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The discussion of different principles of additivity (finite vs. countable vs.
complete additivity) for probability functions has been largely focused on the per-
sonalist interpretation of probability. Very little attention has been given to ad-
ditivity principles for physical probabilities. The form of additivity for quantum
probabilities is determined by the algebra of observables that characterize a phys-
ical system and the type of quantum state that is realizable and preparable for
that system. We assess arguments designed to show that only normal quantum
states are realizable and preparable and, therefore, quantum probabilities satisfy
the principle of complete additivity. We underscore the little remarked fact that
unless the dimension of the Hilbert space is incredibly large, complete additivity in
ordinary non-relativistic quantum mechanics (but not in relativistic quantum field
theory) reduces to countable additivity. We then turn to ways in which knowledge
of quantum probabilities may constrain rational credence about quantum events
and, thereby, constrain the additivity principle satisfied by rational credence func-
tions.

1 Introduction

The merits of different forms of additivity– finite vs. countable vs. complete
additivity– for probability functions has received a good deal of attention in
the annals of statistics and decision theory, with philosophers occasionally
weighing in. The first impression of the literature is that the discussion is so
extensive and detailed that little remains to be said, except for a quibble here
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and a footnote there. And yet on further reflection there is an obvious gap in
the literature. Most of the considerations adduced are either explicitly aimed
at, or are most plausibly construed as aimed at, the personalist interpretation
of probability, e.g. it is shown that a clever bookie can take advantage of
an agent whose degrees of belief fail to satisfy a certain form of additivity.
What is largely missing is a discussion of the form of additivity satisfied by
physical probabilities.
Bruno de Finetti, the patron saint of the personalist interpretation of

probability, is famous for denying that there is any such thing as physical
probability: “THERE ARE NO PROBABILITIES”(de Finetti 1974, Vol. 1,
p. x) was his bombastic way of staking out his position. What is undeniable
is that fundamental theories of physics, e.g. quantum mechanics (QM), at-
tribute probabilities to physical systems; and while it is a nice metaphysical
question as to whether or not these probabilities codify objective chances,
it is undeniable that the outcome statistics in experiment after experiment
correspond with great accuracy to the probabilities assigned by the theory,
making it hard not to believe that the probabilities of QM reflect objective
features of physical systems. But, it might be said, even granting for sake
of argument that there are physical probabilities, there is nothing further to
discuss: physical probabilities– and the form of additivity they satisfy– are
what Nature says there are, and it is to no avail to tell Nature that she should
have used some other form of additivity.
This glib response misses two points. First, there is much to be discussed

in connection with the additivity properties of quantum probabilities since
these properties are closely connected with the still unsettled issue of which
quantum states are physically realizable. As will be seen below, this is not
a straightforward empirical issue that can be decided by experimentalists.
Second, the additivity properties of quantum probability have implications
for the additivity properties of the credence functions of rational agents espe-
cially if, as a number of philosophers have claimed, a knowledge of objective
physical probability constrains rational credence.
Our treatment of these issues begins in Section 2 with a review of the con-

siderations adduced in the literature to motivate or justify the various forms
of additivity in the context of the personalist interpretation of classical prob-
ability theory. Section 3 introduces quantum probability theory in terms
of the algebraic formulation of QM. All three forms of additivity– finite,
countable, and complete additivity– are exhibited by quantum probabilities
depending on the algebra of observables and the nature of the allowable states
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on the algebra. But we underscore the little remarked fact that unless the
dimension of the Hilbert space is incredibly large, complete additivity in or-
dinary non-relativistic (but not in relativistic quantum field theory (QFT))
reduces to countable additivity. Section 4 assesses the presupposition of much
of the standard practice of QM that only normal quantum states are phys-
ically realizable and, therefore, that quantum probabilities are completely
additive. Section 5 discusses different ways in which quantum probabilities
might constrain rational credence about quantum events and, thereby, the
form of additivity a rational credence function over these events should sat-
isfy. Conclusions are presented in Section 6.

2 Additivity requirements in classical proba-
bility

The philosophical literature on additivity requirements, as well as the sta-
tistics literature that is cited therein, is focused almost entirely on classi-
cal probability. Without any pretence at either rigor or completeness, the
present section attempts to give the reader the gist of some of the main ar-
guments pro and con regarding competing additivity principles for classical
probability. Following the standard Kolmogorov axioms (Kolmogorov 1956),
a classical probability space (Ω,F,Pr) consists of a non-empty set Ω, a set F
of subsets of Ω, and a map Pr from F to the non-negative reals satisfying

(A1) F is a field1 containing Ω

(A2) Pr(Ω) = 1

(A3) If A,B ∈ F and A∩B = ∅ then Pr(A+B) = Pr(A)+Pr(B).

The axiom (A3) is the requirement of finite additivity. It is generally agreed
that any function that deserves to be called a probability function must
exhibit at least these formal properties. What further properties, if any, a
probability function should satisfy is a matter of controversy that turns in

1To be a field Fmust be closed under the operations of complementation, finite products
(intersections) and sums (unions), where for A,B ∈ F complementation, product, and sum
are defined respectively as A := Ω − A, AB := A ∩ B, and A + B := A ∪ B. For the
requirements of countable (respectively, complete additivity) to be meaningful, F must be
closed under countable (respectively, arbitrary) products and sums.
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part on the interpretation of probability. We first survey arguments designed
to show that degrees of belief (aka credences), if rational, should conform to
axioms (A1)-(A3).

2.1 Arguments for finite additivity

The most well-known justification for (A1)-(A3) as rationality constraints
on degrees of belief is the Dutch Book argument. Think of the elements Aa
∈ F, a ∈ I (index set), as standing for propositions to which some agent
assigns degrees of belief codified in a credence function Cr on F. The idea
is that Cr should serve as that agent’s fair betting quotient when the stakes
of the bets are small enough that considerations of risk aversion/seeking can
be set aside. A bookie sets the stakes Sa for elements Aa ∈ F. An agent who
bets on Aa pays Pa to the bookie, and in return receives Sa from the bookie
if Aa is true and nothing if Aa is false.2 The agent regards the bet as fair
(respectively, favorable) just in case the amount Pa she has to pay for the
bet is equal to (respectively, less than) the expected payoffCr(Aa)Sa. Finite
Dutch Book can be made against the agent if there is a finite family of bets,
each of which the agent regards as fair (or favorable), but the net result of
which is that the agent is guaranteed to lose money come what may (i.e.
whatever the truth values of the propositions at stake). De Finetti (1974,
Vol. 1, Ch 3) showed that the agent is immune to finite Dutch Book just in
case Cr is a finitely additive probability function.
As interesting as this result is, de Finetti himself did not find it entirely

satisfactory, both because of the issue of risk version/seeking and because
he thought that the strategizing involved in the bookie-bettor negotiations
should not be part of the concept of the rationality of belief (see de Finetti
1981). He therefore constructed a second argument that is independent of
gambling considerations and more focused on how well a credence function
scores in terms of tracking the truth. Let {Aa}, a ∈ I, be a disjoint subset
of F, i.e. for any pair Ab, Ac ∈ {Aa}, Ab∩ Ac = ∅ if b 6= c. If in addition∑
a∈I

Aa = Ω then {Aa} is said to be a partition of F. Define the indicator

function tW for possible world W by tW (Aa) := 1 if Aa is true in W and 0
otherwise.3 One way of scoring how the credence function Cr errs in tracking

2If Sa is negative then the agent is selling the bet.
3For present purposes a possible world is any consistent assignment of truth values to

elements of F.
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the truth in a partition {Aa} is the squared-error or Brier loss function

BLW (Cr) :=
∑
a∈I

(tW (Aa)− Cr(Aa))2.

Say that Cr is weakly (respectively, strongly) dominated by another credence
function Cr′ just in case BLW (Cr′) ≤ BLW (Cr) for all W and BLW (Cr′) <
BLW (Cr) for someW (respectively, BLW (Cr′) < BLW (Cr) for allW ). The
implicit suggestion here is that to be rational an agent who realizes she has a
dominated credence function should, ceteris paribus, shift to an undominated
credence function.4 De Finetti (1974, Vol. 1, Ch. 3) showed that a credence
function Cr is undominated in finite partitions just in case it is a probability
function satisfying axioms (A1)-(A3). Moreover, this result is robust in the
sense that it has been shown to hold for a large class of alternative scoring
rules (see Joyce 1998; Schervish, Seidenfeld, and Kadane 2009).
As impressive as the Dutch Book and scoring rules arguments are they

only serve at best to show that a rational credence should satisfy finite ad-
ditivity as a minimum and not that rational credence need not satisfy some
stronger additivity requirement. In Chapter 2 of Foundations of the Theory
of Probability Kolmogorov (1956) considered an additional axiom of continu-
ity that is equivalent to the requirement of countable additivity. Let {Aa},
a ∈ I, be a disjoint subset of F where the index set I is countable. Then the
axiom of countable additivity demands that

(A4) Pr(
∑
a∈I

Aa) =
∑
a∈I

Pr(Aa).

Thus, if Pr is countably additive and {Aa} is a partition of F it follows that∑
a∈I

Pr(Aa) = 1.

