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Abstract
Classical accounts of intertheoretic reduction involve two pieces:

first, the new terms of the higher-level theory must be definable from
the terms of the lower-level theory, and second, the claims of the
higher-level theory must be deducible from the lower-level theory along
with these definitions. The status of each of these pieces becomes con-
troversial when the alleged reduction involves an infinite limit, as in
statistical mechanics. Can one define features of or deduce the be-
havior of an infinite idealized system from a theory describing only
finite systems? In this paper, I change the subject in order to con-
sider the motivations behind the definability and deducibility require-
ments. The classical accounts of intertheoretic reduction are appealing
because when the definability and deducibility requirements are sat-
isfied there is a sense in which the reduced theory is forced upon us
by the reducing theory and the reduced theory contains no more in-
formation or structure than the reducing theory. I will show that,
likewise, there is a precise sense in which in statistical mechanics the
properties of infinite limiting systems are forced upon us by the prop-
erties of finite systems, and the properties of infinite systems contain
no information beyond the properties of finite systems.

Keywords: algebraic quantum theory, C*-algebras, category theory,
reduction
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1 Introduction

Classical accounts of intertheoretic reduction involve two pieces: first,
the new terms of the higher-level theory must be definable from the
terms of the lower-level theory, and second, the higher-level theory
must be deducible from the lower-level theory along with these defi-
nitions. One notable limitation of such accounts of reduction is that
they make controversial certain standard practices in physics involving
infinite limits—practices that at least intuitively appear “reductive”.
In particular, when one considers the possible reduction of thermody-
namics to statistical mechanics, one must face the standard practice of
taking infinite limits in order to construct thermodynamic quantities
out of statistical quantities. It will help to have an example in mind
to illustrate this practice, which we will refer back to in what follows.

• Example: The Spin Chain
In order to understand phase transitions in ferromagnets, one
can start with a simple model of a spin-chain involving N evenly
spaced spin-12 particles in a lattice. But one finds that to account
for critical behavior, one must extend this to a model involving
a countable infinity of particles evenly spaced in the lattice Zd.

The presence of this infinite limit is a distinguishing feature that ap-
pears to thwart fitting examples from statistical physics into philo-
sophical accounts of intertheoretic reduction, especially in the presence
of so-called “singular limits”. In these cases, the quantities of the in-
finite limiting system have properties that, in a sense, go beyond the
properties of finite subsystems. So it appears, at least at first glance,
that the infinite limit is neither definable from nor deducible from (in
some relevant sense) the properties of finite systems.

However, it is my contention that one can understand the limiting
procedures in statistical physics as preserving two important motivat-
ing features behind the requirements of definability and deducibility.
The features I’m interested in are as follows. The requirements of
definability and deducibility together demand that (i) the higher-level
models are, in a sense, forced upon us by the lower-level models we
use, and (ii) the higher-level models, in a sense, contain no more in-
formation than the lower-level models.

Of course, it would be nice if we could ask straightforwardly whether
the higher-level models of infinite systems are definable or deducible
from the lower-level models of finite systems, but since the examples
from statistical physics are not typically formulated in a formal lan-
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guage, the notions of deduction and definability from mathematical
logic are not straightforwardly applicable. This should give us reason
to at least consider posing the question in a different way: are the
higher-level models of infinite systems forced upon us by the lower-
level models of finite systems? Do the higher-level models of infinite
systems contain more information than the lower-level models of fi-
nite systems? I will not provide an argument for this way of thinking;
instead, I hope to demonstrate its utility by showing that it helps
us understand how these infinite limits share features with classical
philosophical accounts of reduction, and by showing that it helps us
understand infinite limits in statistical physics quite generally.

I will show that there is a precise sense in which the infinite mod-
els in statistical physics are forced upon us by the finite models we
start with through these infinite limiting procedures. Specifically, I
will show that the relevant limits—weak limits in a C*-algebra—are
unique. Furthermore, I will show that there is a precise sense in which
the infinite models in statistical physics contain no more information
than the finite models they derive from. Specifically, I will show senses
in which the relevant category of C*-algebras for representing physi-
cal quantities of finite systems has at least as much structure as two
relevant categories of weakly complete C*-algebras (i.e., C*-algebras
containing all of their weak limit points) that can be used for repre-
senting the physical quantities of infinite limiting systems.

Section 2 gives a brief review of the classical accounts of intertheo-
retic reduction in terms of definability and deducibility, with reference
to contemporary debates in the philosophy of physics about reduction
and emergence. Section 3 sets up a framework for thinking about
reduction and emergence in terms of limits in an algebra of opera-
tors. Sections 4 and 5 show the senses in which the quantities of
infinite limiting systems are forced upon us and contain no more in-
formation than the quantities of finite systems. Section 6 points out
some connections to recent work in general philosophy of science on
the structure of scientific theories and some possible implications of
the results here for the debate between “Algebraic Imperialism” and
“Hilbert Space Conservatism” in quantum theory. This serves to pro-
vide future directions for work if one takes at least the motivations
behind the argument of this paper seriously. Section 7 concludes with
a discussion of the significance of these results for the debates about
reduction and emergence in physics.
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2 Reduction, Deduction, and Definabil-

ity

The goal of this section is to explain the controversy surrounding clas-
sical accounts of intertheoretic reduction in the face of “singular lim-
its” in statistical physics.

Classical accounts of intertheoretic reduction trace back to Nagel
(e.g., 1961). As is well known, on Nagel’s model of reduction we are to
think of scientific theories as sets of sentences in some formal language.
One theory is then said to reduce to another just in case it is possible
to derive, via deductive arguments, the law sentences of the reduced
theory from the reducing theory. In the case that the reduced theory
involves terms that do not appear in the reducing theory, one must
in addition specify bridge laws, which define the terms of the reduced
theory using only the vocabulary of the reducing theory.

On Nagel’s account, the reduced theory is forced upon us in the
sense that if the reducing theory and bridge laws are true, then the
reduced theory must also be true. And the reduced theory contains no
more information or structure than the reducing theory in the sense
that every sentence that is derivable from the reduced theory is also
derivable from the reducing theory along with the bridge laws.

Even before philosophers began debating the significance of “sin-
gular limits”, some noticed that the presence of limiting operations in
reductions in physics bears on our conception of reduction. Nickles
(1975) argues that there are really two distinct concepts of reduction:
one to capture the notion Nagel describes and another—which Nickles
claims does not involve definability and deducibility—to capture lim-
iting relations in physics. On the other hand, Schaffner (1967) argues
for a unified framework in which to fit reductions with and without
limiting relations. Schaffner’s generalized model allows for the replace-
ment of the reduced theory with a “strongly analogous” theory that is
derivable from the reducing theory. Allowing for the presence of only
a “strong analogy” means that we need not be able to derive the re-
duced theory exactly from the reducing theory. Instead, for example,
we might only be able to derive from the reducing theory that the re-
duced theory is approximately true.1 It is my hope that analyzing the
notion of approximation available in the mathematical details of the

1See also Dizadji-Bahmani et al. (2010) for more on Schaffner’s approach applied to
statistical mechanics.
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limiting relations discussed in this paper will help us understand how
the kinds of approximations we encounter in reductions in statistical
physics relate to the classical accounts just mentioned.2

However, when we look at the details of reductions via infinite
limits in statistical physics, we encounter further challenges for an
understanding of reduction as definability and deducibility. We’ll see
that the presence of “singular limits” makes it difficult to see how the
properties of an infinite system could be forced upon us or determined
by the properties of a system’s finite components. And furthermore,
“singular limits” threaten our conception of the properties of an infi-
nite system as containing no more information or structure than the
properties of its finite components. For example, models of infinite
statistical systems—the systems with these “singular limits”—involve
global quantities that represent properties of an entire infinite system
and which seem to go beyond the properties of any finite system.

These global properties can display features of the infinite system
that no finite system could possibly have. As discussed in Batterman
(2002, 2005, 2009), Callender (2001), and Butterfield (2011a,b), the
thermodynamic quantities of a finite system always vary continuously
while the thermodynamic quantities of an infinite system can display
discontinuities. It is this feature that leads some to label certain sta-
tistical systems as involving “singular limits”. A “singular limit” is
present whenever a limiting system displays different features (in some
sense) from the sequence of systems on the way to the limit.

It is sometimes argued that, because discontinuities in thermody-
namic quantities are necessary for a system to be able to undergo a
phase transition, only infinite systems can display phase transitions
while finite systems are incapable of doing so. For example, Batter-
man (2002) argues that this amounts to the emergence of qualitatively
different behavior in phase transitions, and Butterfield (2011a,b) ar-
gues that we see the appearance of novel and robust phenomena.3

Given these allegedly emergent and novel phenomena, one might be-
come worried that one cannot use these infinite limits in a reduction,

2See Fletcher (2016) and Rosaler (2015) for a discussion of limiting relations, reduction,
and approximation in other areas of physics. See also Norton (2012) for a discussion of
the role of approximation and idealization.

