we

translate the system in space, and then evolve. Now, since we already have a suitable unitary

operator Tσ for each spacelike vector σ, we can make the choice σ = ξ−η to use in the above

definition of Tξ from Tη. Observe that since we have required ξ 7→ Tξ to be a representation

of the entire translation group in spacelike and timelike directions (which is commutative),

we must also have Tξ = Tξ−ηTη, i.e., translating in space and then evolving in time yields

the same result as evolving in time and then translating in space. This requirement makes

sense only for dynamics that are not position dependent, e.g., free dynamics.15

Now consider the following three conditions.

1. Spatial Translation Covariance. For all spacelike vectors σ and all p ∈M , Ep+σ =

TσEpT−σ (where p+ σ is the point that results from translating p by the vector σ).

2. Exact Localizability. If p, q ∈ M are distinct and have vanishing temporal dis-

tance,16 then EpEq = 0.

3. Timelike Continuity. For all future-directed unit timelike vectors ξ, the (restricted

one-dimensional) unitary representation c ∈ R 7→ Tcξ is weakly continuous.

14By this we mean that a vanishing expectation value for P means that the expected velocity of the
particle relative to an observer with 4-velocity η is zero. Alternatively, we may think of this as defining a
Hamiltonian H for which the average (kinetic) energy is determined relative to η.

15Observe that we consider only translations, not Galilean boosts. The Hamiltonian itself does not change.
16That is, t(v) = 0, where q = p+ v.
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The first condition captures the idea that, whatever else is the case about the assign-

ments p 7→ Ep and σ 7→ Tσ, they satisfy a certain basic compatibility requirement under

spatial translations. We take this condition to be a weak necessary condition for the desired

interpretation of the projections p 7→ Ep and operators σ 7→ Tσ under consideration. It is

trivially satisfied by the projection operators p 7→ Ep defined above for the position represen-

tation, since for any definite position state χq, Ep+σχq = χq if q = p+ σ and zero otherwise;

while EpT−σχq = χq−σ if p = q − σ and zero otherwise, which means TσEpT−σ = Eq if

q = p + σ (or, p = q − σ). Observe that, though we are working in Galilean spacetime, we

are not requiring covariance under the (full) Galilean group, just spatial translations.

The second condition captures the idea that the position states we are considering are

“exact”, in the sense that if a particle is located at a point p at a time, then it cannot also

be located at any (simultaneous) point q. Note that this condition does indeed hold for the

position projections defined in the position representation above. Finally, the third condi-

tion captures the idea that the one-parameter unitary group determined by each timelike

vector ξ is suitably continuous. This assumption, recall, is a necessary condition for the

recovery of some unitary operator H such that Tcξ = eicH via Stone’s theorem. Note that

we require continuity for all future-directed unit timelike vectors. This is because we are

working in Galilean spacetime, and so we presume that any suitable unitary dynamics could

be expressed equally well for time translation along any temporal direction. Going back

to the example of free dynamics in the Schrödinger representation, described above, one

should expect to be able to choose the vector η relative to which time translation is defined

arbitrarily—and, indeed, to define an operator H relative to any standard of rest one likes.

We can now formulate a proposition due to Malament (private communication) that

shows a sense in which these conditions are incompatible. (See Appendix A for proof.)

Proposition 3 (Malament). If a structure (H , p 7→ Ep, ξ 7→ Tξ) satisfies conditions (1),

(2), and (3), then Ep = 0 for all points p ∈M .

16



The conclusion of this proposition is naturally understood as the assertion that all propo-

sitions of the form “the particle is located at p” are (necessarily) false. Since this condition

is violated by any representation (including the position representation) that has definite

position states, it follows that the position representation—and any other representation

with definite position states—must violate one of the other assumptions. Since the position

representation p 7→ Ep does satisfy exact localizability, we conclude that there is no choice

of maps ξ 7→ Tξ in the position representation that satisfy both translation covariance and

timelike continuity. Moreover, we take translation covariance to be a necessary condition for

the intended interpretation of the structure (H , p 7→ Ep, ξ 7→ Tξ), and indeed translation

covariance is satisfied for the spatial translations we defined in the natural way above for the

position representation. Thus, we conclude that there can be no satisfactory way to make

time translation (or dynamics) weakly continuous in the position representation.