De Finetti was morally outraged by two consequences of the requirement
of countable additivity. Consider a lottery that sells a countably infinite num-
ber of tickets. Countable additivity prevents an agent from assigning equal
probabilities to each of the mutually incompatible propositions that ticket
#n, n = 1, 2, 3, ... will win. An agent whose credence function is merely
finitely additive can make such an assignment; namely, she can assign each
ticket a zero probability. Second, countable additivity is a key ingredient

4But other things might not be equal: the agent might have reasons for not shifting to
some particular non-dominated credence functions.
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in the phenomenon of non-measurable events: every merely finitely additive
probability measure on a set can always be extended to the power set of said
set; but the use of the axiom of choice shows that such an extension is not
always possible if the measure is countably additive. On de Finetti’s person-
alist reading of probability the phenomenon of non-measurable events means
that there are events (corresponding to subsets of Ω) to which agents are pre-
vented by countable additivity from assigning degrees of belief, something he
found repugnant.
Moral outrage aside, are there other considerations in favor of sticking

with finite additivity and not moving to countable additivity? Here are
three. First, there are some versions of decision theory, such as that of
Savage (1972), that operate with mere finite additivity. Second, Kadane,
Schervish, and Seidenfeld (1986) argue that various anomalies and para-
doxes of Bayesian statistics can be resolved by the use of so-called improper
priors and that such priors can be interpreted in terms of finitely additive
probabilities. Third, the scoring rule argument does not justify moving from
finite to countable additivity; for it is not the case that any merely finitely
additive credence function is weakly dominated in terms of Brier score by
some countably additive credence function. As an example let {Aa}, a ∈ I,
be a countable atomic partition of F, and let Crf be merely finitely additive
credence function that assigns 0 to each atom Aa of the partition.5 Then
BLW (Crf ) = 1 for all W but (as is easily checked) there is no countably
additive Crc such that BLW (Crc) ≤ 1 for all W .6 Yet more considerations

5That Aa is an atom means that there is no A′ ∈ F such that A′ is a proper subset of
Aa. Where does the non-zero credence of the Crf in question reside? By finite additivity,
any finite union of the atoms in the atomic partition gets zero Crf credence. Credence
is, therefore, diffuse, i.e. non-zero credence resides only on infinite unions of atoms. It is
this diffuseness that allows Crf to escape domination on the square-error criterion. One
might take this example to show that immunity from domination on the squared-error
criterion is not much of a merit badge.

6Note that

BLW (Crc) =
∑
a6=aW

(Crc(Aa))2 + (1− Crc(AaW ))2

=
∑
a

(Crc(Aa))2 + 1− 2Crc(AaW )

where aW is the number of the element AaW of the partition that is true in W . For this
loss to be less than or equal to 1 in W it must be the case that
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in favor of mere finite additivity are to be found in Seidenfeld (2001).

2.2 Arguments for countable additivity

As mentioned above, Kolmogorov (1956) considered an axiom of continuity.
Let Aa ∈ F, a = 1, 2, 3, ..., be a countable sequence descending to ∅, i.e. A1

⊇ A2 ⊇ ... and ∩∞a=1Aa = ∅. Continuity at ∅ requires that for any such
sequence

(A5) lima→∞ Pr(Aa) = 0.

Axiom (A5) is provably equivalent to countable additivity (see, for exam-
ple, Halmos 1950, Theorem 9F). Thus, considerations in favor of continuity
are ipso facto considerations in favor of countable additivity. One way to
argue for continuity and, thus, countable additivity is to maintain that a
failure of continuity is an indication that the probability space is defective
in that it should be regarded as a subset of some larger space (see King-
man 1967). The argument would have to be implemented by showing that
the non-continuous Pr is extendible to a continuous Pr′ on the field F′ of
a larger space Ω′ of events and, just as importantly, that the elements of
F′\F are genuine events to which probability should be assigned and are not
mere mathematical constructs. While one can think of circumstances where
such an argument scheme can be implemented on the personalist interpre-
tation of probability, there does not seem to be any reason to think that it
offers a general justification for the personalist to adopt countable additivity.
Physical probability is a different matter, and the effectiveness of continuity
considerations for such probabilities depend on the details of the physics that
grounds the probabilities. The case for continuity of quantum probabilities
will be examined below in Section 4.2.

Crc(AaW ) ≥ σ > 0, σ :=

∑
a

(Crc(Aa))2

2
.

If we try to suppose that this can hold for allW a contradiction results. For the number of
each element of the partition “comes up”in some W so the inequality must hold for each
element in the partition. Summing over the partition it follows from countable additivity
that

∑
a Crc(Aa) = 1 is greater than or equal to to nσ for any value of n. Whether or not

a finitely additive credence function can escape domination for other scoring rules remains
to be seen.
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Perhaps more effective from the personalist perspective is the Dutch Book
argument which can be generalized to cover a countably infinite family of
bets. Agree that to be realistic the stakes in such an infinite betting scheme
must be such that the total amount of money

∑
a∈I
|Cr(Aa)Sa|, I a countable

set, that initially changes hands must be finite. Even with this proviso in
effect it is provable that within such infinite betting schemes an agent escapes
Dutch Book just in case her credence function obeys (A1)-(A4). De Finetti
was aware of this fact, but in some places he seems to opine that using
infinite betting schemes to justify countable additivity is question begging
(see de Finetti 1972, p. 91), while in other places he seems to deprecate
infinite betting schemes on verificationist/operationalist grounds (see Mura
2008, pp. 114-117).7

Arntzenius, Elga, and Hawthorne (2004) side with de Finetti in holding
that Dutch Book arguments have no force for infinite bets and, therefore, do
not provide a justification for countable additivity. Their complaint centers
on what they call the Bet Agglomeration Principle (BAP) which requires
that if an agent judges each bet in a package of bets to be acceptable then
the agent is committed to judging the whole package to be acceptable. By
rehearsing cautionary tales about fallacies that result when trying to carry
reasoning about finite collections over to infinite collections, Arntzenius et al.
attempt to convince the reader that (BAP) lacks plausibility for an infinite
package of bets. While caution in moving from reasoning about the finite to
reasoning about the infinite is well advised, we feel that whatever force the
original Dutch Book argument has in the finite case is not lost in the passage
to the infinite case. In both cases the an agent judges whether a bet is fair
(respectively, favorable or unfavorable) according as her expected value for
the bet is 0 (respectively, > 0 or < 0).8 A sure loss for a finite package
of bets (leading to a dominance argument against buying the package) even
though each bet in the package has 0 (or > 0) expected value for the agent is
supposed to signal that the agent’s credences are incoherent; and if axioms
(A1) and (A2) hold for the agent’s credence function, then the blame for the
incoherence lies squarely with the failure of finite additivity. If this analysis
has force for finite case it seems to have equal for the infinite case: a sure loss

7See Howson (2008) for an overall assessment of de Finetti’s position on coherence and
Dutch Book.

8That the agent’s value or utility function is linear for small stakes is assumed in the
Dutch Book construction.
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for a countably infinite package of bets (leading to a dominance argument
against buying the package) even though each bet in the package has 0 (or
> 0) expected value for the agent signals that the agent’s credences are
incoherent; and if axioms (A1)-(A3) hold for the agent’s credence function,
the blame for the incoherence lies squarely with the failure of countable
additivity. As far as we can discern, there is nothing to indicate that the
incoherence in the infinite case is due to peculiarities of infinities rather than
to the violation of countable additivity.
A different but related line of justification for countable additivity comes

from the concept of conglomerability. A fundamental result of classical prob-
ability is that any probability function Pr satisfying (A1)-(A3) is extendible
to full conditional probability. A full conditional P̃r is a real valued function
on FxF0, with F0 consisting of the non-null elements of F, satisfying

(i) for A ∈ F0, P̃r(•/A) is a probability on F and P̃r(A/A) = 1

(ii) for A ⊂ B ⊂ C ⊂ Ω, B ∈ F0, P̃r(A/C) = P̃r(A/B)P̃r(B/C).

That P̃r extends Pr means that Pr(A) = P̃r(A/Ω) for all A ∈ F. If Pr
is merely finitely additive the extension may not be unique. It is easy to
verify that if P̃r extends Pr and Pr(B) 6= 0 then P̃r(A/B) = Pr(A/B) :=

Pr(A∩B)/Pr(B), per the standard definition of conditional probability. If P̃r
is a full conditional probability that extends Pr and P = {Aa} is a partition
of F then P̃r is said to be conglomerable with respect to P just in case for
all B ∈ F

supAa P̃r(B/Aa) ≥ Pr(A) ≥ infAa P̃r(B/Aa).

A P̃r that is conglomerable with respect to every partition is said to be
conglomerable simpliciter.
Consider the situation of an agent with a non-conglomerable credence

function Cr satisfying (A1)-(A3). There is an extension of Cr to a full
conditional C̃r, a partition P = {Aa}, and a B ∈ F such that Cr(B) <

C̃r(B/Aa) for all Aa ∈ P. The agent knows that exactly one element of the
partition will eventuate, and he judges the conditional probability of B on
each and every eventuality to be greater than the unconditional probability.
This strikes many commentators as bizarre if not outright irrational. In addi-
tion there are pragmatic reasons for demanding conglomerability for credence
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functions; namely, a violation of conglomerability makes an agent vulnera-
ble to money pump constructions (see Seidenfeld and Schervich 1983): the
agent is sure to lose if he makes an unconditional bet on B with Cr(B) as
fair betting quotient as well as a package of conditional bets on B for each
Aa ∈ P with C̃r(B/Aa) as fair betting quotient.9

Now comes the plug for countable additivity: a Pr satisfying (A1)-(A3)
is countably additive just in case it is conglomerable with respect to every
countable partition (see Hill and Lane 1985; Schervish, Seidenfeld, and Kadane
1984); so satisfying countable additivity makes an agent proof against non-
conglomerability in countable partitions while violating it guarantees that
there exists an extension to a full conditional probability and a partition on
which conglomerability fails. Nevertheless, de Finetti, who first investigated
the phenomenon of conglomerability, did not think that conglomerability is
an essential requirement for personal probability. The status of the require-
ment remains unsettled in the statistics literature, while some philosophers
(e.g. Arntzenius, Elga, and Hawthorne 2004) advocate tolerance for viola-
tions.
Suppose now that, unlike de Finetti, you are persuaded of the need to em-

brace countable additivity. But why stop there? Suppose that F admits un-
countable partitions. That the summation formula Pr(

∑
a∈I

Aa) =
∑
a∈I

Pr(Aa)

of (A4) holds for all disjoint subsets {Aa} of F with card(I) = κ (κ > ℵ0)
is the requirement of κ-additivity.10 Why not adopt κ-additivity? Indeed,
why not go all the way to complete additivity, the requirement that the
summation formula holds for all disjoint subsets of whatever cardinality?