3There is a further point of contention in the philosophy of physics literature regarding
the significance of the renormalization group (see, e.g., Batterman (2010)). I will not
touch upon renormalization techniques in this paper; I think further work is required to
determine whether my results are applicable to the limits taken during renormalization.
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or at least not without rejecting the classical accounts of reduction.
My goal in this paper, however, is to show that the presence of these
“singular limits” need not thwart a reduction. I do not intend to dis-
pute the claims about emergent or novel phenomena appearing in the
limit, but only to ask: in what sense are these phenomena that we see
in the infinite limit novel or emergent?

One of the prominent features of the classical accounts of reduc-
tion is that a reduction is supposed to show a sense in which a reduced
theory cannot contain novel features when compared to the reducing
theory. If a reduced theory is definable and deducible from some re-
ducing theory, then the reduced theory is forced upon us or completely
determined by the reducing theory, and the reduced theory contains
no more information or structure than the reducing theory. I will ar-
gue in the remainder of this paper that the infinite limits in statistical
mechanics, even when they are “singular”, have features in common
with this way of understanding the classical accounts.

Let me stress from the start, though, that I have no intention of
arguing that the features the infinite limits in statistical mechanics
have in common with classical accounts of reduction are sufficient for
judging that thermodynamics reduces to statistical mechanics, or even
that these particular thermodynamic systems undergoing phase tran-
sitions reduce to their statistical mechanical counterparts. I only want
to show that the features of “singular limits” that other authors have
pointed to need not be understood as thwarting reduction. For this,
it suffices to show that there is a sense in which the “singular limits”
have something in common with classical accounts of reduction, even
though there may be other senses in which these examples fail to fit
into the classical account. In any case, I believe some will find the fea-
tures “singular limits” have in common with classical reduction worth
examining in their own right.

I will argue in what follows that, however novel or emergent the
phenomena we see at the infinite limit, they are still, in a precise sense,
forced upon us and completely determined by the physics of finite
systems. And furthermore, I will argue that there is a precise sense
in which our models of infinite systems contain no more information
or structure than our models of finite systems. Together, these claims
show that even the presence of “singular limits” in infinite quantum
statistical systems does not remove some of the important features
behind intertheoretic reduction.
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3 Preliminaries

What mathematical structure do we need to assume to model an in-
finite system in quantum statistical mechanics like the infinite spin
chain? We’ll start by assigning three physical quantities to any indi-
vidual spin-12 particle: σx, σy, and σz. These quantities will represent
the magnetic moment of the particle in the x, y, and z directions, re-
spectively. For such a particle, these quantities must obey the canon-
ical commutation relations:

[σx, σy] = iσz [σy, σz] = iσx [σz, σx] = iσy

(σx)2 + (σy)
2 + (σz)

2 = 3I

These relations are fundamental quantum mechanical assumptions
about the quantities of a spin-12 particle. In the infinite spin sys-
tem, we will have an infinite collection of such quantities σkx, σ

k
y , σ

k
z ,

which, for fixed k, satisfy the above constraints. Here, we will take
k ∈ Z so that we have countably many particles arranged in an evenly
spaced one-dimensional lattice. Moreover, for distinct particles in the
infinite system, we have

[σja, σ
k
b ] = 0 for a, b = x, y, z and j 6= k

The quantities σkx, σ
k
y , σ

k
z represent the magnetic moment of the kth

particle in the x, y, and z directions, respectively.
We need to construct further physical quantities from these mag-

netic moments for the purposes of writing down a theory of the ferro-
magnet. For example, we use the multiplication and addition opera-
tions to construct arbitrary polynomials of magnetic moment quanti-
ties to plug into a Hamiltonian and define a dynamics. Moreover, we
need to take limits of infinite sequences of quantities; continuous func-
tions of magnetic moments are, in general, limits of infinite sequences
of polynomials of magnetic moments, and we likewise need these con-
tinuous functions to describe the dynamics of certain systems.

To construct these further functions of magnetic moment quanti-
ties, we must assume the collection of physical quantities or observ-
ables forms a C*-algebra.4 This means that one can add and multiply

4For more on C*-algebras and W*-algebras, see Kadison and Ringrose (1997), Sakai
(1971), and Landsman (1998). For more on algebraic quantum theory, see Haag (1992),
Bratteli and Robinson (1996), Emch (1972), and Wald (1994). For philosophical introduc-
tions, see Halvorson (2006) and Ruetsche (2011b).
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observables, and multiply observables by scalars. In addition, a C*-
algebra A carries an operation of involution that is a generalization
of complex conjugation. A C*-algebra A also carries a norm that is
compatible with the involution, meaning it is required to satisfy the
following identity:

‖A∗A‖ = ‖A‖2

for all A ∈ A. The presence of this norm is necessary in order to
take the limits of sequences alluded to above in the norm topology,
which is characterized by the following condition for convergence. A
net {Ai} ⊆ A converges to A in the norm topology5 iff

‖Ai −A‖ → 0

where the convergence is now in the standard topology on R. The
C*-algebra A is required to be complete with respect to this topology
in the sense that for every Cauchy net {Ai} ⊆ A, i.e., for every net
such that

‖Ai −Aj‖ → 0

there is an A ∈ A such that Ai → A in the norm topology. Com-
pleteness here ensures that the limit point of any net that “appears to
converge” in norm, in the sense that it is a Cauchy net, is contained
in the C*-algebra of quantities.

More generally, for any infinite system, one can start with the
C*-algebra A0 for a single component and construct the algebra of a
system composed of an infinite number of those identical (finite) com-
ponents. In the infinite spin chain, the algebra A0 is the C*-algebra
generated by the quantities σx, σy, σz for a single particle. The total
algebra of the infinite system (again, of countably many components
arranged on a one-dimensional lattice Z) is then A =

⊗ZA0. This
C*-algebra A for the infinite spin chain gives the collection of spin
quantities for all finite components in the infinite system.

This algebra A of magnetic moment quantities for the spin chain
is naturally understood as the algebra generated by local quantities
to each finite segment of the spin chain. By local quantities, I mean
quantities that represent physical features of finite components of the
infinite system. The norm limits of these local quantities are some-
times said to be quasi-local.

5One could restrict attention here to sequences because the norm topology is second
countable, but for the weak topologies considered later, which are not second countable,
one must work with arbitrary nets.
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This algebra suffices to define a collection of physical states. Since
A is a vector space, we can also consider the dual space A∗ of bounded
(i.e., norm continuous) linear functionals ρ : A → C. A state on a
C*-algebra A is just a particular kind of element of the dual space
A∗—namely one that is positive and normalized.6 A state is called
pure iff it cannot be written as a convex combination of distinct states.
Otherwise, a state is called mixed. Pure states represent the possible
states of an individual system while mixed states are typically taken
to represent some sort of probabilistic combination (whether it be via
an ensemble interpretation or mere epistemic uncertainty).

One small caveat before preceding. Throughout this paper, I will
understand a physical system as (partially) represented by an algebra
of quantities. To obtain a full representation of a physical system,
one might be interested in further pieces of mathematical apparatus
including, for example, a structured space of physical states and a
dynamics.7 For the purposes of this paper, however, I will ignore all
pieces of structure except the algebra of quantities for two reasons.
First, as described above, an algebra of quantities already determines
a structured space of physical states.8 Second, one can generate the
worries about reduction and “singular limits” already by considering
only the algebra of quantities without any specification of further in-
formation like dynamics. Although additional complications may arise
when considering dynamics (and in particular, when considering the
role of the renormalization group), for the purposes of this paper I will
focus only on the initial worry concerning limits of physical quantities.

Now even once we have the C*-algebra of quasi-local quantities for
the spin chain, there are still further quantities we need to define in
order to be able to describe the thermodynamic behavior of the ferro-
magnet. In other words, there are physically significant quantities of
the spin chain that are not contained in the C*-algebra we’ve defined.
For example, the total average magnetization in the z-direction, mtot

z

is neither a local nor quasi-local quantity. To define mtot
z , we start by

6A linear functional ρ ∈ A∗ is positive if ρ(A∗A) ≥ 0 for all A ∈ A and normalized if
‖ρ‖ = 1.

7Thanks to an anonymous reviewer for this point.
8See Alfsen and Shultz (2001) for more on the mathematical structure on the space

of states. See Ruetsche and Earman (2011) and Ruetsche (2011a) for more on the phys-
ical interpretation of certain kinds of states. And see Feintzeig (2017a) for more on the
relationship between an algebra and its collection of allowed states.

9



taking the sequence of finite average magnetization quantities

mn
z =

1

2n+ 1

k=+n∑
k=−n

σkz

For each n ∈ N, mn
z is a quasi-local quantity in the algebra A. We

would like to define mtot
z as the limit of this sequence as n goes to

infinity. But here we face a problem: this sequence does not converge
to a limit in the norm topology. The total average magnetization is
thus a quantity missing from our C*-algebra of quasi-local quantities.