Halvorson himself says very little about dynamics in his paper, and he certainly never

claims that the dynamics in the position (or momentum) representations arises from a

Hamiltonian, or even that it is unitarily implementable. What he does say, in a footnote on

the penultimate page of the article, is that the standard (free) Schrödinger dynamics “can

also be defined in a representation-independent manner, at least for the standard case of a

free particle” (Halvorson, 2004, pg. 55). Halvorson expresses this dynamics directly via its

action on the Weyl operators Ua and Vb, as:17

UaVb 7→ e
ica2

2 UaVb+ca.

One can confirm that this transformation is unitarily implementable in the Schrödinger

representation, in the sense that it determines a (strongly continuous) one-parameter family

17See also (Fannes and Verbeure, 1974; Narnhofer and Thirring, 1993). Observe that this transformation
is not precisely what Halvorson himself writes. Halvorson’s expression does not involve the phase factors we
include here, and as a result his transformation does not correspond to the standard free particle dynamics
in the Schrödinger representation.
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of unitary operators c 7→ Tc, and moreover, that the generator of the group is the standard

free Hamiltonian H = P 2/2.

This proposal does seem like the natural way to generalize the standard Schrödinger

dynamics to the position and momentum representations. But it has some unattractive

consequences. In particular, although this dynamics is also unitarily implementable in the

momentum representation, in precisely the same sense as in the Schrödinger representation,

it is not unitarily implementable in the position representation (Beaume et al., 1974, Prop.

3.27).18 Thus we cannot understand Halvorson’s proposed dynamics as an instance of unitary

dynamics at all, at least for position states.

Worse, recall that we are considering the idea that the states in both the position and

momentum representations (and, perhaps, the Schödinger representation) are physically

possible states, so that a given particle may be in a definite position state or it may be in

a definite momentum state. One might have imagined that this setup would allow us to

consider particles that are sometimes in definite position states and sometimes in definite

momentum states, in the sense of being able to evolve from one such state to another.

But the facts just noted about (non-)unitary dynamics show that this is not possible, at

least for the proposed free dynamics. Instead, if at any particular time, a particle is in a

definite momentum state, and it then evolves according to the free dynamics (or any other

dynamics that is unitarily implementable in the momentum representation), then at all other

times, the particle must also be in a state in the momentum representation. Likewise for

states in the Schrödinger representation. This is because any dynamics that is unitarily

implementable in a given representation takes states in that representation only to other

states in that same representation.

This consequence does not hold for the position representation, since there the dynamics

18Observe the relationship between this claim and that in Prop. 3. There we show that no unitarily-
implementable dynamics satisfying certain basic desiderata is continuous; now we are claiming that a partic-
ular proposal for a free dynamics is not even unitarily implementable, irrespective of continuity properties.
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is not unitarily implementable. But in a sense, the situation there is even stranger. In fact,

states in the position representation never remain position states: they necessarily evolve,

in any finite time under the free dynamics, to states in other representations (Beaume et al.,

1974, Prop. 3.27). But they cannot evolve to any state in the momentum or Schrödinger

representations! In other words, the states in the various representations under consideration

are not mutually dynamically accessible, at least under the free dynamics; and states in the

position representation immediately evolve to states that do not lie in any of the three

representations we have discussed. This conclusion is in tension with the idea that it is the

states in precisely these representations that one should take to have physical significance.

Of course, these remarks hold only for free dynamics. And in that context, the mu-

tual dynamic inaccessibility of position and momentum states may not be so surprising or

troubling—after all, a free particle with definite momentum, say, might be expected to prop-

agate without change to its momentum, and thus never evolve into a definite position state.

In other words, one might have thought that some sort of non-trivial interaction would be

necessary to have a momentum state evolve into a position state and vice versa.

Fair enough. But the underlying facts that lead to the features of the free dynamics just

discussed can be expected to cause problems more generally. First, consider that any dynam-

ics that is unitarily implementable in the Schrödinger representation, including dynamics

encoding interactions and potentials, will be such that it takes states in the Schrödinger

representation only to states in the Schrödinger representation. This means that none of the

interactions one ordinarily considers in quantum theory could evolve a particle that happens

to be in a Schrödinger state at some time into a position or a momentum state at other

times. On the other hand, general Hamiltonians, which in the Schrödinger representation

would be represented as polynomials of both P and Q, generally cannot be expressed in

the position and momentum representations by one-parameter families of unitary operators.