2.3 Arguments for complete additivity

Continuity arguments for countable additivity can be generalized to argu-
ments for complete additivity. But by the same token the effectiveness of the
latter when applied to personalist probabilities is subject to the same qualms
and limitations as the former; and correspondingly the effectiveness of the
latter when applied to physical probabilities depends on the details of the

9A bet on B conditional on Aa is called off if Aa is false but proceeds as an ordinary
bet on B if Aa is true.
10The sum on the rhs is understood as the supremum over all finite subsets F ⊂ I of∑

a∈F
Pr(Aa). It is easy to verify that at most a countable infinity of the Aa can be assigned

positive probability.
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physical theory in which these probabilities are embedded. Looking ahead,
quantum theory does provide a physical basis for the continuity underlying
completely additive quantum probabilities (see Section 4.2).
Sticking to the case of classical probabilities, insofar as conglomerability

provides a motivation for countable additivity it also provides a motivation
for complete additivity for personalist probabilities. If F admits uncountable
partitions then in general a countably but not completely additive Pr will ex-
hibit non-conglomerability on uncountable partitions (see Kadane, Schervish,
and Seidenfeld 1986). The proof that countable additivity entails conglom-
erability on every countable partition generalizes to show that complete ad-
ditivity entails conglomerability on all partitions. It seems reasonable to
conjecture that the converse implication also holds.
The application of the Dutch Book argument to the uncountable case

is more delicate. The generalized Dutch Book argument in the preceding
subsection applied to a countable family of bets applies equally to an un-
countable family if it is required that the agent stands ready to accept any
bet whose price she regards as exactly fair. But it does not apply to an un-
countable family of bets if the agent is only required to accept bets that she
regards as strictly favorable (see Skyrms 1992 and Easwaran 2013). The rea-
son is that subtracting a sweetener pa > 0 from the amount Pa = Cr(Aa)Sa
the bettor regards as an exactly fair price for the bet in order to make it fa-
vorable results in a violation of the condition

∑
a∈I
|Pa−pa| <∞ for the initial

exchange of money to be finite when I is uncountable. The issue then turns
on the fair vs. favorable form of bets as a means of eliciting degrees of belief,
which seems more a question of psychology than a question of rationality of
belief.
Easwaran (2013) offers a principle which is supposed to support countable

but not complete additivity:

(E) If P = {Aa}, a ∈ I, is a partition of F and Pr1 and Pr2

are two probability functions then it cannot be the case that
Pr2(Aa) > Pr1(Aa) for all Aa ∈ P.

As an example of how (E) operates, suppose that I = N+ and consider
two real valued set functions: the merely finitely additive Pr1 that assigns
Pr1(An) = 0 for all n ∈ N+ and the countably additive set function Pr2 that

assigns Pr2(An) =
1

2n
for n ∈ N+. (E) is violated if both Pr1 and Pr2 count
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as probability functions. Then the idea is to demonstrate that this example
can be generalized to show that if Pr1 is any merely finitely additive set
function then there is a countably additive set function Pr2 such that (E) is
violated if both Pr1 and Pr2 are probability functions. Easwaran takes it as
a given that a countably additive set function is a probability function and,
thus, he concludes from (E) that a merely finitely additive set function is not
a probability function. And he goes on to argue that (E) does not serve to
undergird complete additivity because it does not follow that if Pr1 is any
merely countably additive set function then there is a completely additive
additive set function Pr2 such that (E) is violated if both Pr1 and Pr2 are
probability functions.
The force of this line of argumentation is unclear since it is unclear what

should be included in the concept of a probability function other than a
real valued set function that satisfies some form of additivity, which form
being open to dispute. As regards personal probability one wants guidance
about what form of additivity an agent should adopt either by appeal to
prudential considerations or by appeal to constraints on rationality of belief.
Principle (E) does not provide such guidance. As applied to physical prob-
abilities, principle (E) amounts to an a priori metaphysical postulate about
what chances can be realized in nature. Here Easwaran shares Pruss’s (2012)
intuition that Pr1 and Pr2 violating (E) cannot both give possible chances
for some lottery:

[S]urely there cannot be a lottery with the same tickets as [an-
other] lottery, and yet still with every ticket being much more
likely to win (Easwaran 2013, p. 58).

Nature has a way of upsetting a prioristic metaphysics. As will be seen below,
if non-normal as well as normal quantum states are physically realizable then
both lotteries in which each of a countably infinite number of tickets has a
zero chance of winning and lotteries in which each ticket has a non-zero
chance of winning are physically possible. On the other hand, if only normal
quantum states are physically realizable then the intuition and principle (E)
are safe; but this is because the probability measures induced by these states
are completely additive, upsetting Easwaran’s goal of supporting countable
but not complete additivity.
Switching back to personal probability Easwaran opines that
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[I]f we think of the partition as defining a set of incompatible [and
exhaustive] scientific hypotheses we are uncertain about, rather
than as lottery tickets, then a violation of this principle [(E)]
would mean that an update from Pr1 to Pr2 would confirm every
alternative (Easwaran 2013, p. 58),11

which is taken to be problematic. But there is a more fundamental problem
at work here. Getting from the above Pr1 to Pr2 by updating in the form of
Bayesian conditionalization is impossible since such updating will not convert
a merely finitely additive set function to a countably additive one or vice
versa. Analogs of this problem will come up below in the context of quantum
probability.
We close by noting that while the debate over countable vs. complete

additivity is instructive, it can be an empty debate even when partitions of
the set of measurable events are uncountable. Recall that κ is a measurable
cardinal means that there is probability space (Ω,F,Pr) where card(Ω) = κ,
F = P (Ω) (the power set of Ω), and Pr({ω}) = 0 for all ω ∈ Ω. It is easy to
establish

Lemma 1. Consider a probability space (Ω,F,Pr) where F =
P (Ω). Countable additivity for Pr implies complete additivity
just in case card(Ω) is less than the least measurable cardinal.

Proof: Suppose that card(Ω) is a measurable cardinal. Then by definition
there is a countably additive Pr on P (Ω) such that Pr({ω}) = 0 for all
ω ∈ Ω. If Pr were completely additive then a contradiction would result
since 1 = Pr(Ω) = Pr(∪ω∈Ω{ω}) =

∑
ω

Pr({ω}) = 0. Conversely, suppose that

card(Ω) is less than the first measurable cardinal and that Pr is a countably
additive probabilty on P (Ω). By hypothesis Pr({ω}) = 0 cannot hold for
all ω ∈ Ω. But only a countable number of singletons can have positive
probability. Let C be the set of all ω ∈ Ω such that Pr({ω}) > 0. Then
C is a countable set such that Pr(C) > 0. If Pr(C) = 1 then intersecting
C with arbitrary subsets of Ω quickly leads to the conclusion that Pr is
completely additive. So suppose that Pr(C) < 1 and, thus, Pr(C) > 0.
Define P̂r(•) := Pr(• ∩ C)/Pr(C). Note that P̂r is a countably additive

11Italics in original. We have altered Easwaran’s notation to conform to ours.
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probability on P (Ω) and that P̂r({ω}) = 0 for all ω ∈ Ω, contradicting the
assumption that card(Ω) is less than the least measurable cardinal.12

Ulam (1930) showed that measurable cardinals are inaccessible, lying be-
yond the cardinals of the familiar Cantorian infinities. Lemma 1 will allow us
to conclude that for ordinary QM countable additivity coincides with com-
plete additivity if the dimension if the Hilbert space is not a large cardinal
(see Section 3.3). But in general the move from countable to complete ad-
ditivity relies on the non-existence of non-measurable sets. For example,
Lebesgue measure on an interval I ⊂ R cannot be completely additive since
it assigns zero to each {r}, r ∈ I. It follows from Lemma 1 that if the contin-
uum hypothesis (asserting that ℵ1 is the cardinality of reals R) is true then
Lebesgue measure cannot be extended to a measure on all subsets of I.

2.4 Summary

Even on the above cursory review of the literature one cannot help being
struck by how various and delicate are the considerations, both pro and con,
for the different forms of additivity. And it is hard to escape the feeling
that the personalist interpretation of probability does not provide enough
constraints to single out the correct form of additivity; indeed, one begins
to doubt that there is any such thing as the correct form of additivity for
personal probabilities.
Initially, discussions of additivity principles for personal probabilities

should be kept separate from discussions of additivity principles for phys-
ical probabilities since the relevant considerations are so different in the two
cases. To start with the most obvious, Nature doesn’t fear Dutch Book since
She doesn’t engage in bets, and it seems a category mistake to try to apply
the concept of rationality to Her probability assignments. Leibniz and other
philosophers have offered arguments to show that Nature must of necessity
obey a principle of continuity. But the modern attitude is that only empiri-
cal investigation can reveal whether Nature conforms to the expectations of
philosophers. This is not to say that the issue of what additivity principle
physical probabilities obey can be settled by a straightforward experimental
inquiry, a point that will richly illustrated below for quantum probabilities
(see Section 4).
Eventually, however, the discussions of additivity principles for personal

12This proof is based on Kanamori (2003, 2.2 Exercise, p. 23).
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probabilities must include reference to additivity principles for physical prob-
abilities; at least this is so if, as a number of philosophers have maintained,
a knowledge of objective chance constrains rational credence. In Section 5
we will pose but not try to settle the issue of whether these constraints can
produce an override of the arguments reviewed above for one or another form
of additivity for personal probabilities.