In order to take this infinite limit to obtain the total magnetization,
we must use the dual space A∗ to define an alternative to the norm
topology on A, called the weak topology. The weak topology is char-
acterized by the following condition for convergence. A net {Ai} ⊆ A
converges in the weak topology to A ∈ A iff for every ρ ∈ A∗,

ρ(Ai)→ ρ(A)

where the convergence is now in the standard topology on C. The
weak topology is the coarsest topology on A that makes all of the
linear functionals in A∗ continuous. It turns out the sequence mn

z of
average magnetization quantities does converge in the weak topology.
But there’s a catch: the sequence converges to a quantity that lies
outside the C*-algebra A. This is the topic of the next section.

4 Weak Limits

In order to take the required weak limits to obtain the total average
magnetization, we need to find a new algebra that contains the limits
of weakly converging sequences. The reason is that the limits of weakly
converging sequences, like the global magnetization quantity, will not
in general belong to our original quasi-local C*-algebra A. The algebra
that contains these weak limits is instead a W*-algebra.

A W*-algebra is a C*-algebra R with a predual, i.e., a vector space
R∗ such that (R∗)

∗ = R.9 We can understand the elements of the
predual as canonically embedded in the dual space R∗ by the map
ρ ∈ R∗ 7→ ρ̂ ∈ R∗ with ρ̂ defined by

ρ̂(A) = A(ρ)

9Here, R as a Banach space is to be understood as the Banach space dual to R∗, but
the algebraic operations of multiplication and involution are not determined by R∗.
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for all A ∈ R. The elements of the predual R∗ define a further topol-
ogy on R, called the weak* topology, which is characterized by the
following condition for convergence. A net {Ai} ⊆ R converges in the
weak* topology to A ∈ R iff for every ρ ∈ R∗,

Ai(ρ)→ A(ρ)

where the convergence is now in C. The weak* topology is the coars-
est topology with respect to which every element of the predual R∗
is continuous when considered as a linear functional on R. Weak*
continuous states on R are called normal states.

Of course, more nets converge in the weak* topology on R than
in the weak topology because one only requires convergence of ex-
pectation values on a subspace of the dual space R∗. Nevertheless,
the weak* topology is a natural generalization of the weak topology
in the special case where the predual of R is itself the dual space of
a C*-algebra. In this case, one has a C*-algebra A, its dual space
A∗, and a W*-algebra A∗∗ called the bidual. The original C*-algebra
is canonically embedded in its bidual by JA : A → A∗∗, defined by
JA(A) = Â, where Â is defined for all ρ ∈ A∗ by10

Â(ρ) = ρ(A)

In this section, I will show that the limits of all weakly converging
nets of observables in a C*-algebra are contained in the bidual by
showing that any W*-algebra is weak*-complete. This will establish
that global quantities, like the total average magnetization observable,
belong to the bidual, or in other words that the bidual provides us with
the resources for taking this weak limit. But one might worry that
if the total average magnetization observable does not belong to our
original algebra, it might not be completely determined by the finite
magnetization observables—there might be other ways of taking the
relevant weak limit! This would be a problem because if the limit were

10It might be somewhat surprising that A∗∗, which is just the Banach dual space to a
Banach space, has additional algebraic structure that makes it into a C*-algebra. But this
is easy to see once one notices that the original C*-algebra A is weak* dense in A∗∗ with
respect to this canonical embedding JA (See Feintzeig, 2017b; Sakai, 1971), so the algebraic
structure of A∗∗ can be naturally inherited from A. Multiplication and involution on A∗∗

are defined as the unique weak* continuous extensions of the operations on A. (We only
require multiplication to be separately weak* continuous in each of its arguments because
multiplication in the original C*-algebra A is not, in general, jointly weakly continuous.)
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not unique, this would show a sense in which a limiting property of the
infinite system is not completely determined by the properties of its
finite components. However, I will show in this section that the bidual
provides us with the unique way to take weak limits and construct the
total average magnetization. This will establish that the bidual of a
C*-algebra is, in a sense, forced upon us by the original C*-algebra,
and hence the global properties of the infinite system are forced upon
us by the properties of the system’s finite components.

The results of this section and the next do not involve novel mathe-
matics; they are hopefully intuitive and obvious to anyone well-versed
in the mathematical language of operator algebras. What I hope to
add here is a clear discussion of how these results bear on the philo-
sophical issues surrounding reduction, deduction, and definability.

A C*-algebra A with its weak topology and the bidual A∗∗ with the
weak* topology are both locally convex vector spaces. All this means
is that their topologies are generated by a family of semi-norms L
on their underlying vector spaces. In both cases, we have the same
family of semi-norms L = A∗, but it defines two distinct topologies on
X = A and X ′ = A∗∗. A locally convex vector space X with topology
generated by a family of semi-norms L is said to be complete if every
Cauchy net converges to an element of the space. Here a net {yβ} ⊆ X
is Cauchy just in case for all ε > 0 and all l ∈ L, there is a β0 such
that |l(yβ)− l(yγ)| < ε for all β, γ � β0.

Cauchy nets are ones that “appear to converge”. For example,
the sequence of finite average magnetization observables mn

z defined
above is Cauchy in both A and A∗∗. But, as remarked above, its
limit does not exist in the original algebra A, which means that A
is not complete in the weak topology. The following proposition11

shows, however, that the bidual always contains the limit points of all
Cauchy sequences. So the bidual is always complete in this sense in
the weak* topology.

Proposition 1. Given any Banach space X, its dual X∗ is complete
in the weak* topology as a locally convex vector space.

Corollary 1. Every W*-algebra R is complete in its weak* topology.
In particular, the bidual A∗∗ to any C*-algebra A is complete in its
weak* topology.

Now we know that if we are given a C*-algebra A, then there al-
ways exists a completion of A in the weak topology, i.e., a C*-algebra

11Proofs of all propositions appear in the appendix.
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that is complete in the weak* topology and in which A can be densely
embedded isomorphically and homeomorphically (via the canonical
evaluation map JA : A → A∗∗). This means that we are guaranteed
that there exists a way of taking the limit of the observables mn

z in
order to obtain the total average magnetization observable mtot

z . But
could we have completed A in the weak* topology in some other way?
Could we have taken the limit of mn

z to get a different global quantity?
If so, we would have a case in which the properties of the finite subsys-
tems of the spin chain do not completely determine the global mag-
netization of the infinite system. The following proposition, however,
shows that the answer is no; the bidual A∗∗ is the unique completion
of A in the weak* topology (See also Takesaki, 1979).

Proposition 2. Suppose X is a Banach space and JX : X → X∗∗

is the canonical evaluation embedding of X in its bidual. Suppose we
are given another faithful linear embedding K : X → Y of X in a
complete locally convex vector space Y such that K(X) is dense in Y
in the locally convex vector space topology on Y . Suppose, in addition,
that K is a homeomorphism from X to K(X) in the weak topology on
X and the subspace topology on K(X) generated by the locally convex
vector space topology on Y . Then there is a vector space isomorphism
ϕ : Y → X∗∗ that is a homeomorphism in the locally convex vector
space topology on Y and the weak* topology on X∗∗ and such that
JX = ϕ ◦K.

X
JX //

K
��

X∗∗

}}
Y

ϕ

==

Corollary 2. Suppose K : A→ R is a faithful *-homomorphism such
that K(A) is dense in the W*-algebra R and K is a homeomorphism
from A with its weak topology to K(A) in the subspace topology gen-
erated by the weak* topology on R. Then there is a *-isomorphism
ϕ : R→ A∗∗ that is a homeomorphism in the respective weak* topolo-
gies and satisfies JA = ϕ ◦K.

A
JA //

K
��

A∗∗

}}
R

ϕ

==
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Hence, the bidual is the unique choice of completion of A. This
means that there is a unique way to take the limit to obtain the total
average magnetization observable. In other words, the magnetizations
associated with local, finite parts of the spin chain suffice to determine
the global magnetization of the infinite system. This shows that global
properties of an infinite system, like the total magnetization of the spin
chain, although at first absent from our (quasi-)local descriptions of
finite components of the infinite system, are forced upon us by the
local properties of finite components like the local spin properties.

So our construction has proceeded uniquely from the finite parts
of spin systems to the infinite limiting system as follows. The algebra
A of quasi-local spin properties is forced upon us or completely deter-
mined by the local spin properties as the unique norm completion of
the algebra of local spin properties. This quasi-local algebra A then
determines a collection of states that defines the weak topology on A.
Given this weak topology, there is a unique weak limit of any Cauchy
sequence in A, which lives in A∗∗. The sense in which the total mag-
netization is forced upon us is that if one wants to define a global
property as a limit over finite averages as above, then there will be
one and only one way to take that limit. A limiting global property
of the infinite system is fully constrained or fully determined by the
algebra of quasi-local quantities of finite components of the system.

5 Limits and Structure

At this point, one might object—isn’t there a sense in which the bid-
ual A∗∗ contains more information or more physical content than the
C*-algebra A that we started with? After all, the bidual contains more
physical quantities than our original algebra, including global quanti-
ties that are not even continuous functions of the local spin quantities.
Isn’t there a sense in which the C*-algebra A and the bidual A∗∗ do
not provide equivalent theories or descriptions of our physical system?
If so, then this would show that the properties of the infinite system,
which we need the bidual A∗∗ to describe, contain more information
than the properties of its finite components, which can be described
with the algebra A. In other words, if the answers to the above ques-
tions are both “yes”, then this would show that an infinite system has
structure beyond that of its finite subsystems.