Indeed, such dynamics generally cannot even be understood as automorphism groups acting
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on the Weyl algebra (Fannes and Verbeure, 1974), so retreating to an algebraic perspective,

as we indicate above Halvorson seems to suggest, does not help here.

All of this discussion of dynamics has been premised on the idea that we should think of

the position and momentum representations in something like the way that a Hilbert space

conservative would usually proceed, taking all and only the states in these representations to

be physically possible. We have now seen some reasons to think this approach is unattrac-

tive. But we mentioned above that another interpretation of Halvoron’s view is available.

This interpretation is suggested by Halvorson’s invocation of Bohr’s philosophy—and by

his remark that “one representation cannot be preferable to another on empirical grounds

alone” (Halvorson, 2004, p. 55), which seems to imply that some other, non-empirical con-

sideration leads us to choose between representations. In the context of the paper, then, one

might take him to be suggesting that these extra-empirical considerations may vary with

circumstances, context, or perspective, in such a way that which representation one should

use to describe a given quantum system is contextual or perspectival.

Our discussion of this possibility will be brief, because Halvorson does not elaborate it

(or clearly endorse it). But we take the basic idea to be that, contra the Hilbert space

conservative, we should not suppose that the position and momentum representations pre-

cisely delimit the possible physical states of a single particle in any literal sense; rather, they

provide resources that we may use, in some contexts and for some purposes, to describe the

actual physical states of affairs in some approximative way. And so, given some objective

physical situation, one might choose to describe it using a state in the position represen-

tation; or one might choose to describe it using a state in the momentum representation.

The considerations that guide this choice, on this view, are not fixed by the features of the

system itself. Most importantly, one should not suppose that there is any absolute fact of

the matter about “the” vector representing a particle’s state in any of these representations.

There are some disadvantages to this approach, such as the fact that it seems to make
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mysterious what the underlying facts are regarding a system that support the choice of a

given state to represent it. In particular, it provides no insight into what the structure of

the space of states for the particle actually is; it tells us only that different state spaces,

with ambiguous relations to one another, can be used. Perhaps worse given how Halvorson

frames his paper, this attitude tells us nothing about whether quantum particles do or

can possess definite positions or momenta—merely that they may be described as having

such properties, from some perspective or in some contexts. Finally, the concerns we have

already raised about dynamics arise on this view as well, since it is not clear how we should

understand changes from contexts in which one would use a position state (say) to ones in

which one would use a momentum state. Are these changes merely in the perspective of an

external observer, or are there facts about a given physical system (say, its interactions with

certain “classical” measuring instruments) that play a role?

We will not try to attribute answers to these questions to Halvorson. Instead, we will

move on to consider a different interpretation of Halvorson that lies in the same vicinity,

but which is a bit more precise. On this alternative proposal, the representations we have

been considering are, in a sense, secondary; their value comes from the insight they give

into the physical content of a certain algebra of quantities. This algebra may be studied

independently of any representations at all—and it can also provide a framework for better

understanding the relationship between the representations we have been considering.

5. Regularity Revisited

Given the difficulties of the previous section with providing an interpretation of non-regular

representations that does not stray too far from the traditional Hilbert space conservative

approach, we now consider if an algebraic imperialist approach can shed any light.19 In fact,

19The algebraic imperialist approach considered here differs somewhat from that described by Ruetsche
(2011), which is tied to what she calls “pristine interpretation”. For the purposes of this section, an algebraic
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such an algebraic approach might even come closer to Halvorson’s view, expressed in the

following remark:

The abstract Weyl algebra carries the full empirical content of the quantum the-

ory of a single particle. In particular, the Weyl algebra has enough observables to

describe any physical measurement procedure and enough states to describe any

laboratory preparation. A representation does not make any further empirical

predictions; indeed, it adds nothing in the way of empirical content. (Halvorson,

2004, p. 55)

The purpose of this section is to investigate the plausibility of such an interpretation. We

will present a reading of Halvorson, and then describe the outline of an argument that an

algebraic approach does not justify the use of non-regular representations—at least, not

without substantial further assumptions that we feel are not warranted. A proper treatment

of this subject, however, requires much more space and a different set up than we feel is

appropriate for the present paper. And so, this section aims only to isolate the central issues,

which we will then take up in a companion paper.