3 Quantum probabilities and forms of addi-
tivity

In this section we employ an approach to quantum probabilities that makes
pellucid the interconnections among additivity principles for quantum prob-
abilities, the structure of the algebra of quantum observables, and the real-
izability of quantum states.

3.1 Quantum algebras

The treatment of quantum probabilities adopted here goes through the al-
gebraic approach to quantum theory.13 In this approach a quantum system
is characterized by an algebra of observables and a set of physically possible
states on the algebra. For present purposes the algebra is assumed to be a
von Neumann algebra N acting on a Hilbert space H, which may be separa-
ble or non-separable.14 By definition, N is an algebra of bounded operators,
closed in the weak operator topology15 or, equivalently (by von Neumann’s
double commutant theorem), N = N′′ := (N′)′, where X′ denotes the set of
bounded operators that commute with X.
A projection E ∈ N is a self-adjoint element such that E2 = E. Projec-

tions E1 and E2 are said to be orthogonal just in case E1E2 = E2E1 = 0. If
N acts on a separable (respectively, non-separable) H then N is σ-finite (re-
spectively σ-non-finite), i.e. any family of mutually orthogonal projections
from N has a countable number of members (respectively, some families of

13The relevant mathematical background is to be found in Bratteli and Robinson (1987)
and Kadison and Ringrose (1991).
14A separable (respectively, non-separable) H has a countable (respectively, non-

countable) basis.
15A sequence of bounded operators An on H converges to A in the weak operator

topology just in case |〈ψ|An −A|φ〉 | → 0 as n→∞ for any |φ〉, |ψ〉 ∈ H.
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mutually orthogonal projectors have an uncountable number of members).
The collection of projections P(N) of a von Neumann N has a natural lattice
structure. First, P(N) is equipped with a partial order whereby E1 ≤ E2

iff Range(E1) ⊆ Range(E2); in this case E1 is said to be a subprojection
of E2. The meet E1 ∧ E2 and join E1 ∨ E2 are defined respectively the
greatest lower bound and the least upper bound, and they are respectively
the projections corresponding to Range(E1)∩Range(E2) and the closure of
Range(E1) ∪ Range(E2). The above definition of the orthogonality of E1

and E2 is equivalent to requiring E1 ≤ E⊥2 , where E
⊥ := I − E. When

E1 and E2 are orthogonal, E1 ∧ E2 = E1E2 = E2E1 = E2 ∧ E1 = 0 and
E1∨E2 = E1 +E2. The elements of the projection lattice P(N) are variously
referred to as quantum events, yes-no questions, or quantum propositions.
Type I algebras have minimal projections;16 Type II algebras have no

minimal projections but do have finite dimensional projections;17;while Type
III algebras have only infinite dimensional projections. In ordinary non-
relativistic QM sans superselection rules it is typically assumed that N is
the Type I factor B(H), the von Neumann algebra of all bounded operators
acting on H.18 When superselection rules are present in ordinary QM N is
also Type I but a non-factor. In relativistic QFT much more exotic Type III
algebras are encountered, an example of which will be given in Section 4.3.

3.2 Quantum states

A quantum state ω on N is a normed positive linear functional mapping
elements of N to C. There are many way to classify quantum states, but for
our purposes perhaps the most important distinction is that between normal
and non-normal states. Important features of normal states are given by:

Theorem 1. The following conditions are equivalent for a state ω
on a von Neumann algebra N acting on H:

16Minimal projections are those whose only subprojections are themselves and the null
projection. Minimal projections are atoms (cf. f.n. 5) in the projection lattice.
17Projections E2 and E1 are equivalent just in case there’s a partial isometry between

their ranges; a projection E1 is infinite dimensional if and only if it has a proper subpro-
jection to which it is equivalent.
18A factor algebra is one whose intersection with its own commutant consists of multiples

of the identity.
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(i) ω is completely additive, i.e. ω(
∑
a

Ea) =
∑
a

ω(Ea) for any

family {Ea} of mutually orthogonal projections in N,19

(ii) there is a density operator %, i.e., a trace class operator on
H with Tr(%) = 1, such that ω(A) = Tr(%A) for all A ∈ N,

(iii) ω =
∑∞

n=1 ω|ψn〉, where {|ψn〉} is an orthogonal family of
vectors in H such that

∞∑
n=1

|〈ψn|ψn〉| = 1, and ω|ψn〉 is the (not

necessarily normed) linear functional on N defined by ω|ψn〉(A) =
〈ψn|A|ψn〉 for all A ∈ N

(iv) ω is weak-operator continuous on the unit ball of N,20

(v) ω is ultra-weakly continuous on N.21

When the linear functionals {ω|ψn〉} appearing in condition (iii) are normed,
they qualify as vector states. In general, a vector state ω is a state such that
there is a vector |ψ〉 ∈ H with ω(A) = 〈ψ|A|ψ〉 for all A ∈ N; such states
are normal.22 A mixed or impure state ω is a state that admits a non-trivial
decomposition into a convex linear combination of states, i.e. there are dis-
tinct states ϕ1 and ϕ2 such that ω = λ1ϕ1 + λ2ϕ2 with 0 ≤ λ1, λ2 ≤ 1
and λ1 + λ2 = 1. A non-mixed state is said to be pure. In the case where
N = B(H) the pure states coincide with the vector states, but when supers-
election rules are present the coincidence is broken since vector states can be
impure. For Type III algebras all normal states are vector states, but there
are no normal pure states.

19The sum
∑
a

Ea is understood in terms of convergence in the weak-operator topology.

20The unit ball of N consists of all A ∈ N such that ||A|| ≤ 1.
21A sequence of bounded operators An on H converges to A in the ultra-weak topology

just in case |%(An − A)| → 0 as n → ∞ for all density operators on H. Convergence in
the weak operator topology implies convergence in the ultra-weak topology. For proofs of
the equivalence of (i)-(v) see Kadison and Ringrose (1991, Vol. 2, Theorem 7.1.12) and
Bratteli and Robinson (1987, Theorem 2.4.21).
22Of course, vectors belonging to the same ray generate the same state (= expectation

value functional).
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3.3 From quantum states to quantum probabilities;
different forms of additivity for quantum proba-
bilities

Every quantum state ω on a von Neumann algebraN generates a function Prω

on the lattice P(N) of quantum propositions: Prω(E) := ω(E) for E ∈ P(N).
Such a Prω deserves to be called a quantum probability function because is
takes values in the non-negative reals, Prω(I) = 1 (where I is the identity
operator), and Prω(E1 + E2) = Prω(E1) + Prω(E2) for orthogonal E1, E2 ∈
P(N). In short, Prω satisfies the quantum analogs of the axioms (A1)-(A3)
for classical probability. Quantum probability theory can be construed as
the study of probability functions on P(N) (see Hamhalter 2003).
The different forms of additivity for quantum probabilities arise from dif-

ferent choices for algebras and for states on the algebras. If N acts on a
finite dimensional H then all states are normal and there is no distinction
between finite, countable and complete additivity. If N acts on an infinite
dimensional but separable H then there is no distinction between countable
and complete additivity since P(N) is σ-finite, but the distinction between
finite and countable additivity arises when N admits a countable infinity of
of mutually orthogonal projections. Then normal states induce countably (=
completely) additive probabilities whereas non-normal states induce merely
finitely additive probabilities. Most of the applications of the Hilbert space
apparatus to physical systems, including the systems studied in relativistic
QFT, use separable Hilbert spaces. But there are conceptually possible (if
idealized) systems whose descriptions require a non-separable H, e.g. a sys-
tem whose Hilbert space is an infinite tensor product of spaces of dimension
2 or greater, as would arise in the description of a spin chain with a count-
able infinity of spin sites. For a single non-relativistic particle moving in
one dimension, a non-separable Hilbert space representation of the CCRs is
required to accommodate a continuum of point-valued position eigenstates
(Halvorson 2001). Non-separable Hilbert spaces also crop up in the more
exotic (and arguably less idealized!) setting of quantum gravity: they host
the polymer representations of Loop Quantum Gravity, useful for taking
semi-classical limits (Ashetekhar et al. 2003). Like the position represen-
tation Halvorson discusses, polymer representations are set in non-separable
Hilbert spaces with the dimensionality of the continuum.
However, to get an example in ordinary QM where there is a distinction
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between countably additive and completely additive quantum probabilities
requires a non-separable Hilbert space with an outlandishly large dimension.
Suppose, as is customary in ordinary non-relativistic QM, that N = B(H).
Whether separable or not, H has an orthonormal basis. Elements of the
projection lattice P(B(H)) correspond one-one to closed subspaces of H,
which in turn correspond one-one to (the closure of spans of) subsets of an
orthonormal basis of H. Thus, a quantum probability function on P(B(H))
corresponds to a probability measure on the power set of an orthonormal
basis, and Lemma 1 can be adapted to conclude that

Lemma 2 (Eilers and Horst 1975; Drish 1979). Every countably
additive probability measure on P(B(H)) is completely additive
if and only if dim(H) is less than the first measurable cardinal.