This issue is subtle, but in this section I will answer these questions
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in the negative. I will show that on three ways of making these ques-
tions precise, the bidual of a C*-algebra contains no more structure
than the original C*-algebra. To provide this answer, I will use the
tools of category theory, which allow us to compare the construction
of the bidual to other “natural” constructions in mathematics.12

Category theory has recently made its way into the philosophy
of science and philosophy of physics literatures as a tool for answer-
ing questions about equivalence and the structure of scientific theo-
ries. Halvorson (2012, 2016) and Halvorson and Tsementzis (2017)
argue that scientific theories can be represented using the tools of cat-
egory theory rather than mathematical logic or model theory. Barrett
(2017a) and Weatherall (2016a,b,c, 2017) argue that the tools of cat-
egory theory can help us determine when two scientific theories are
theoretically equivalent. And Barrett (2015a,b, 2017b) argues that
the tools of category theory help us compare the amounts of structure
in different scientific theories, or different formulations of a scientific
theory. While these works have mostly focused on examples in math-
ematics, classical mechanics, and spacetime theories, here I will apply
the tools of category theory to quantum statistical mechanics. Our
approach will be to treat the theory of quantum statistical mechan-
ics as a category of models of quantum statistical mechanics—each of
which is an algebra of observables that can be taken to represent (at
least features of) a possible physical system.

A category is a collection of objects with arrows between them
(sometimes called morphisms) and an operation ◦ on arrows, called
composition. Composition takes a pair of arrows f : A → B and
g : B → C and sends them to a new arrow g ◦ f : A→ C.

A

g◦f ��

f // B

g

��
C

• Example: NVec
The category NVec has normed vector spaces as objects and
bounded linear transformations between them as arrows.

• Example: Ban
The category Ban has Banach spaces (complete normed vector
spaces) as objects and bounded linear transformations as arrows.

12For introductions to category theory, see Awodey (2010) and Borceux (1994).
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• Example: C*-Alg
The category C*-Alg has C*-algebras as objects and *-homomorphisms
between them as arrows.

• Example: W*-Alg
The category W*-Alg has W*-algebras as objects and weak*
continuous *-homomorphisms between them as arrows.

Every object X in a category has a unique identity arrow 1X that
leaves all other arrows intact under composition.

A1A
&& f=f◦1A // B 1B

ww

An arrow is an isomorphism if it has an inverse, i.e., an arrow whose
composition with it yields the identity.

A1A=f−1◦f
&& f //

B 1B=f◦f−1
ww

f−1
oo

These arrows can be understood as “structure-preserving” maps.
Bounded linear transformations between vector spaces preserve addi-
tion, scalar multiplication, and the norm topology; *-homomorphisms
between C*-algebras furthermore preserve multiplication and involu-
tion; and weak* continuous *-homomorphisms between W*-algebras
even further preserve the predual, or equivalently the weak* topology.

5.1 Forgetfulness

A morphism between categories is called a functor. A functor is a
pair of maps from the objects and arrows of one category to the ob-
jects and arrows of another category, respectively, that preserves arrow
composition. By this, I mean that a functor F : C→ D between two
categories C and D must satisfy the following condition: for any two
arrows f : A → B and g : B → C in C, the corresponding arrows
F (f) : F (A)→ F (B) and F (g) : F (B)→ F (C) in D satisfy

F (g ◦ f) = F (g) ◦ F (f)

A

g◦f ��

f // B

g

��

F (A)

F (g◦f) ##

F (f) // F (B)

F (g)
��

C F (C)
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A functor allows us to compare one category to another by looking
at what a functor “forgets”, according to the following definitions
(Baez et al., 2004). A functor F : C→ D is full if for any two objects
A and B in C, and any arrow g : F (A) → F (B), there is an arrow
f : A → B such that F (f) = g. A functor F : C → D is faithful if
for any two objects A and B in C, and any two arrows f, g : A→ B,
if F (f) = F (g), then f = g. A functor F : C → D is essentially
surjective if for every object D in D, there is an object A in C such
that F (A) is isomorphic to D.

A functor forgets properties if it fails to be essentially surjective,
forgets structure if it fails to be full, and forgets stuff if it fails to
be faithful. A functor that is full, faithful, and essentially surjective
forgets nothing and is called a categorical equivalence.

• Example: Algebra to vector space

We can define a functor from C*-Alg to NVec that takes each
C*-algebra and sends it to its underlying normed vector space
(regardless of its multiplication and involution operations), and
sends every *-homomorphism to its corresponding bounded lin-
ear transformation. This functor forgets structure because there
are bounded linear transformations (arrows in NVec) between
C*-algebras that are not *-homomorphisms.

This example illustrates the significance of labeling functors that fail
to be full as functors that forget structure. Such a functor forgets the
structure preserved by the arrows in its domain category. Whereas
the *-homomorphisms are forced to preserve multiplication, bounded
linear transformations have no multiplication operation to preserve, so
the functor in the above example forgets the multiplication structure
of C*-algebras.

• Example: Banach space completion
We can define a functor F0 from Ban to NVec that takes each
Banach space to itself as a normed vector space and each arrow to
itself as a bounded linear transformation. This inclusion functor
of Ban in NVec forgets properties, namely the property of being
norm complete, because there are some objects in NVec that
are not norm complete and hence are not isomorphic to any
object in the range of F0. Similarly, we can define a functor
G0 from NVec to Ban that takes each normed vector space
to its unique Banach space completion and each bounded linear
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transformation to its unique norm continuous extension. One
can check that this completion functor G0 forgets nothing.

In the case at hand of C*-Algebras and W*-Algebras, we can define
two relevant functors that are analogous to F0 and G0 in the previous
example. First, we can define a functor F : W*-Alg → C*-Alg
that takes every W*-algebra to itself as a C*-algebra and every weak*
continuous *-homomorphism to itself as a *-homomorphism. This
functor F forgets properties, namely the property of being complete
in the weak* topology, because there are C*-algebras that don’t even
have a predual and so don’t even have a weak* topology to be complete
with respect to. Moreover, F forgets structure because there are *-
homomorphisms that fail to be weak* continuous.

Comparing W*-algebras to C*-algebras by this functor F provides
one sense in which the objection we started this section with is correct.
There is a sense in which the bidual A∗∗, considered as a W*-algebra,
has more structure than the C*-algebra A. Namely, if we compare the
category W*-Alg, in which A∗∗ resides, to the category C*-Alg, in
which A resides, by the functor F , then we find that, since F forgets
structure, there is a sense in which A∗∗ contains more structure than
A. This motivates our worry because it shows a sense in which the
properties of an infinite system, which we need the algebra A∗∗ to
describe, exhibit more structure than the properties of its finite com-
ponents, which we can describe using only the algebra A. So we can
now state the objection as follows.

Objection: The physical quantities of an infinite system described
by a bidual A∗∗ contain more information or structure than the physi-
cal quantities of the system’s finite components described by A in the
sense that the functor F : W*-Alg→ C*-Alg forgets structure.

But it is worth noticing that such structural comparisons can only be
made relative to a choice of functor between categories. The functor
F is not the only relevant functor, and, in fact, if we choose another
relevant functor, then we get the opposite answer.

Above, I claimed that we can define two functors between the
categories W*-Alg and C*-Alg analogous to the functors F0 and G0

above. So far, we’ve seen the first functor F analogous to F0. Now,
let us define another functor G : C*-Alg → W*-Alg analogous to
G0. We define G as taking each C*-algebra to its bidual, which is its
completion in the weak topology. To finish the definition of the functor
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G, we need to specify its action on arrows. The following proposition
shows that we can define G as mapping each *-homomorphism to its
unique weak* continuous extension to the bidual.

Proposition 3. Suppose α : A → B is a *-homomorphism between
C*-algebras A and B. Then there is a unique weak* continuous ex-
tension α̃ : A∗∗ → B∗∗ such that α̃ ◦ JA = JB ◦α, where JA : A→ A∗∗

and JB : B→ B∗∗ are the canonical evaluation maps.

A

JA
��

α // B

JB
��

A∗∗
α̃
// B∗∗

Now we see that G is a well-defined functor taking each C*-algebra
A to its bidual and each *-homomorphism to its weak* continuous
extension. The functor G is obviously faithful so it does not forget
stuff. It may be surprising, however, to learn that G is not full and
so forgets structure. (Prop. 8 below furthermore shows that G is not
essentially surjective and so forgets properties.)

Proposition 4. G is not full, i.e., G forgets structure.