On an algebraic approach to quantum theory, rather than constructing a quantum theory

by identifying a Hilbert space and a subalgebra of the (bounded) operators acting on that

Hilbert space, one instead begins by considering just an abstract C*-algebra of quantities,

and then proceeds to define other notions, such as states, using this algebra.20 One can think

of the approach as abstracting away from any particular “representation” of the system and

trying to characterize the abstract relationships between physical quantities that all such

representations have in common. Note that there is some abuse of language in our use of

imperialist approach is one that uses broadly algebraic tools in the abstract without focusing on particular
representations, but is not necessarily pristine.

20More precisely, a C*-algebra A is an involutive, associative, complete normed algebra satisfying the C*
identity, ||A∗A|| = ||A||2 for all A ∈ A; and the state space of a C*-algebra A is the colllection of all positive,
normalized, complex-valued linear functionals ω : A→ C.
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the term “representation” here, as a representation of a C*-algebra is a homomorphism of

the algebra into the bounded operators on some Hilbert space that preserves the involution

operation; whereas previously we have used the term “representation” in a more general

sense that has not required us to define an algebra. But for our purposes, the two senses

are essentially interchangeable, and no ambiguities will arise.

In the remarks above, Halvorson invokes a particular algebra of quantities: the abstract

Weyl algebra W (Manuceau et al., 1974; Petz, 1990). The definition of the abstract Weyl

algebra is not necessary for present purposes; we discuss it in more detail in the sequel

(Feintzeig and Weatherall, 2018). What is important is that it is a C*-algebra that is deter-

mined, via closure under algebraic operations, from the Weyl unitaries Ua and Vb discussed

above. In this sense, it may be thought of as an algebra that has been in the background

all along in our discussion of the Weyl form of the CCRs and in representations thereof.

Indeed, any representation of the Weyl CCRs, in the sense of the previous sections, yields a

representation of the abstract Weyl algebra, and vice versa. Thus everything that has been

said previously about representations of the CCRs for Ua and Vb—including what we have

said about regular and non-regular representations—extends unchanged to representations

of the Weyl algebra W .

What advantages might one find by moving from the particular representations discussed

in the previous sections to the the abstract Weyl algebra? Once we choose a representation,

some, but not all, of the states on W will correspond to density operators in that represen-

tation; likewise, some, but not all, of the pure states will correspond to rays in the Hilbert

space. (The collection of states that have a density operator representative in a representa-

tion is call the folium of the representation.) In general, though, any density operator in any

representation of an abstract C*-algebra A determines a state on that algebra. And thus,

retreating to the abstract Weyl algebra allows one to consider all of the states in all three

of the representations described above as on a par: they are all states on the same algebra.
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This is presumably what Halvorson means when he says that the abstract Weyl algebra has

all of the resources needed to describe any observables and any experimental preparation

involving a single particle.21

Thinking of the states in these representations as states on the same algebra also allows

one to characterize certain relationships between them. In particular, a well known result

known as Fell’s theorem (Fell, 1960; Kronz and Lupher, 2005) establishes a certain precise

sense in which the states of the Schrödinger, position, and momentum representations of

the Weyl algebra all approximate one another arbitrarily well, in a particular topology

determined by the abstract Weyl algebra.

More precisely, one can use the abstract Weyl algebra to define a topology, known as the

weak* topology, on its state space. Fell’s theorem establishes that the folium of any faithful

representation of a C*-algebra is dense in the folium of any other faithful representation in

the weak* topology on the state space. In other words, every state with a density operator

representative in one faithful representation can be approximated as a limit in the weak*

topology of states with density operator representatives in another faithful representation.

Now it suffices to notice that the Schrödinger, position, and momentum representations are

all faithful,22 which establishes that the corresponding states in each folium can all be used

to approximate one another.

The above sketch of an argument provides one sense in which the Schrödinger, position,

and momentum representations of the Weyl algebra might be understood to be on a par,

at least with respect to the collection of states they appear to deem physically possible.

This is at least one way of making precise Halvorson’s claim that choosing a particular

representation adds no empirical content: any one of these choices has the resources to

21To be sure, the observables P and Q are not to be found in the Weyl algebra; as we discuss in the
previous section, one gets each of these only in some representations, but not others. So it is perhaps
question begging to assert that all physically relevant observables are to be found in the Weyl algebra.