So except in the fevered imagination of mathematical physicists who dream
of applications requiring a Hilbert space of outlandishly large dimension, the
discussion of additivity requirements for probabilities in ordinary QM boils
down to finite vs. countable additivity.
Note, however, that Lemma 2 does not generalize to the case where N is

Type III as, for example, with the local algebras encountered in relativistic
QFT. The projections in such an N correspond to infinite dimensional sub-
spaces of H and, thus, a probability measure on P(N) does not determine a
probability measure on the all subsets of an orthonormal basis of H.

3.4 From quantum probabilities to quantum states

As noted already, quantum states generate quantum probability functions.
But are there quantum probabilities that are not generated by quantum
states? The generalized Gleason theorem shows that, under mild technical
restrictions, the answer is No.

Theorem 2. Let N be a von Neumann algebra acting on a Hilbert
space H, separable or non-separable. Suppose that N does not
contain any direct summands of Type I2. Then for any quantum
probability function Pr on P(N) there is a unique extension of
Pr to a quantum state ωPr on N. Further, if Pr is completely
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additive (respectively, merely finitely additive or merely count-
ably additive) then ωPr is a normal (respectively, non-normal)
quantum state.23

In the case of N = B(H) the technical restriction in Theorem 2 amounts
to the requirement that dim(H) ≥ 3.24 Of course, when H is separable the
requirement of complete additivity reduces to countable additivity; and in
view of Lemma 2, this is also the case even when H is non-separable but
dim(H) is not a measurable cardinal and N = B(H).
In sum, technical restriction aside, quantum probability functions and

quantum states are in one-one correspondence. Our discussion below is
largely based on the ansatz that quantum states correspond to objective fea-
tures of quantum systems. It follows that the probability function a quantum
state induces deserves to be called a physical probability, and this is so in-
dependently of the fraught issue of whether various no-go results on hidden
variable interpretations succeed in showing that quantum probabilities are
irreducible in the sense of not arising from the ignorance of values of vari-
ables neglected in the conventional quantum description. Thus, under the
ansatz, the question of what form of additivity these quantum physical prob-
abilities obey reduces to the question of what quantum states are physically
realizable.
Before proceeding to this question, however, we note for the record that

our ansatz is vehemently rejected by the quantum Bayesians (QBians as they
style themselves) who seek to apply de Finetti’s personalist interpretation of
probabilities to quantum probabilities.25 QBism is able to get a foothold
because the one-one correspondence between probability functions on P(N)

23See Hamhalter (2003) and Maeda (1990) detailed treatments of this crucial theorem.
A Type I2 summand has the form E1+E2 = I where E1 and E2 are orthogonal projections.
24The original version of the Gleason theorem is equivalent to the statement:

Let H be a separable Hilbert space with dim(H) > 2 and let Pr be a quan-
tum probability function on P(B(H)). Then there is a unique extension of
Pr to a quantum state ωPr on B(H). Further, if Pr is countably additive
(respectively, merely finitely additive) then ωPr is a normal (respectively,
non-normal) quantum state.

The real work in proving Theorem 2 lies in the generalization to non-Type I algebras.
25A presentation of QBism intended for a philosophy of science audience is to be found

in Caves, Fuchs, and Schack (2007).
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and quantum states onN allows quantum states to be construed as devices for
representing quantum probability functions. And if, per QBism, a probability
function on P(N) is construed as the credence function of a Bayesian agent,
quantum states are reduced to the status of book keeping devices for tracking
personal probabilities. The problems and prospects for QBism is a fascinating
and complex topic that cannot be pursued here.26

Finally, we note that in quantum probability theory there is a coincidence
between two senses of “measurable event,” i.e. projectors acting on the
Hilbert spaceH that are assigned a probability vs. projectors that correspond
to genuine observables and, thus, can in principle be measured by a physical
experiment that returns a yes or no answer. This coincidence provides an
explanation of probabilistic non-measurability, viz. some mathematically
possible events (projectors on the Hilbert space on which the observable
algebra N acts) do not deserve to be assigned a probability because they
are not in N. When N = B(H) the projection lattice P(N) contains every
projector and, thus, probability is assigned to every mathematically possible
event. When N is Type III the projection lattice P(N) contains only infinite
dimensional projectors and, thus, events corresponding to finite dimensional
projectors receive no probability.

4 The realizability of quantum states

In this section we assess considerations pro and con for the widely held notion
that only normal quantum states are physically realizable. In view of the
importance of the issue, not just for the issue of additivity principles but for
the foundations of QM in general, there is surprisingly much presumption
and surprisingly little convincing argumentation in the literature. In what
follows we point to the presumptions and try to sharpen the argumentation.

4.1 Presupposition and grumbling

Virtually all of the QM textbooks used to train physics students at both
the undergraduate and graduate levels presuppose that quantum states are
normal; for they presuppose that quantum probabilities are to be calculated
via the “Born rule”(aka trace prescription), i.e. there is a density operator

26For critical reviews of QBism, see Timpson (2008), Bacciagaluppi (2013), and Earman
(2016a).
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% such that the probability of E ∈ P(N) is Tr(E%), which is to say that
the state defined by ω%(•) := Tr(•%) is a normal state in conformity with
condition (ii) of Theorem 1.
Furthermore, central topics in quantum theory are pursued under this

presupposition, and many core theorems are not valid without it. A good
example is quantum entanglement, a topic which is crucial to both quan-
tum computing and quantum information theory. Consider a composite
system algebra N12 generated by subsystem algebras N1 and N2 in the
sense that N12 = N1 ∨ N2 (the smallest von Neumann algebra contain-
ing both N1 and N2). Restrict attention to cases where N1 and N2 are
mutually commuting, a minimal condition for the subsystems to be consid-
ered independent subsystems.27 A composite system state ω12 on N12 is said
to be entangled over N1 and N2 if and only if it is not a product state,
i.e. there are no states ω1 and ω2 on N1 and N2 respectively such that
ω12(E1E2) = ω12(E2E1) = ω1(E1)ω2(E2) for all E1 ∈ N1 and E2 ∈ N2.
Of course, even in the case of classical (i.e. abelian) subsystem algebras
entanglement can occur since it amounts to no more than the existence of
correlations between the subsystem observables. Genuine quantum entan-
glement, however, requires more than mere correlation; it requires that the
composite system state ω12 cannot be approximated by mixtures (positive
linear combinations) of product states; for otherwise the entanglement could
result from using a classical randomizing device to set the mixture weights,
in which case the correlations between the subsystems would be due entirely
to our ignorance of which product state the randomizer produced.
But the crucial result linking quantum entanglement to the non-abelian

character of quantum observables requires the use of normal states. Con-
sider the case where the systems are independent not only in the sense that
the subsystem algebras N1 and N2 are mutually commuting but also in the
stronger sense that they generate a tensor product composite algebra, i.e.
N1 ∨N2 ' N1⊗N2.28 In the case of ordinary QM this condition is automat-
ically satisfied since B(H1) ∨B(H2) ' B(H1)⊗B(H2) ' B(H1)⊗B(H2).

Theorem 3 (Raggio 1988). Let N1 and N2 be mutually commut-

27By standard quantum doctrine the mutual commutativity of the subsystem algebras
means that pairs of observables, one from each subsystem, are co-measurable.
28The overbar indicates the von Neumann tensor product, that is, the von Neumann

algebra generated by taking the weak closure of N1⊗N2. See Kadison and Ringrose 1991,
Vol. 2, §11.2.
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ing von Neumann algebras acting on a common Hilbert space
and suppose that N1∨ N2 = N1⊗N2. Then the following two
conditions are equivalent:

(i)N1∨N2 can display quantum entanglement in the sense that it
admits normal states ω12 that cannot be approximated by mix-
tures of normal product states; that is, ω12 does not lie in the
norm closure29 of the hull of convex linear combinations of nor-
mal product states,

(ii) At least one of the subsystem algebras N1 and N2 is non-
abelian.

This result, which relies on using normal states to define quantum entangle-
ment, makes clear why quantum entanglement is a new phenomenon that
arises in the transition from the classical to the quantum understood as the
transition from abelian to non-abelian algebras of observables.
When it is not required that the system algebra has a tensor product

structure, a striking example of the difference between normal and non-
normal states makes for entanglement is given the algebraic treatment of the
Klein-Gordon field. The algebraic version of relativistic QFT assumes that
there is a net O 7→ N(O) of local von Neumann algebras N(O) associated
with open bounded regions O of Minkowski spacetimeM and that this net
satisfies the isotony property: ifO ⊂O′ thenN(O) ⊂ N(O′). The quasi-local
global algebraM is the von Neumann algebra generated by the local algebras
N(O) as O ranges over all of the open bounded regions ofM. Now focus on
the algebras N(OL) and N(OR) associated respectively with the interiors OL
and OR of the left and right Rindler wedge regions of Minkowski spacetime.30
Since OL and OR are relatively spacelike, the requirement of micro-causality
(which is satisfied by the Klein-Gordon field) entails that N(OL) and N(OR)
commute. It is a fact that these subsystems are intrinsically entangled in
the sense that every normal state on N(OL) ∨N(OR) is quantum entangled
over N(OL) and N(OR) and, as a consequence, N(OL)∨N(OR) � NL⊗ NR

(see Buchholz 1974). But there are plenty of non-normal product states on
N(OL) ∨N(OR); but, as noted, these states are generally ignored.