This is intuitively strange. Since F : W*-Alg → C*-Alg forgets
structure, we were tempted to say that there is a sense in which W*-
algebras have more structure than C*-algebras. But now, since the
functor G : C*-Alg → W*-Alg also forgets structure, we are also
tempted to say that there is a sense in which C*-algebras have more
structure than W*-algebras. The structure G forgets is the canonical
embedding JA that tells us where to find our original C*-algebra A in
our new W*-algebra A∗∗. There are arrows α : A∗∗ → B∗∗ in W*-Alg
between two biduals A∗∗ and B∗∗ for C*-algebras A and B such that α
does not preserve the embeddings JA and JB, i.e., α◦JA(A) * JB(B);
it is these arrows that do not lie in the range of G. The way in which
a C*-algebra is embedded in its W*-algebra completion by J matters
for some purposes; it distinguishes quasi-local properties from global
properties of a physical system. Thus, G forgets nontrivial structure.

This shows a—perhaps surprising—sense in which the bidual A∗∗,
when considered as an object in W*-Alg, contains less information
or structure than the original algebra A with respect to the functor
G. Or, in terms of the physical systems we are using these algebras to
represent, this shows that the infinite system described by A∗∗ actu-
ally contains less information or structure than the finite components
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described by A when we compare these systems by the functor G.
We’ll see more on the structure G specifically forgets in the next sec-
tion, but for now we have the following result.

Result 1: Infinite systems described by a bidual A∗∗ contain less in-
formation or structure than their finite components described by A in
the sense that the functor G : C*-Alg→W*-Alg forgets structure.

5.2 Adjunction

We’ve uncovered some subtleties in the relationship between C*-Alg
and W*-Alg. Specifically, we’ve encountered senses in which C*-
algebras have both more and less structure than W*-algebras. At this
point, one might be tempted to say that the categories, functors, or
notions of forgetfulness we’ve used don’t capture the relevant philo-
sophical notions of structural comparison. But I think there is still
something to be gained by looking at the relation of these functors
with each other. There is a sense in which the functors F and G, even
though they yield unintuitive answers when considered alone, together
hint at something intuitive. They hint at a sense in which the biduals
in W*-Alg are definable from the objects in C*-Alg.

To understand this notion of definability (which differs from per-
haps more familiar notions of definability in mathematical logic), I’d
like to return us to a previous example in which certain mathemat-
ical structures are intuitively definable from others—namely, the cate-
gories NVec and Ban with the norm completion functorG0 : NVec→
Ban and the inclusion functor F0 : Ban → NVec. In this case, it is
natural to think that there is a sense in which Banach spaces are de-
finable from normed vector spaces, and that the completion procedure
gives us a way of defining them. After all, in familiar proofs of the
existence of Banach space completions, the points of the underlying
vector space of the completion are defined as equivalence classes of
Cauchy sequences of elements from the original normed vector space.
The Banach space completion is literally built out of the ingredients
of the original normed vector space. Is the completion of a C*-algebra
into a W*-algebra similar? Should we understand W*-algebras as
being definable from C*-algebras?

To answer this question, let us characterize the situation with
NVec and Ban in more detail. The pair of functors F0 and G0 forms
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an adjunction,13 with left adjoint G0 and right adjoint F0. This means
that there is a natural transformation η called the unit from the iden-
tity functor 1NVec to F0 ◦ G0 satisfying the following condition. For
any V1 in NVec, any V2 in Ban, and any arrow f : V1 → F0(V2),
there is a unique arrow g : G0(V1)→ V2 such that

f = F0(g) ◦ ηV1

V1

ηV1
��

f // F0(V2)

F0 ◦G0(V1)

F0(g)

88

G0(V1)
∃!g // V2

The arrow g is given by the unique norm continuous extension of f to
the Banach space completion G0(V1).

That η is a natural transformation (Awodey, 2010, Ch. 7) from
1NVec to F0 ◦ G0 means that it is an assignment of an arrow
ηV : 1NVec(V ) → F0 ◦ G0(V ) to each object V in NVec such that
for any objects V1 and V2 in NVec and any arrow h : V1 → V2,

ηV2 ◦ 1NVec(h) = F0 ◦G0(h) ◦ ηV1

V1
h //

ηV1
��

V2

ηV2
��

F0 ◦G0(V1)
F0◦G0(h)

// F0 ◦G0(V2)

It is easy to check that letting ηV = JV for all objects V in NVec,
where JV is the dense isometric embedding of any vector space in
its norm completion, satisfies all of the above requirements. In this
situation we call Ban a reflective subcategory, meaning it is a full
subcategory, whose inclusion functor F0 in NVec has a left adjoint.

Why care about adjunctions? In the presence of an adjunction
G0 : NVec � Ban : F0, for every object V in NVec and every

13See, e.g., Awodey (2010, p. 214) and Borceux (1994, p. 98) for more on adjunctions.
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morphism of the object G0(V )—i.e., structure-preserving map from
G0(V ) to some object V ′ in Ban—there is a corresponding morphism
of V to F0(V

′) in NVec (See Prop. 9.4 of Awodey (2010, p. 211)). So
there is a sense in which all of the structure in Ban, characterized by
the structure-preserving morphisms in Ban, can likewise be charac-
terized in NVec by the corresponding structure-preserving morphisms
in NVec guaranteed to exist by the adjunction.14

The situation for W*-Alg and C*-Alg looks much the same.
The following proposition shows that the functors F and G form an
adjunction.

Proposition 5. F and G form an adjunction, with left adjoint G,
right adjoint F and unit J .

In the case of Ban and NVec, the presence of an adjunction signals
a sense in which Banach spaces are definable from normed vector
spaces. The very same feature holds in the case at hand: there is
an adjunction between the categories W*-Alg and C*-Alg, which
hints at a sense in which W*-algebras are definable from C*-algebras.
In other words, applied to our physical systems, this shows a sense
in which an infinite system described by a bidual A∗∗ in W*-Alg
contains no more information or structure than its finite components
described by A in C*-Alg.

It is worth mentioning one additional complication concerning ad-
junctions and definability here, which is the reason I have only claimed
that the adjoint functors F and G hint at a sense in which infinite sys-
tems are definable from finite systems. In the case of Ban and NVec,
one can show a precise sense in which the adjoint functors F0 and G0

are accompanied by definitions in the relevant formal language to sat-
isfy the precise conditions of definability in mathematical logic,15 but
I know of no such work for completion in the weak topology. I have
every reason to hope that in the case of C*-Alg and W*-Alg the
adjoint functors F and G are similarly accompanied by definitions in
the relevant formal language, but I leave this as a conjecture.

Instead of looking for a definition in a formal language in the fa-
miliar sense from mathematical logic, we can say that it is at least a

14Special thanks to Jim Weatherall and Thomas Barrett for help clarifying the signifi-
cance of an adjunction. Note that I do not claim that an adjunction immediately signifies
definability in the sense of mathematical logic. There is still much further work to be done
along these lines—see §6.

15Thanks to an anonymous reviewer for pointing this out.
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necessary condition for one type of structure to be definable from an-
other that there exist an adjunction between the relevant categories.
We might in addition require that the adjunction satisfies certain con-
ditions (namely, being accompanied by definitions in a formal lan-
guage) to find a sufficient condition for definability. Since I am not
interested here in giving a general theory of definability, this goes be-
yond the scope of the current paper. So, the conclusion of this section
should be accordingly restricted: infinite statistical systems satisfy a
necessary condition for being definable from their finite components.

I think we can also say slightly more. Even if we do not yet know
whether the adjoint functors F and G demonstrate the definability
of W*-algebras from C*-algebras in the familiar sense from mathe-
matical logic, the brief argument above concerning the significance of
adjoint functors shows that we should think of W*-Alg as having
no more information or structure than C*-Alg. The correspondence
between morphisms in C*-Alg and W*-Alg guaranteed by the ad-
joint functors F and G shows that the structure of W*-algebras can
be fully characterized by corresponding structure in C*-algebras. One
can understand this to capture a loose, heuristic notion of definability
not associated with a formal language. Now, regardless of the rela-
tionship between adjunctions and strict definability in mathematical
logic, one still has the following result.

Result 2: Infinite systems described by a bidual A∗∗ contain no more
information or structure than their finite components described by A
in the sense that the functors

G : C*-Alg � W*-Alg : F

form an adjunction with left adjoint G and right adjoint F .

It is worth noting two disanalogies between vector spaces and alge-
bras. First, while W*-Alg is a subcategory of C*-Alg, it is not a full
subcategory because F is not full. On the other hand, Ban is a full
subcategory of NVec because F0 is full. Second, in Ban one loses no
structure by throwing away the embedding J ; the functor G0 is full.
But in W*-Alg, this same move forgets structure in the sense that
G is not full. Together, these two differences amount to the following
fact. When one considers a Banach space F0(V ) as a vector space
and completes it again in norm to G0 ◦F0(V ), one gets back the same
Banach space V . In other words, completing a Banach space in norm
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adds nothing. On the other hand, when one considers a W*-algebra
R as a C*-algebra F (R) and completes it in its weak topology, one
gets a larger algebra G ◦ F (R) = R∗∗ � R. The weak topology on R
is coarser than the weak* topology on R, so that even though R, by
virtue of being a W*-algebra, is complete in its weak* topology, it is
not complete in its weak topology. So, while completions of algebras
and normed vector spaces are similar, there is still this difference.