22In fact, since the Weyl algebra is simple, all of its nontrivial representations are faithful.
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represent, to whatever degree of approximation one likes, precisely the same situations as

any other choice. One can also see, here, a sense in which one might freely choose states

from different representations, depending on context, along the lines of the second reading

of Halvorson proposed in section 3. In our view, this is the most compelling interpretation

of Halvorson’s proposal; even if it is not the interpretation Halvorson intended, we believe

it is one worth considering.

Does this mean that Halvorson’s proposal is vindicated, and that non-regular represen-

tations have the same status as the Schrödinger representation? We think this conclusion is

too fast. In particular, the interpretation of Halvorson that we have just given relies heavily

on the use of a particular topology: the weak* topology on the state space of W . For the

interpretation to go through, the weak* topology must provide a physically relevant notion

of approximation for the empirical content of states.23 But does it?

It is here that we begin to just sketch an argument; the full details of this line of argument

appear in the companion paper (Feintzeig and Weatherall, 2018). We remark first that

the weak* topology on the state space of the Weyl algebra is determined by the Weyl

algebra itself. This means that whether the weak* topology is physically significant is

deeply intertwined with whether the Weyl algebra itself has the physical significance that

Halvorson attributes to it, as the natural or correct algebra of quantities for a one particle

system. We emphasize that the Weyl algebra is not the only possible choice—and more,

mathematical physicists and philosophers have presented a number of arguments that it is

the wrong choice (see, e.g., Fannes and Verbeure, 1974; Landsman, 1990a,b; Buchholz and

Grundling, 2008; Grundling and Neeb, 2009; Feintzeig, 2018a). Moreover, if one were to

make a different choice, one would arrive at a different state space, with a different weak*

23Here we echo a point made forcefully by Fletcher (2016), that different choices of topology encode
different senses of approximation—and in any particular case, careful attention must be paid to whether a
particular topology captures the salient sense. See also Feintzeig (2018b) for applications of Fletcher’s ideas
to quantum theories.
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topology, and a different verdict on whether, for instance, there are definite position and

momentum states that are dense in the folium of the Schrödinger representation (suitably

understood). Thus, at very least, the defender of Halvorson’s view, on the interpretation we

have proposed in this section, is obligated to justify the choice of the abstract Weyl algebra.

In fact, once one questions the choice of the Weyl algebra as a starting point, a new

and deeper problem emerges for Halvorson’s proposal: not all algebras that one might

choose will allow for non-regular states or non-regular representations at all. For example,

Landsman (1990b) provides a construction procedure for an algebra that does not admit any

non-regular representations (see also Grundling and Neeb, 2009). In other words, the very

existence of the sorts of definite position and momentum states that Halvorson urges us to

consider depends on the initial choice to consider representations of the Weyl algebra—or

rather, the choice to consider representations of the Weyl form of the CCRs.

Of course, for the purposes of engaging with Halvorson’s proposal, it would be question-

begging to simply choose some other algebra that did not allow for non-regular states or

representations without some justification. But the converse is also true: to start with

the Weyl algebra without further argument—and then claim that, because it admits non-

regular states, those states must have physical significance—is also to beg the question. The

principal issue, then, concerns which algebra to begin with.

Having isolated, then, what we take to be the main issue in evaluating Halvorson’s

proposal, we will defer a detailed discussion of how to settle that issue to the sequel paper.

We remark only that we will adopt there a particular attitude towards how to construct

quantum algebras, previously defended by Feintzeig (2017). And we will prove a result with

the following interpretation: any acceptable representation of a suitably chosen quantum

algebra is necessarily regular. Of course, a lot of work is done by the terms “acceptable”

and “suitably chosen” here, and to make clear what we mean requires significantly more

discussion. But the upshot will be that the justifications for these choices do not run via a
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prior assumption of regularity, or a prior rejection of definite position or momentum states.