29The set of normal states is closed in the norm topology.
30Let (x, y, z, t) be an inertial coordinate system for Minkowski spacetime. Then the

right Rindler wedge with vertex at the origin consists of those points∞ > x > 0, x2− t2 >
0. Reflecting about the origin gives the left Rindler wedge.
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Occasionally there are grumblings in the literature of mathematical physics
and philosophy to the effect that the standard practice is too hidebound and
that non-normal states should be considered as a means of understanding
some puzzling features of QM. For example, Srinvas (1980) argues that non-
normal states are needed to define the joint probabilities associated with
successive measurements of quantum observables with continuous spectra.
Relatedly, Halvorson (2001) considers the use of non-normal states as a means
of assigning sharp values to the position of a particle and, thus, as providing
a basis for interpreting the modulus square |ψ(q)|2 of the wave function (in
the usual L2 realization) of a spinless particle as the probability density that
the particle has exact position q. Non-normal states also provide a means
to overcome no-go results on the existence of conditional expectations for
normal states such as that of Takesaki (1972) showing that a faithful normal
state ω on a von Neumann algebra N admits a conditional expectation with
respect to a subalgebraM ⊂ N just in caseM is invariant under the modular
automorphism group associated with ω.31

But neither the presuppositions of standard practice nor the desire to
overcome perceived conundra in QM constitute arguments, one way or the
other, as to why only normal states should be deemed to be physically real-
izable and, thus, as to why quantum probabilities are completely additive.

4.2 Some arguments for normality

For QBians, for whom quantum states are merely devices for representing
credence functions of Bayesian agents, arguments for normality of states
would have to take the form of the arguments reviewed in Section 2 for the
countable or complete additivity of personal probabilities. It is unclear to us,
however, how some of the considerations developed in the context of classical
probability carry over to quantum probability. For example, considerations
of conglomerability depend on the fact that any classical probability func-
tion can be extended to a full conditional probability function. We do not
know whether this fact has an analog for quantum probabilities in the sense
that any additive real valued function on a the projection lattice P(N) of a
non-abelian von Neumann algebra N has an extension to a full conditional

31A faithful state ω on N is such that ω(A) = 0 for A ∈ N implies A = 0. In the
classical case where N is abelian the modular automorphism group is trivial so conditional
expectations always exist. Treatments of Tomita-Takesaki modular theory can be found
in Kadison and Ringrose (1991, Vol. 2) and Bratteli and Robinson (1987).

24



probability.32 While there are a number of intriguing issues to be investigated
in the attempt to give a personalist interpretation of quantum probabilities,
we will not pursue them here. We return to thinking of quantum states as
corresponding to objective features of quantum systems and as being onto-
logically prior to the probabilities they induce. And we search for arguments
to the effect that physically realizable states should be normal.
Von Neumann algebras are closed in the weak operator topology and,

thus, in the ultra-weak topology. So by Theorem 1 if a state ω on N is non-
normal there is a sequence of elements An in the unit ball of N (respectively,
N) that converge in the weak operator topology (respectively, the ultra-weak
topology) to an element A of the unit ball of N (respectively, in N) such
that ω(An) does not converge to ω(A). This is awkward, but the awkward-
ness does not provide an argument for normality unless accompanied by the
premise that Nature is never awkward.
A possible argument for continuity of quantum states and, thus, for com-

plete additivity of quantum probabilities, would start from the observation
that there is a canonical procedure, called the GNS construction, by which
a non-normal/non-continuous state ω for a von Neumann algebra N acting
on H can be extended to a normal/continuous state ω̃ on a larger von Neu-
mann algebra Ñ ⊃ N acting on a larger H̃ ⊃ H.33 Thus, if the self-adjoint
elements of Ñ that are not also elements of N have physical significance, it
can be argued that the failure normality/continuity of ω is due to focusing
too narrowly on a proper subset of all the genuine observables. But there is
no a priori guarantee that the GNS construction always lends itself to this
interpretation; the evaluation has to be made on a case-by-case basis.
Reflection on such examples and the possible uses for non-normal states

mentioned in the preceding subsection together lend plausibility to Ruetsche’s
(2011ab) conclusion that a decision on which states to count as physically
realizable cannot be made in isolation of from considerations of what phe-
nomena are to be modeled, what explanations are to be sustained, and what
lawlike relations are deemed to be important. And such considerations are
sensitive to the theoretical, interpretative, and pragmatic contexts in which
they arise. Nevertheless, we will attempt below a kind of transcendental ar-
gument for normality. But before turning to this ambitious project we note

32Of course, to even formulate a precise version of this question a quantum analog of
classical conditionalization needs to be specified. This issue will be addressed below.
33See Kadison and Ringrose (1991, Vol. 1, Sec. 4.5) for the GNS construction.
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that even if there is no effective global argument for normality of states, one
may still hope to find persuasive arguments in local, constrained contexts.
We give an example from algebraic QFT.

4.3 Local normality of states in relativistic QFT

Recall from Section 4.1 the net O 7→ N(O) of local von Neumann algebras
N(O) associated with open bounded regions O of Minkowski spacetimeM
and the quasi-local global algebra M generated by the N(O) as O ranges
over all of the open bounded regions of M. Since Minkowski spacetime is
based on Hausdorff manifold, for any spacetime point p ∈ M there is a
sequence {On}∞n=1 of open regions such that On+1 ⊂ On for all n ∈ N and
∩∞n=1On = {p}. The property of local definiteness is designed to capture the
notion that there are no observables “at a point”so that physically realizable
states become indistinguishable in suffi ciently small regions: technically, the
requirement is that for any physically realizable states ω and ϕ onM, ||(ω−
ϕ)|N(On)|| → 0 as n→∞ (see Haag 1992, p. 131). The only other assumption
needed is the unobjectionable posit that the physically realizable states onM
contain at least one normal state ϕ. It follows that all physically realizable
states ω are locally normal, i.e. for any p ∈ M there is a neighborhood Õ
of p such that ω|N(Õ) is normal. To see this, consider a sequence {On}∞n=1

descending to p. By local definiteness there must be a suffi ciently large n0 ∈ N
such that ||(ω−ϕ)|N(On0 )||< 2. This implies that ω|N(On0 ) and ϕ|N(On0 ) belong
to the same folium, and since ϕ|N(On0 ) is normal so is ω|N(On0 ). To complete

the proof set Õ = On0 .
This result is modest, and even such as it is its effectiveness turns on

the plausibility of the property of local definiteness. Given that non-normal
states have been promoted as a way to make sense of a particle being strictly
located at a point (Halvorson 2001), we might expect at least some propo-
nents of non-normal states to resist the demand for local definiteness. Be
that as it may, the result nevertheless serves as a useful illustration of how
rigorous arguments for normality can be constructed in a piecemeal way.

4.4 A more ambitious argument for normality

We turn from piecemeal arguments to the more ambitious attempt to show
that confining physically realizability of states to normal states is a precondi-
tion for state preparation; or more precisely, a precondition for state prepa-
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ration that is describable within QM itself, as must be the case if QM is a
complete theory.34 We confine attention to ordinary QM where the algebra
of observables is B(H), and we take it for granted that experimentalists can
and do succeed in preparing normal pure states on B(H), e.g. eigenstates
of spin or energy. The first part of the argument shows that if non-normal
states are physically realizable then state preparation is not generally possi-
ble. The second part of the argument shows that if only normal states are
physically realizable then preparation of pure states is not only possible but
is also explicable within the language of the theory.
First part : Suppose that a non-normal state ω is realized. There are

two conceivable routes from ω to some normal state ϕ the experimentalist
wishes to prepare; but both routes are blocked. One route is via Schrödinger
evolution, as described by a strongly continuous one-parameter unitary group
Ut = exp(−iHt), t ∈ R, where H is the Hamiltonian of the system.35 In the
algebraic setting, Schrödinger evolution results in a change of state from the
initial state ω at t = 0 to a new state ωt at t > 0 given by ω 7→ ωt(•) :=
ω(Ut • U−1

t ). But since Ut is an automorphism of the algebra observables, if
ω is non-normal (respectively, normal) then so is ωt(•) for all t– whatever
the Hamiltonian, the system can evolve undisturbed as long as pleased but
the state does not change its colors.
The second possible route from a non-normal to a normal state invokes

the von Neumann projection postulate, which in the algebraic setting comes
to this: suppose that some projectorE ∈ B(H) is measured and the measure-
ment yields a positive response; then the pre-measurement state ω becomes
the post-measurement state ωE(•) := ω(E • E)/ω(E). This assumes that
ω(E) 6= 0; but if ω(E) = 0 a positive result of the measurement of E should
not have been obtained. To complete the argument all that is needed is the
fact that if ω is a non-normal (respectively, normal) state then so is ωE(•)
for any projector E such that ω(E) 6= 0.
Second part : Now suppose that only normal states are physically realiz-

able. To describe in the formalism of QM how the preparation of a normal
pure state place consider again such a target state ϕ. The support pro-
jector Sϕ for this state is the orthogonal complement of the union of all
E ∈ P(B(H)) such that ϕ(E) = 0. The support projector Sϕ for ϕ is unique
(see Kadison and Ringrose 1991, p. 468), and it serves as a filter for ϕ within

34Ruetsche 2011a develops a similar argument, but takes its force to be piecemeal.
35This assumes that the Hamiltonian operator H is essentially self-adjoint.
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the class of all normal states (pure or not); that is, for any normal state ω
(pure or mixed) such that ω(Sϕ) 6= 0, ωSϕ(•) := ω(Sϕ • Sϕ)/ω(Sϕ) = ϕ(•).
Thus, a positive outcome of a measurement of Sϕ converts, per the von Neu-
mann projection postulate, any pre-measurement state ω such that ω(Sϕ) 6= 0
to the target state ϕ. Note that this argument does not extend to normal
impure states since such states do not have filters (see Ruetsche and Earman
2011).
We brand the argument “transcendental”because it presents normality

of quantum states as a condition on the very possibility of a central sort of
quantum experience: the experience of state preparation. Those uncomfort-
able with the branding can move the argument into a less continental register:
given the argument, our long history of success at state preparation is good
inductive evidence that non-normal states, which would derail our attempts
at state preparation, don’t occur in nature. Good but not dispositive: our
long history of success at state preparation is not a history of perfect success.
A fan of non-normal states could well observer that, so long as most labora-
tory systems occupy normal states, our usual story about state preparation
applies most of the time; and since detectors are never 100% effi cient, that
is all the success we need to make sense of laboratory practice.36

Much of the formalism of this transcendental argument against the re-
alizability of non-normal states applies not just to the case of N = B(H)
but to more general von Neumann algebras. However, Type II and Type III
algebras do not admit any normal pure states, and impure states do not have
filters in these algebras. This raises issues about state preparation in QFT
where the local algebras associated with open bounded regions of spacetime
are generically Type III, but we will not attempt to deal with that issue here.