5.3 Equivalence

One might get the impression—e.g., because of the subtleties involved
in distinguishing the weak topology of an object in W*-Alg from its
weak* topology—that we are considering the bidual A∗∗ in the wrong
category. Since there are features of W*-algebras that are forgotten
by the functors defined in the previous sections, we might look for a
different category and different functor that keeps those features of
W*-algebras intact. Indeed, I will establish in this section that there
is a different category of W*-algebras that is equivalent to C*-Alg.
This is the category of biduals, which one can characterize by the
following condition on the predual to a W*-algebra.

Proposition 6. Let R be a W*-algebra and let

I = {A ∈ R : ρ(A) = 0 for all ρ ∈ R∗}

There is a C*-algebra A such that R ∼= A∗∗ iff

R∗ ∼= {ω ∈ R∗ : if A ∈ I, then ω(A) = 0} (1)

R

��
∃A G +3 A∗∗

OO

This shows that any W*-algebra satisfying Eq. 1 is the bidual to
some C*-algebra. Moreover, the following proposition shows that if
Eq. 1 holds for a W*-algebra R, then there is a sense in which the
C*-algebra A whose weak completion is R is unique.

Proposition 7. Let R be a W*-algebra. If A and B are two C*-
algebras such that A∗∗ ∼= R ∼= B∗∗, then A is *-isomorphic to B.
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Call a W*-algebra R whole iff Eq. 1 holds.16 Notice that while
completeness is a topological property that all W*-algebras satisfy
in their weak* topology, wholeness is an additional property of the
normal state space of a W*-algebra. Let us say (in a sense exactly
analogous to ordinary measure theory) that a state ω is absolutely con-
tinuous with respect to a collection of states S just in case whenever
all states in S assign probability zero to some event, ω assigns prob-
ability zero to that event, too. A W*-algebra R is whole just in case
its normal state space contains all of the states absolutely continuous
with respect to all the normal states on R. Thus, one might motivate
Eq. 1 along the following lines. Let’s say that an event is guaranteed
not to occur just in case all physically possible states assign it proba-
bility zero. If one thinks any state that assigns probability zero to all
events that are guaranteed not to occur is a physically possible state,
then the physical state space should contain all states absolutely con-
tinuous with respect to all physically possible states. Moreover, if the
collection of physically possible states is identical with the collection
of normal states (See Ruetsche, 2011a), then the normal states should
satisfy Eq. 1.

The following proposition shows that wholeness is a substantive
constraint. In other words, there are W*-algebras that we set aside
if we restrict attention to only whole W*-algebras. (This also shows
that the functor G of the previous section forgets properties.)

Proposition 8. There are W*-algebras that are not whole.

Since there are W*-algebras that are not whole, and since we already
know that there are whole W*-algebras (take the bidual to any C*-
algebra), we now know that wholeness is a nontrivial condition. We
will use this condition in what follows to characterize a new category
of W*-algebras that is equivalent to C*-Alg

When we consider only whole W*-algebras, we have the resources
to restrict attention to maps that preserve the structure forgotten by
G. Call a weak* continuous *-homomorphism α : R1 → R2 between
whole W*-algebras R1 and R2 a *-whomomorphism if

α ◦ JA1(A1) ⊆ JA2(A2)

where A1 and A2 are the unique C*-algebras such that R1
∼= A∗∗1

and R2
∼= A∗∗2 . Notice that one cannot apply the above condition to

16Wholeness is just condition (ii) of Thm. 1 of Feintzeig (2017a). Condition (i) of that
theorem is always satisfied for the predual of a W*-algebra.
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a W*-algebra R that is not whole because there will not be a C*-
algebra whose bidual is R. Furthermore, notice that if α : A1 → A2 is
a *-homomorphism between C*-algebras A1 and A2, then the unique
weak* continuous extension α̃ : A∗∗1 → A∗∗2 given by Prop. 3 is a
*-whomomorphism.

Consider the category wW*-Alg whose objects are whole W*-
algebras and arrows are *-whomomorphisms. The arrows in wW*-
Alg provide enough structure to distinguish the elements of a C*-
algebra A from the elements of its bidual A∗∗ because they provide
enough structure to define JA, the map whose image is preserved by
all *-whomomorphisms. In the physical cases at hand from quantum
statistical mechanics like the spin chain, recall that A is the algebra of
(quasi)-local quantities, and A∗∗ is the larger algebra containing also
the global quantities. By distinguishing the elements of A from the
rest of A∗∗, the category wW*-Alg gives us enough mathematical
resources to distinguish quasi-local from global quantities. Insofar as
one thinks the distinction between quasi-local and global quantities in
a W*-algebra is physically significant, one should allow the models of
quantum statistical mechanics to be treated as objects in a category
with at least as much structure as wW*-Alg.

Let G : C*-Alg→ wW*-Alg be the functor that takes each C*-
algebra to its bidual and each *-homomorphism to its unique weak*
continuous *-whomomorphism extension. In other words, the compo-
sition of G with the inclusion of wW*-Alg in W*-Alg is just the
original completion functor G used in the previous sections. Then the
following proposition shows that G does not forget structure, and in
fact forgets nothing.

Proposition 9. G is a categorical equivalence between C*-Alg and
wW*-Alg.

Thus, we have our final result showing that the bidual A∗∗ does not
contain more structure or physical content than the C*-algebra A
we started with. This shows that if one treats the bidual as a W*-
algebra with enough structure to distinguish quasi-local from global
quantities—that is, if one treats the bidual as an object in wW*-
Alg—then one assumes no more and no less structure than one as-
sumed in the original C*-algebra.

Result 3: Infinite systems described by a bidual A∗∗ contain the
same amount of information or structure as their finite components
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described by A in the sense that the functor G : C*-Alg→ wW*-Alg
is a categorical equivalence.

6 Future Directions

I’ve argued that there is a sense in which the properties of infinite
systems are forced upon us by the properties of finite systems, and
that there is a sense in which the properties of infinite systems contain
no information beyond the properties of finite systems in quantum
statistical mechanics.17

The sense in which I showed that properties of infinite systems
are forced upon us by properties of finite systems is that limits of
Cauchy sequences in the weak topology on a C*-algebra are unique.
But it is important to notice that weak limits are not the only relevant
infinite limits in this case. A weak limit is the limit of a sequence of
observables already contained in the algebra of quantities defined for
the infinite system. One can ask further about the limiting process
we use to even obtain the algebra of quantities for the infinite system.

It is perhaps surprising to notice that when we consider the limit-
ing process for the entire algebra, there is a sense in which the entire
limiting algebra for the infinite system is not unique. If one under-
stands the quantities of each finite subsystem of the infinite spin chain
to be represented by a C*-algebra, then one can construct a contin-
uous field of C*-algebras (See Dixmier (1977) and Landsman (1998,
2013)) to represent the limiting procedure for the entire algebra of
quantities. That is, one starts with the quantum theory of a finite
number of subsystems and lets the number of subsystems grow larger
and larger, analyzing how the entire algebra of quantities changes.
It turns out that the algebra for the infinite limiting system is non-
unique in the sense that there are two distinct limit algebras one can
use in this continuous field: either the algebra of the infinite quantum
system I described in section 3 or the algebra of a classical spin sys-
tem. Thus, one might worry that the algebras of finite systems do not
completely determine the algebra of the infinite system in which the
entire discussion of this paper has taken place.

However, there is still hope. One might try to show that if we have
more information about the algebras of finite systems, then this forces

17The results of this paper also apply to classical statistical systems represented by
commutative algebras.
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a unique limiting algebra upon us. It is known, for example, that
local dynamics converge only in the infinite quantum limit and not
the classical limit, and conversely it is known that non-local “mean-
field” dynamics converge only in the classical limit and not in the
infinite quantum limit. Thus, one might ask whether there is any
sense in which the limiting algebra’s uniqueness is restored once we
choose a dynamics. If so, this would bear on the question of whether
the properties of the infinite system are completely determined by the
properties (including the Hamiltonian) of its finite subsystems. As far
as I know, this is an open question that deserves further attention.

• Open Question 1: Under what conditions is there a unique
limit algebra in a continuous field of C*-algebras on which a
given dynamics converges?

An answer to this question would appear to me to have philosophically
interesting consequences, whatever it turned out to be. It is my hope
that the approach taken in this paper to reduction and limits helps
others to see the philosophical significance of the question above.

In addition to my discussion of the uniqueness of limits, I’ve argued
that there are three senses in which the properties of infinite systems
contain no information beyond the properties of finite systems. First, I
showed that relative to at least one choice of categories and one choice
of functor between those categories, the algebras of infinite systems
contain less structure than the algebras of finite systems. That is, the
functor G from the category C*-Alg to the category W*-Alg forgets
structure. Second, I showed that relative to one choice of categories
and a choice of two functors between those categories, the algebras of
infinite systems satisfy a necessary condition for being definable from
the algebras of finite systems. That is, the weak completion functor
G, along with the forgetful functor F , form an adjunction for the
categories C*-Alg and W*-Alg. Third, I showed that relative to
another choice of categories and a different functor between them, the
algebras of infinite systems contain exactly the same structure that
was already present in the algebras of finite systems. That is, the
functor G is an equivalence between C*-Alg and wW*-Alg.