6. Conclusion

The restriction to regular representations of the Weyl CCRs (or, respectively, the abstract

Weyl algebra) for a single particle is standard in textbook treatments of quantum theory. It

is also widely taken for granted in the philosophical literature: consider, for instance, that

any claim to the effect that quantum field theory faces a distinctive problem of “unitarily

inequivalent representations” (Arageorgis, 1995; Ruetsche, 2011) relies on the fact that the

Stone-von Neumann theorem guarantees, for finite-dimensional systems,24 an essentially

unique representation of the Weyl algebra—a theorem that, we have seen, holds only in

the presence of the regularity assumption. Regularity is so standard, in fact, that it is

rarely justified—or questioned. It is treated as a harmless technical assumption, ruling out

pathologies of no physical interest.

Equally standard, of course, is the claim that a quantum particle cannot have a defi-

nite position or momentum. This latter claim, however, has manifest physical significance,

and it bears on our basic understanding of physical magnitudes in quantum theory. And

as Halvorson (2004) correctly points out, the (non-)existence of definite position and mo-

mentum states turns precisely on the status of the regularity assumption. If regularity is

assumed, definite position and momentum states are not physically possible; conversely, if

regularity is rejected, one can recover these states in the position and momentum represen-

tations. Far from a benign technical assumption, regularity rules out possibilities that might

have direct bearing on the interpretation of quantum theory.

It seems clear, then, that the status of regularity deserves far closer attention than it

24Really, there is an extra caveat here that the Stone-von Neumann theorem only applies to systems with
simply connected phase space R2n. For systems with finitely many degrees of freedom (and hence, without
going as far afield as field theories) that have topologically nontrivial phase spaces, unitarily inequivalent
representations that are, in some sense, regular may still arise (Landsman, 1990a,b).

27



is usually given. The present paper has taken up one part of the project of scrutinizing

this condition. We have focused here on Halvorson’s arguments concerning what one gets if

one rejects regularity—namely, definite position and momentum states that, he argues, may

provide some theoretical grounding for Bohr’s principle of complementarity.

We have discussed three different readings of Halvorson’s proposal. Two of these read-

ings follow Halvorson’s own emphasis on the non-regular position and momentum repre-

sentations as the main upshot of dropping regularity. We argued, however, that neither of

these options is appealing. The principle difficulties have to do with dynamics. On the

one hand, we presented Malament’s result, and argued that it shows there is no suitable

free dynamics available in the position representation. On the other hand, we studied the

consequences of Halvorson’s own proposal to retreat to dynamics that may be expressed

in a representation-independent (algebraic) manner, and argued that those dynamics are

not unitarily implementable in the position representation. We went on to argue that in

general, the three representations Halvorson considers are dynamically inaccessible, which

creates serious interpretational problems if we wish to understand the states in all three of

them as having physical significance.

Our third reading of Halvorson’s proposal had a different flavor: it was more algebraic

in character, invoking Fell’s theorem to capture a sense in which the states in each of the

position, momentum, and Schrödinger representations may be understood to approximate

one another arbitrarily well. This result underwrote a suggestion that we should be free

to work with whichever representation is most convenient for some purpose—including the

position and momentum representations—because whatever state a physical system in fact

occupies can always be approximated as well as one likes by a position state, a momentum

state, or a Schrödinger state. This suggests there is nothing at stake in the choice between

representations—a result that does seem evocative of Bohr’s principle of complementarity.

One might take this proposal as a friendly elaboration of Halvorson’s view; we are not sure
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it is precisely what he had in mind, but we think it is worthy of serious reflection.

But as we also argued, albeit briefly, whether this proposal succeeds depends on a prior

choice, concerning which abstract algebra to use to represent a quantum particle. And so to

properly defend this view, one needs to justify the choice of the Weyl algebra for representing

the physical quantities of the system considered. But as we suggest—and elaborate in

the sequel—there are good reasons to choose a different algebra to represent the physical

magnitudes associated with a quantum particle. And alternative choices of algebra lead to

different consequences concerning whether there are non-regular representations at all.

Of course, we do not make this case in the present paper; we leave that to the sequel.

What we have done, however, is show that there is more to the story of the regularity

assumption than Halvorson suggests. It is not just that there is a close connection between

regularity and the (im)possibility of definite position and momentum states; in fact, both of

these are also deeply related to how one goes about constructing a quantum theory in the

first place. This moral may be understood in two ways: one is that it makes clear why there

is a great deal of physics involved in judiciously choosing an algebra, since basic issues—such

as whether definite positions and momenta are possible—turn on this choice; or, conversely,

it provides a new way of understanding (and, perhaps, justifying) regularity as associated

with the algebra we choose. Pursuing these lines is the goal of the next paper in this series.