4.5 Can there be an infinite fair lottery?

In this subsection we discuss the implications of the normality of realizable
quantum states for an issue that has received a fair amount of attention
in the literature; namely, can there be a lottery that has an infinite num-
ber of mutually exclusive outcomes, each of which is– in some appropriate
sense– equally probable?37 Different interpretations of what counts as the

36We are grateful to Gordon Belot for raising this point.
37One might want to require more of an infinite fair lottery. For example, in a lottery

that sells tickets numbered 1, 2, 3, ..., one might want to require that the probability is
distributed “uniformly” over the natural numbers. For various interpretations of this
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appropriate sense of probability lead to different senses of the question.
Before proceeding further it is necessary to correct a misimpression which

is abroad in the literature. It is often said that, regardless of the interpre-
tation of probability, countable additivity makes an infinite fair lottery im-
possible. This is so if the set of mutually exclusive and exhaustive lottery
outcomes is countable; but when the set of mutually exclusive and exhaus-
tive lottery outcomes is uncountable, a countably additive but not completely
additive probability function can assign equal probability– namely, zero– to
each of the outcomes (think of Lebesgue measure on the real line). However,
as noted above (Lemma 2), there is no gap between countable and complete
additivity for the probabilities of ordinary QM when the dimension of the
Hilbert space is less than the first measurable cardinal.
The de Finetti school would relativize the question at issue to rational

agents and would take fair-for-an-agent to mean that the agent assigns equal
degrees of belief to each of the lottery’s infinite number of outcomes. De
Finetti’s advocacy of finite additivity was, in part, due to his desire to give
a positive answer to the question in the case where the outcomes of the
lottery are countable and, thus, countable additivity precludes fairness. As
discussed above, the diffi culty for de Finetti’s answer to our question is that
various considerations militate in favor of countable additivity as a necessary
condition for rationality of degrees of belief.
Here we focus on another interpretation of the question which assumes,

contra de Finetti, that there are objective chances; namely, Is it physically
possible to implement a lottery with an infinite number of mutually exclu-
sive outcomes in such a way that each and every outcome has the same
objective chance of occurring? We take physical possibility to be judged by
compatibility with fundamental physics. If that physics is classical physics
then intuition might suggest a positive answer, at least if some idealizations
are permitted. Consider, for example, an infinitely sharp dart thrown at
a region of space isomorphic to the unit interval of the real line. Intuition
would suggest that nothing prevents the dart being thrown “at random”so
that the probability of hitting any given point in the interval is zero, while
the probability of hitting a finite subinterval is proportional to the length of
the interval, as in Lebesgue measure. But what is wanted is not intuition
mongering but demonstration. If the fundamental physics is taken to be QM

notion, see Kadane and O’Hagen (1995). For present purposes, however, it is enough to
focus on the implication that fairness entails a failure of complete additivity.
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then we have makings of a demonstration of a no-go result. If normal states
are the only physically realizable quantum states then fair infinite quantum
lotteries are precluded since normal states induce completely additive prob-
abilities. And the discussion of the preceding subsections indicates that the
weight of the evidence lies is in favor of affi rming the antecedent and, thus,
in a negative answer to the question at issue. But, as noted, the case for
affi rming the antecedent is not air tight.
With remaining doubt set to the side, another way to state the conclusion

is that Quantum Mother Nature always plays favorites in cases of an infinite
number of mutually exclusive outcomes; and this favoritism manifests itself
not just in hypothetical lotteries but in practical physical applications. Con-
sider, for example, a system with a purely discrete energy spectrum that is
bounded from below but not from above. Normal quantum states necessarily
favor lower energy levels and disfavor the far upper reaches of the spectrum:
for any normal state and any ε > 0 there is a finite N such that the prob-
ability is at least 1 − ε that the energy of the system lies below the Nth
eigenlevel. Or in the case of a particle moving in infinite space, normality
favors localization within a finite region over dispersion towards spatial infin-
ity. Normality of quantum states thus contributes part of the explanation of
some of the general features of the world we observe around us, and without
it the world could have a different appearance from what we have grown to
expect.
Other avenues beckon for exploring the question at issue. For example,

by allowing probabilities to take on infinitesimal values some commentators
claim that there can be fair infinite lotteries in which each of the outcomes
has the same non-zero value, albeit a value less than any finite number (see
Wenmachers and Horsten 2013); but such a proposal is subject to various dif-
ficulties (see Pruss 2012, 2014). Other commentators propose to explore the
possibility of building a lottery machine delivering equal real-valued chances
for an infinity of outcomes by expanding the space of possibilities beyond
those allowed by standard QM (see Norton 2016). Such explorations can be
valuable if they are conducted with an eye to illuminating the foundations
of QM; but otherwise they run the danger of degenerating into idle specula-
tion about distant possible worlds. Rather than pursuing such speculation it
seems to us more productive to try to come to grips with the facts that our
world is quantum mechanical and that, therefore, life is a series of quantum
lotteries which are never fair.
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4.6 Summary

The presumption that only normal states are physically realizable, which
seems to be baked into the standard practice of QM, is more than mere
presumption since it can be motivated in various ways, both local and global.
But since a knock-down argument for normality is lacking, the possibility that
non-normal states are realized for actual quantum systems has to be kept in
mind. We emphasize that, apart from the light it casts on the foundations
of quantum theory, there are at least two other reasons to be interested in
the issue of the realizability of non-normal quantum states. First, if such
states are realizable then there is an interesting sense in which there can be
an infinite fair lottery, giving equal objective chance (of zero) to each of an
infinite number of outcomes. Second, as we will point out in the next section,
if non-normal states are realizable then rational agents would find themselves
in an embarrassing predicament.

5 Implications for rational credence for quan-
tum events

We now want to examine the implications of additivity principles satisfied by
quantum probabilities for rational credence functions defined over quantum
events. One avenue for establishing a connection goes through David Lewis’
Principal Principle (PP), which is a purported principle of rationality linking
objective chance and rational credence (see Lewis 1980). Another avenue
might appeal to those of the de Finetti school who want to be able to speak
with the vulgar by treating so-called objective chance as objectified credence.
Still a third avenue relies on the empirical success of QM.

5.1 Lewis’Principal Principle for quantum probabili-
ties

The discussion of PP in the philosophical literature focuses mainly on classi-
cal probabilities, and it typically assumes that rational agents adopt credence
functions that satisfy the standard Kolmogorov probability axioms (A1)-(A3)
and also that rational agents update their credence by classical Bayesian con-
ditionalization. The later assumption means that if the agent starts with an
initial credence function Cr and then has a learning experience, the content
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of which is that a proposition E is learned for certain, then the agent updates
her credence function to Cr′(•) := Cr(•/E). The idea behind Lewis’PP was
that if objective chance operates in the world then there is an additional con-
straint that rational credence functions must satisfy: roughly expressed, if a
rational agent learns what the objective chance of an event is, then updating
her credence function on that knowledge should produce a credence in said
event that is equal to its objective chance. Disputes abound on how to give
precise expression to PP; we will not attempt to review this literature here
since the disputes are largely irrelevant to the main points we wish to make.38

If a suitable version of PP could be formulated for quantum probabilities
and if such a principle could be justified as a principle of rationality then our
(tentative) conclusion that quantum chances are completely additive would
entail that rational credence functions on the projection lattice of quantum
propositions must be completely additive. However, no satisfactory justifi-
cation exists for PP as an additional principle of rationality in the classical
probability setting, and there is no reason to think that one will emerge
in the quantum setting. The only systematic attempt at a justification for
PP in the classical setting is due to Pettigrew (2012). His argument relies
on an ingenious reworking of de Finetti’s scoring rule argument designed to
show that rational degrees of belief should satisfy the Kolmogorov axioms
of probability (A1)-(A3) (recall Section 2.1). Pettigrew gives a dominance
argument for PP-like principles using a class of scoring rules that measure
how well credence functions track objective chance. Needless to say, those
who like de Finetti reject the very notion of objective chance would be com-
pletely unmoved; and those who accept the notion of objective chance but
who harbor initial doubts about the normative force of Lewis’PP are not apt
to accept that tracking objective chance serves as a criterion of rationality.
An alternative route to justification uses the idea that rational credence

must be construed as an expression of epistemic uncertainly about objective
chance and, therefore, when the uncertainty is resolved, rational credence
necessarily aligns with chance. But this line of justification lacks polemical
force for the same reasons as before. More promising is the idea that ra-
tional credence can be represented as if it were an expression of epistemic
uncertainty about objective chance, and that is still suffi cient to ensure that