Although I have used a rough, informal concept of definability
when discussing adjunctions, one might object that this does not
match the concepts of definability from mathematical logic employed
in the classical accounts of reduction. As mentioned in the previous
section, it’s not clear at first glance that the concept of an adjunction
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fully captures what philosophers are looking for when they talk about
definability. Some recent work, however, suggests that we might be
able to relate the concepts of category theory to concepts of definabil-
ity in mathematical logic; Barrett (2017b) characterizes the properties
of a functor that sends a first order theory to a theory it is explicitly
definable from. I think extending these kinds of results to cover the
examples of this paper would be philosophically interesting, but it
also requires further mathematical work. The examples of completing
a topological vector space in the weak topology is naturally under-
stood as formalized in either infinitary or higher order logic. So to
determine how the concept of an adjunction relates to more familiar
notions of definability, one would need to analyze functorial properties
of definability in logics beyond first order logic. Again, this seems to
me to lead to interesting open questions.

• Open Question 2: Do functors sending theories to theories
they are definable from (in some appropriate sense of definabil-
ity) in logics beyond first order logic form part of an adjunction?

An answer to this question would also be philosophically significant
for better understanding both the role of definability and the role of
adjunctions in analyses of the relationship between scientific theories.

In addition to the open questions just stated, I think the results of
this paper point to interesting further work to be done on the foun-
dations of quantum field theory. In the philosophical literature one
finds an interpretive debate between the positions of “Algebraic Impe-
rialism” and “Hilbert Space Conservatism”. Roughly, the Algebraic
Imperialist believes one can adequately represent the physical quanti-
ties of a quantum field system using an abstract algebra alone, while
the Hilbert Space Conservative believes one needs a Hilbert space rep-
resentation of the algebra as well in order to use the weak operator
topology of a representation to form a von Neumann algebra.18 The
results of this paper should immediately bear on the Algebraic Impe-
rialist’s options of algebras to use for representing physical systems.

Further it is well known that there is a category of von Neumann
algebras with appropriately continuous morphisms that is categori-
cally equivalent to the category W*-Alg. So there is a sense in which

18For more on Algebraic Imperialism and Hilbert Space Conservatism, see Arageorgis
(1995), Ruetsche (2002, 2003, 2006, 2011b), Baker (2011), Baker and Halvorson (2013),
Lupher (2008, 2016) and Feintzeig (2016, 2017a,c).
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these interpretive positions may not be so different after all. How-
ever, I suspect there is a different category of von Neumann algebras
that might more accurately characterize the position of Hilbert Space
Conservatism and its use of a privileged Hilbert space representation.
For example, we might define a different category of von Neumann al-
gebras by specifying a different collection of arrows—perhaps unitary
equivalences in the natural inclusion representation of a von Neumann
algebra on its given Hilbert space. I think it would be interesting to
do further work using the tools of category theory to make precise dif-
ferent formulations of the Algebraic Imperialist’s and Hilbert Space
Conservative’s positions in order to compare them.

I hypothesize that there is a formulation of Hilbert Space Con-
servatism using the tools of category theory that adequately captures
the interpretive position and has more structure than an adequate
formulation of Algebraic Imperialism.

• Open Question 3: Can one use the tools of category theory to
show that Hilbert Space Conservatism has more structure than
Algebraic Imperialism?

An answer to this question would inform future work in the founda-
tions and interpretation of quantum field theory.

7 Conclusion

In this paper, I took up the question of whether the allegedly novel
and emergent behavior in the “singular limit” of certain infinite quan-
tum statistical systems thwarts our attempts to understand reduction
through the classical philosophical accounts. Classical accounts of re-
duction require the reduced theory to be definable and deducible from
the reducing theory, so one might look to see whether the quantities
of infinite quantum statistical systems are definable or deducible from
the quantities of finite quantum statistical systems. But instead of
tackling the issues of deduction and definability directly, I changed
the subject, focusing instead on some motivating features behind the
requirements of deduction and definability.

Namely, I took up the questions: are the quantities of infinite
quantum statistical systems forced upon us by the quantities of finite
quantum statistical systems? And do the quantities of infinite quan-
tum statistical systems contain more information or structure than
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the quantities of finite quantum statistical systems? After all, the
definability and deducibility requirements together entail a sense in
which a reduced theory is forced upon us by the reducing theory and
contains no more information or structure than the reducing theory. I
answered these questions in the affirmative. I showed that uniqueness
theorems for limiting procedures entail a sense in which the quan-
tities of infinite quantum statistical systems are forced upon us by
the quantities of finite quantum statistical systems. And I showed
that functorial comparisons of categories of models for representing
the quantities of infinite systems and finite systems show a sense in
which the quantities of infinite quantum statistical systems contain no
more information or structure than the properties of finite quantum
statistical systems.

It is worth repeating a caveat made in the beginning of the paper
about these results. I do not claim that the purely mathematical re-
sults presented in this paper are sufficient to show that thermodynam-
ics reduces to statistical mechanics. I am happy to concede that such a
reduction would presumably involve the physical semantics, dynamics,
and perhaps even further interpretive aspects of the theories at issue
(in addition to the mathematical aspects discussed here).19 My focus
in this paper has been only on the idea that a purely mathematical
feature—the presence of “singular limits”—might thwart reduction.
I have argued that the mathematical results I present in this paper
show that these “singular limits” do not present the immediate and
insurmountable challenge to reduction that others have thought.

Thus, I conclude that—whatever else we learn from the interest-
ing features of so-called “singular limits”—our practices surrounding
infinite quantum statistical systems still share much in common with
classical accounts of intertheoretic reduction. Although this does not
show that thermodynamics reduces to statistical mechanics, it does
show that “singular limits” need not be understood as thwarting a
classical reduction.
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Appendix: Proofs of Results

This appendix contains proofs of all results in §4 and §5.

Proposition 1. Given any Banach space X, its dual X∗ is complete
in the weak* topology as a locally convex vector space.

Proof. Suppose {yβ} is a Cauchy net in X∗. Define y : X → C by

y(x) = lim yβ(x)

for all x ∈ X. We know that this limit exists because for any x ∈ X,
yβ(x) is a Cauchy net in C, which means it must converge because C
is complete.

Now we must show that y ∈ X∗, i.e., that y is linear and bounded.
The functional y is linear because for any x, x′ ∈ X and α ∈ C,

y(x+αx′) = lim yβ(x+αx′) = lim yβ(x)+α lim yβ(x′) = y(x)+αy(x′)

Notice that because |yβ(x)| is bounded for each x ∈ X, it follows from
the principle of uniform boundedness that ‖yβ‖ is bounded (Reed
and Simon, 1980). Hence, y is bounded with norm ‖y‖ ≤ supβ‖yβ‖.
Finally, we must show that yβ converges to y in the weak* topology on
X∗. But this holds by construction because for any x ∈ X, (y−yβ)(x)
converges to zero in C.

Proposition 2. Suppose X is a Banach space and JX : X → X∗∗

is the canonical evaluation embedding of X in its bidual. Suppose we
are given another faithful linear embedding K : X → Y of X in a
complete locally convex vector space Y such that K(X) is dense in Y
in the locally convex vector space topology on Y . Suppose, in addition,
that K is a homeomorphism from X to K(X) in the weak topology on
X and the subspace topology on K(X) generated by the locally convex
vector space topology on Y . Then there is a vector space isomorphism
ϕ : Y → X∗∗ that is a homeomorphism in the locally convex vector
space topology on Y and the weak* topology on X∗∗ and such that
JX = ϕ ◦K.

X
JX //

K
��

X∗∗

}}
Y

ϕ

==
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Proof. Suppose K : X → Y is such an embedding. By Cor. 1.2.3 of
Kadison and Ringrose (1997, p. 15), the maps ϕ0 = JX ◦ K−1 and
ψ0 = K ◦J−1X extend uniquely to continuous linear maps ϕ : Y → X∗∗

and ψ : X∗∗ → Y in the weak* topology on X∗∗ and the locally convex
vector space topology on Y . Since ϕ0 ◦ψ0 and ψ0 ◦ϕ0 are the identity
operators on JX(X) and K(X), respectively, it follows that ϕ ◦ψ and
ψ◦ϕ are the identity operators on X∗∗ and Y , respectively. Thus, ϕ is
an isomorphism and a homeomorphism in the weak* topology on X∗∗

and the locally convex vector space topology on Y . By construction,
we have ϕ ◦K = ϕ0 ◦K = JX ◦K−1 ◦K = JX .