Appendix A. Proofs of Propositions in §4

We will first need a lemma, which uses the following notion:

(4) Spacelike Continuity. There is a unit spacelike vector σ such that the (restricted

one-dimensional) unitary representation c 7→ Ucσ is weakly continuous (i.e. the function

c 7→ 〈ψ,Ucσϕ〉 is continuous for all states ψ, ϕ ∈H ).
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Lemma. If a structure (H , p 7→ Ep, ξ 7→ Uξ) satisfies conditions (1), (2), and (4), then

Ep = 0 for all points p ∈M .

Proof. Assume conditions (1), (2), and (4) hold. Let σ be as in (4) and let p be any point in

M . For all c 6= 0, p+ cσ and p are distinct and in the same simultaneity slice. By condition

(2), EpEp+cσ = 0. But Ep+cσ = UcσEpU−cσ by condition (1). So EpUcσEpU−cσ = 0 and

therefore EpUcσEp = 0 for all c 6= 0. Now, for any ψ, ϕ ∈ H , 〈Epψ,UcσEpϕ〉 = 0 for all

c 6= 0. By condition (3), 〈Epψ,UcσEpϕ〉 = 0 for c = 0 as well. So, 〈Epψ,Epϕ〉 = 0. And

because Ep is a projection operator, we have 〈ψ,Epϕ〉 = 〈ψ,EpEpϕ〉 = 〈Epψ,Epϕ〉 = 0.

Since ψ and ϕ are arbitrary, it follows that Ep = 0. �

Proof of Prop. 3. Assume (H , p 7→ Ep, ξ 7→ Uξ) satisfies conditions (1), (2), and (3). Let ξ

and ξ′ be distinct future-directed unit timelike vectors. By condition (3), the (restricted one-

dimensional) unitary representations c 7→ Ucξ and c 7→ Ucξ′ are weakly continuous. Consider

the vector σ = ξ′− ξ. It is spacelike and non-zero. If σ satisfies condition (4), it follows that

the normalized vector σ/‖σ‖ does as well. Therefore, we are done (by the lemma above) if

we can show that σ satisfies condition (4).

Consider the function g(c) = 〈ψ,Ucσϕ〉 for any ψ, ϕ ∈ H . Clearly, if g(c) is continuous

at c = 0, it is continuous everywhere. Let ψ, ϕ ∈ H be arbitrary. Because 〈ψ,Ucσϕ〉 =

〈ψ,Ucξ′U−cξϕ〉 = 〈U−cξ′ψ,U−cξϕ〉, we have the following.

|g(c)− g(0)| = |〈U−cξ′ψ,U−cξϕ〉 − 〈ψ, ϕ〉|

= |〈U−cξ′ψ,U−cξϕ〉 − 〈ψ,U−cξϕ〉+ 〈ψ,U−cξϕ〉 − 〈ψ, ϕ〉|

≤ |〈U−cξ′ψ − ψ,U−cξϕ〉+ 〈ψ,U−cξϕ− ϕ〉|

≤ ‖U−cξ′ψ − ψ‖‖U−cξϕ‖+ ‖ψ‖‖U−cξϕ− ϕ‖
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Because U−cξ′ is unitary, we have the following.

‖U−cξ′ψ − ψ‖2 = 〈U−cξ′ψ,U−cξ′ψ〉 − 〈U−cξ′ψ, ψ〉 − 〈ψ,U−cξ′ψ〉+ 〈ψ, ψ〉

= 2〈ψ, ψ〉 − 〈ψ,Ucξ′ψ〉 − 〈ψ,U−cξ′ψ〉

Since c 7→ Ucξ′ is weakly continuous, both 〈ψ,Ucξ′ψ〉 and 〈ψ,U−cξ′ψ〉 converge to 〈ψ, ψ〉

as c→ 0. Thus, ‖U−cξ′ψ − ψ‖ converges to zero as c→ 0. By a parallel argument, so does

‖U−cξϕ − ϕ‖. Finally, because U−cξ is unitary, ‖U−cξϕ‖ = ‖ϕ‖. So, |g(c) − g(0)| converges

to zero as c→ 0. �
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