38For a sampling of the literature see Arntzenius and Hall (2003); Bigelow, Collins,
and Pargeter (1993); Black (1998); Haddock (2011); Hall (1994, 2004); Ismael (2008);
Meacham (2010); Pettigrew (2012); Roberts (2001, 2013); Strevens (1995); Thau (1994);
Vranus (2002, 2004).
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rational credence aligns with chance when the uncertainty is resolved. But
the implementation of this idea requires the proof of representation theorems,
which do not come for free but require substantive assumptions. Quantum
theory provides these assumptions; but they lead to a point of view on PP-
like principles that is quite different from that intended by Lewis and most
of the commentators.
To simplify the discussion we will confine attention to ordinary QM where

N = B(H), and relying on the discussion of Section 4 we will assume that
that normal pure states on B(H) induce probabilities on P(B(H)) that
qualify as objective chances. To proceed further, two threshold issues need
to be addressed. The first is what updating rule to adopt for probability
functions on the lattice P(B(H)) of quantum propositions. The widely ac-
cepted answer is that classical Bayesian conditionalization is replaced by
Lüders conditionalization, whereby for F ∈ P(B(H)) with Pr(F ) 6= 0,
Pr(•) 7→ Pr(•//F ) := Pr(F • F )/Pr(F ). The adoption of Lüders rule is
justified by the fact that, like its classical counterpart, it is the unique quan-
tum conditionalization rule with a desirable property; namely, if Pr(F ) 6= 0
then Pr(•//F ) is the unique probability on P(B(H)) such that for any E ∈
P(B(H)), if E ≤ F then Pr(E//F ) = Pr(E)/Pr(F ), i.e. Pr(•//F ) is the
renormalization of Pr(•) to Pr′(•) where Pr′(F ) = 1 (see Bub 1977). The
second issue is what element of P(B(H)) (if any) can be construed as assert-
ing that the chances are those induced on P(B(H)) by the quantum state
ϕ? Again relying on the discussion of Section 4 we will presume that when
ϕ is a normal pure state the support projector Sϕ of ϕ fulfills the role of the
desired proposition.
With these preliminaries in hand, it is easy to prove a result representing

quantum probabilities as mixtures of quantum chance functions (see Earman
2016b). But the following lemma is suffi cient for present purposes:

Lemma 3. Let Pr be a completely additive probability measure on
P(B(H)) with dim(H) > 2, and let ϕ be a normal pure state on
B(H). Then Pr(E//Sϕ) = ϕ(E) for all E ∈ P(B(H)), provided
that Pr(Sϕ) 6= 0.

By Gleason’s theorem Pr extends uniquely to a normal state ω on B(H). If

Pr(Sϕ) 6= 0 then ω(Sϕ) 6= 0, and Pr(E//Sϕ) =
Pr(SϕESϕ)

Pr(Sϕ)
=
ω(SϕESϕ)

ω(Sϕ)
=

ϕ(E), where the last equality follows by the filter property of Sϕ.
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With Pr interpreted as the credence function of an agent, Lemma 3 is
the quantum analog of what is called Miller’s Principle (see Pettigrew 2012),
a special case of Lewis’PP. In words, provided that Pr(Sϕ) 6= 0, learning
that the chances are given by the normal pure state ϕ brings the Lüders
updated Pr-credence for any E ∈ P(B(H)) into line with the ϕ-chances of
E. The upshot is that for agents whose credence functions on P(B(H)) are
completely additive and who update by Lüders conditionalization, knowledge
of quantum chance leads to the alignment of credence with chance as a the-
orem of quantum probability theory39; no additional principle of rationality,
such as Lewis’PP, is needed to cudgel such agents to align their credences
with chance. On the other hand, assuming again that chances are induced
by normal states, agents whose credence functions on P(B(H)) fail to be
completely additive cannot possibly satisfy a PP-like principle. Thus, in the
context of quantum probabilities Lewis’PP reduces to the claim that ratio-
nality of belief demands that credence functions obey complete additivity.
This claim may be correct, but it requires justification. If lines of justifica-
tions discussed above (recall Section 2.3) succeed, Lewis’PP is superfluous;
if they fail, Lewis’PP doesn’t help.

5.2 Speaking with the vulgar

The above considerations provide a reason why even those Bayesian agents
who follow de Finetti’s lead in rejecting objective chance may, neverthe-
less, wish to adopt complete additivity for credence over quantum events
quantum events. Let Pr and Pr′ be any completely additive probability
functions on P(B(H)). When dim(H) > 2 it follows from Lemma 3 that
if ϕ is any normal pure state such that Pr(Sϕ) 6= 0 and Pr′(Sϕ) 6= 0 then
Pr(E//Sϕ) = Pr′(E//Sϕ) = ϕ(E) for all E ∈ P(B(H)). This is the prob-
abilistic counterpart of state preparation. With Pr and Pr′ interpreted as
credence functions, Bayesian personalists who adopt complete additivity can
reinterpret this result in terms of the merger of opinion induced by Lüders
conditionalization on the information that a measurement of Sϕ has yielded a
yes result. This allows personalists to to speak with the vulgar and recognize
objective quantum chance in the form of objectified (= merged) credence.

39At least this is so for dim(H) > 2. This restriction is needed for the validity of
Gleason’s theorem which is used in the proof of Lemmas 3 (see Earman 2016b).
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5.3 Don’t bet against QM

Bayesians who break with the de Finetti camp and are willing to entertain the
notion of objective chance may find in the empirical success of QM a reason
not only to speak with the vulgar but to learn from them. Here is an example
of what we mean by empirical success. As in the preceding subsection, restrict
attention to a system of ordinary QM with observable algebra N = B(H),
and for sake of concreteness let H be a separable infinite dimensional Hilbert
space. Prepare the system in a normal pure state ϕ (see Section 4.2). Then
perform a measurement of some projector E ∈ P(B(H)), and record whether
the result is positive or negative. Reset the system (or an identical system) in
the same state ϕ, and again perform a measurement of the same E. Repeat
again, and again, and again, and ... . In each trial the quantum probability
of a positive outcome is ϕ(E) regardless of the outcome of the other trials,
which is to say that the trials are independent and identically distributed.
Thus, the strong law of large numbers can be applied to conclude that, as the
number of trials is increased without limit, the relative frequency of positive
outcomes for E converges almost surely (as judged by quantum probability)
to the value ϕ(E). It is a well established fact that in experiment after
experiment rapid (apparent) convergence to the value predicted by QM is
observed; indeed, the evidence of the predictive success of QM is so massive
that only a trained philosophical skeptic could doubt it. Those who have
shed doubts about the success of QM and who know that the system is
prepared in state ϕ will find it prudent not to bet against the odds set by
ϕ since they know that such betting will lead almost surely (as judged by
quantum probability) to ruin in the long run. This prudence implies that an
agent should operate with a credence function on P(B(H)) that is countably
additive since otherwise there will be anE ∈ P(B(H)) such that the credence
assigned to E is different from ϕ(E). Of course, Bayesian agents who follow
this path will find themselves subject to the slings and arrows hurled by those
who think that rational credence should operate with mere finite additivity;
but they can respond that the prudence of not betting against the odds set
by QM demands that they tolerate the abuse.
Although we think that this line of argumentation has some appeal, we

note that it can lead to unpleasant consequences should it turn out that
quantum systems can be prepared in non-normal states. Repeat the above
argumentation with a non-normal state ϕ in place of the normal state ϕ.
Supposing that empirical success attends ϕ, the same prudential considera-
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tions as before now indicate that a rational agent who accepts the success of
QM and knows that the system is prepared in state ϕ should adopt a cre-
dence function on P(B(H)) that is merely finitely additive since otherwise
the agent would be betting against the odds set by ϕ. But now the slings
and arrows of those who think that rationality demands countable additivity
draw real blood since an agent who operates with a merely finitely additive
credence function can be Dutch booked (recall Section 2.2). The spectre of
such a quandary for agents, who face sure loss by Dutch book if they are
merely finitely additive or almost sure loss by betting against QM if they
are countably additive, would be banished by arguments that put normal-
ity of physically realizable quantum states beyond reasonable doubt; such
arguments are devoutly to be desired.

6 Conclusion

We confess that when we were learning probability theory we thought that
the issue of what form of additivity a probability function should satisfy is
a merely technical issue that is important, if at all, only at the margins.
On the contrary, the issue is crucial to understanding the nature of rational
credence, the nature of quantum probability, and the relation between the
two.
Our contribution to the discussion of these matters is modest. We pointed

out that if quantum states are regarded as ontologically prior to the prob-
abilities they induce, then the question of what form of additivity quantum
probabilities satisfy reduces to the question of what types of states are to
be countenanced in the practice of quantum mechanics. The answer to this
question is obviously constrained by empirical considerations, but it is not
a question that can be settled by experiment alone. Our answer is hedged:
for most purposes normal quantum states suffi ce and, moreover, some as-
pects of quantum practice would be inexplicable if non-normal states were
allowed; but we see no water tight global argument that only normal states
are physically realizable.
The restriction to normal states means that quantum probabilities are

completely additive; but except for applications of QM requiring a Hilbert
space of outlandishly large dimension, one can say that quantum probabili-
ties are countably additive since complete additivity coincides with countable
additivity. And while the relation between rational credence and physical
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probability may not be as straightforward as suggested by Lewis’Principal
Principle, prudential considerations do suggest that adopting a credence func-
tion over the lattice of quantum propositions that is not countably additive
is foolish behavior.

Acknowledgement: We wish to thank Gordon Belot for helpful comments
on a earlier draft.
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