Proposition 3. Suppose α : A → B is a *-homomorphism between
C*-algebras A and B. Then there is a unique weak* continuous ex-
tension α̃ : A∗∗ → B∗∗ such that α̃ ◦ JA = JB ◦α, where JA : A→ A∗∗

and JB : B→ B∗∗ are the canonical evaluation maps.

A

JA
��

α // B

JB
��

A∗∗
α̃
// B∗∗

Proof. First, we show that α is continuous in the weak Banach space
topologies on A and B. Suppose we have a net {Aβ} ⊆ A such that
Aβ → A weakly. Then for all ρ ∈ A∗, ρ(Aβ) → ρ(A). Consider the
net {α(Aβ)} ⊆ B. For any σ ∈ B∗, σ ◦ α ∈ A∗, so it follows that
σ ◦ α(Aβ) → σ ◦ α(A). Hence, α(Aβ) → α(A) weakly, and it follows
that α is weakly continuous.

It follows from Cor. 1.2.3 of Kadison and Ringrose (1997, p. 15)
that the map JB ◦α◦J−1A : JA(A)→ B∗∗ extends uniquely to a weak*
continuous map α̃ : A∗∗ → B∗∗. By construction,

α̃ ◦ JA = JB ◦ α ◦ J−1A ◦ JA = JB ◦ α

Proposition 4. G is not full, i.e., G forgets structure.

Proof. By Prop. 5 below, F and G form an adjunction, and we know
G is faithful. So it follows from Prop. 3.4.1 of Borceux (1994, p. 114)
that G is full only if the counit of the adjunction 1̃ : G ◦F → 1W*-Alg

is a natural isomorphism.
The counit of the adjunction has as its component on any object

R in W*-Alg the unique continuous extension 1̃R : R∗∗ → R of
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the identity arrow 1R : R → R in the weak topology on the domain
and the weak* topology on the codomain, which exists by Cor. 1.2.3
of Kadison and Ringrose (1997, p. 15) since R is weak* complete.
Notice that 1̃R is not the identity map from R∗∗ to itself, because
we require continuity in the weak* topology on the codomain rather
than the weak topology, so that the codomain is already complete
and even after continuously extending 1R in the relevant topologies,
we get a map into the codomain R. This map 1̃R satisfies the universal
property for counits, i.e., given any A in C*-Alg, any R in W*-Alg
and arrow α̃ : G(A) → R, there is a unique arrow α : A → F (R)
such that α̃ = 1̃R ◦ G(α). Here, α is just the restriction of α̃ from
G(A) = A∗∗ to A, i.e., α = α̃|A.

G(A)

G(α)

��

α̃ // R

G ◦ F (R)
1̃R

99

A
∃!α // F (R)

Indeed, 1̃ is a natural transformation because for any two objects
R1 and R2 in W*-Alg and any arrow α : R1 → R2, we know that
α ◦ 1̃R1 = 1̃R2 ◦G ◦ F (α) because there is a unique weakly continuous
extension of α from R1 to G ◦ F (R1) = R∗∗1 by Cor. 1.2.3 of Kadison
and Ringrose (1997, p. 15).

G ◦ F (R1)

1̃R1
��

G◦F (α) // G ◦ F (R2)

1̃R2
��

R1 α
// R2

In general, 1̃R will not be an isomorphism. For, if R � R∗∗ (as is
the case for infinite dimensional W*-algebras), since 1R : R → R is
surjective and JR(R) ( R∗∗, it follows that 1̃R : R∗∗ → R cannot be
one-to-one and so cannot be an isomorphism. Thus, the counit 1̃ is
not a natural isomorphism, and so G is not full.

Proposition 5. F and G form an adjunction, with left adjoint G,
right adjoint F and unit J .

Proof. First, we know that J is a natural transformation from F ◦G
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to 1C*-Alg because F ◦ G(A) is just A∗∗ considered as an object in
C*-Alg. So for any two objects A and B in C*-Alg and any arrow
α : A→ B, it follows by Prop. 3 that

JB ◦ 1C*-Alg(α) = F ◦G(α) ◦ JA

A
α //

JA
��

B

JB
��

F ◦G(A)
F◦G(α)

// F ◦G(B)

J serves as the unit because for any objects A in C*-Alg and
R in W*-Alg and arrow α : A → F (R), there is a unique arrow
α̃ : A∗∗ → R such that F (α̃) ◦ JA = α. The arrow α̃ is given by
the unique weakly continuous extension of α to the weak completion
G(A) = A∗∗.

A

JA
��

α // F (R)

F ◦G(A)

F (α̃)

99

G(A)
∃!α̃ // R

Proposition 6. Let R be a W*-algebra and let

I = {A ∈ R : ρ(A) = 0 for all ρ ∈ R∗}

There is a C*-algebra A such that R ∼= A∗∗ iff

R∗ ∼= {ω ∈ R∗ : if A ∈ I, then ω(A) = 0} (1)

R

��
∃A G +3 A∗∗

OO

Proof. (⇐) Suppose that R satisfies Eq. 1. By Prop. 2.11.8 of
Dixmier (1977, p. 63) and Cor. 1.8.3 of Dixmier (1977, p. 21), it
follows that A := R/I is a C*-algebra such that A∗ ∼= R∗. Hence,
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we know that A∗∗ is isomorphic to R as a Banach space. It suffices
to show that the canonical embedding JA : A → A∗∗ induces a map
(which we will also call JA since no ambiguity will result) from R/I
to R that preserves multiplication in order to show that A∗∗ and R
are *-isomorphic. We can choose the isomorphisms so that JA induces
the map

(A+ I) ∈ R/I 7→ A ∈ R

We lose no generality in choosing a representative A ∈ A + I in this
way (although we require the axiom of choice). It is easy to check that
this map is a faithful *-homomorphism whose range is weak* dense in
R. It follows that JA extends to a *-isomorphism from A∗∗ to R.
(⇒) Suppose that R ∼= A∗∗ for some C*-algebra A. We know from
Cor. 1.13.3 of Sakai (1971, p. 30) that R∗ ∼= A∗. Let

IA = {A ∈ A∗∗ : ρ(A) = 0 for all ρ ∈ A∗}

Then R∗ ∼= A∗ ∼= (A∗∗/IA)∗, and by Prop. 2.11.8 of Dixmier (1977, p.
63), we know that

(A∗∗/IA)∗ ∼= {ω ∈ A∗∗∗ : if A ∈ IA, then ω(A) = 0.}

which implies that R∗ satisfies Eq. 1.

Proposition 7. Let R be a W*-algebra. If A and B are two C*-
algebras such that A∗∗ ∼= R ∼= B∗∗, then A is *-isomorphic to B.

Proof. We know from Cor. 1.13.3 of Sakai (1971, p. 30) that A∗ ∼= B∗.
As before, let

IA = {A ∈ A∗∗ : ρ(A) = 0 for all ρ ∈ A∗}

IB = {B ∈ B∗∗ : ρ(B) = 0 for all ρ ∈ B∗}

Again, we know from Prop. 2.11.8 of Dixmier (1977, p. 63) that
(A∗∗/I)∗ ∼= A∗ and (B∗∗/I)∗ ∼= B∗. Hence, the canonical surjective *-
homomorphisms A∗∗ → A∗∗/I and B∗∗ → B∗∗/I can serve to define
surjective *-homomorphisms from R to the C*-algebras A and B,
who have isomorphic dual spaces. It follows from Thm. 2 of Feintzeig
(2017a) that A ∼= B.

Proposition 8. There are W*-algebras that are not whole.
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Proof. Let R := L∞(R) be the algebra of equivalence classes of bounded
Borel measurable complex-valued functions on the real line that differ
only on sets of Lebesgue measure zero, where the algebraic structure
is defined by pointwise operations. We know R has no pure normal
states (See, e.g. Halvorson, 2001) (and any W*-algebra without pure
normal states will suffice for the rest of the proof).20 Suppose, for
contradiction, that R is whole. Then, by Prop. 6, we know R∗ = A∗

is the dual space to some C*-algebra A. By the Banach-Alaoglu the-
orem (Cor. 1. 6.6 of Kadison and Ringrose, 1997, p. 46) and the
Krein-Milman theorem (Thm. 1.4.3 of Kadison and Ringrose, 1997,
p. 32), the state space of A, which is the normal state space of R,
must contain pure states, which yields a contradiction.

Proposition 9. G is a categorical equivalence between C*-Alg and
wW*-Alg.

Proof. G is faithful because G is faithful. Prop. 6 shows that G
is essentially surjective. To show that G is full, consider any arrow
α : R1 → R2 in wW*-Alg, where A1 and A2 are the unique C*-
algebras such that A∗∗1

∼= R1 and A∗∗2
∼= R2. To simplify notation,

let J1 := JA1 and J2 := JA2 . Since α is a *-whomomorphism, we
know that the restriction α|J1(A1) of α to J1(A1) is a *-homomorphism
from the C*-algebra J1(A1) to the C*-algebra J2(A2). It follows that
α = α̃|J1(A1) = G(α|J1(A1)), where α̃|J1(A1) : R1 → R2 is the unique
weak* continuous extension of α|J1(A1) by Prop. 3.
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