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Abstract

In this paper, I examine the relationship between physical quanti-
ties and physical states in quantum theories. I argue against the claim
made by Arageorgis (1995) that the approach to interpreting quantum
theories known as Algebraic Imperialism allows for “too many states”.
I prove a result establishing that the Algebraic Imperialist has very
general resources that she can employ to change her abstract algebra
of quantities in order to rule out unphysical states.

1 Introduction

To construct a quantum theory, one performs a procedure known as
“quantization”. Quantization can be thought of as having two steps:
first, one constructs an abstract C*-algebra to represent the physical
quantities, or observables, of the system, which must obey the canon-
ical commutation relations, and second, one finds a representation of
that algebra in the bounded operators on some Hilbert space. Much
philosophical attention has been directed at this second step, as it
is now well known that in many cases of physical interest, including
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discussions.
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quantum field theories and quantum statistical theories in the ther-
modynamic limit, there is not a unique Hilbert space representation
of the algebra. This leads to two general interpretive options. The
Hilbert Space Conservative claims that we must pick one particular
Hilbert space representation of our algebra (out of the many compet-
ing ones), and use this one as our quantum theory. On the other hand,
the Algebraic Imperialist asserts that we do not need any Hilbert space
representations to interpret our theory, and instead can think of our
physical theory as being comprised by the abstract algebra itself.

The purpose of this paper is to argue that the methods of the
Algebraic Imperialist have a particular virtue, which I call adaptability.
By this, I mean that one can make small, but systematic changes in
the abstract algebraic framework to deal with problems that arise.

The particular problem that I am concerned with confronting from
the algebraic perspective here is how to construct a quantum theory
that allows for the correct space of physically possible states. In many
physical theories, one can find models that appear pathological or un-
physical. And indeed, it has been claimed that one of the downfalls of
the algebraic framework for quantum theories is that it allows for “too
many states”. And so, the argument goes, one is forced to use Hilbert
space methods to restrict the physical state space under consideration.

I will show in this paper, however, that one need not appeal to
Hilbert space methods to perform this reduction of the state space. In-
stead, one can reduce the physical state space using algebraic methods
alone. I will present a result that establishes precise conditions under
which this reduction of the state space can be performed. This result
provides a general strategy through which to use algebraic methods
to construct quantum theories.

In slightly more detail, the Algebraic Imperialist advocates using
the collection of states on the abstract algebra of the canonical com-
mutation relations as the state space of our quantum theory. But there
are states on this algebra that some researchers describe as unphysi-
cal. These unphysical states are often ones that cannot be represented
by any density operator in the relevant Hilbert space; this means they
are ruled out by the Hilbert Space Conservative, who countenances
as possible only states that appear in her favored Hilbert space repre-
sentation. So it seems that the Algebraic Imperialist allows for extra
states that Hilbert space methods can excise from the theory.

The response I want to suggest here, on behalf of the Algebraic Im-
perialist, is that we have been considering the wrong algebra, at least
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for the purposes of assessing the space of physical states. There is
often a different algebra that one can use, which has exactly the phys-
ical state space we were looking for. Moreover, I will show that there
is a completely general and systematic way of changing the abstract
algebra—the one we use to implement the canonical commutation
relations—in order to reduce the physical state space. Importantly,
this general procedure is appropriate for the Algebraic Imperialist be-
cause it does not use Hilbert space methods. This allows the Algebraic
Imperialist a new freedom in constructing quantum theories, and it
leads to a new perspective on the issues surrounding quantization. In
this sense, the argument of this paper can be thought of as an argu-
ment in favor of Algebraic Imperialism because it shows how much
more one can do with algebraic methods than previously thought.

But the arguments that I present need not come attached to the
interpretive position of Imperialism; the results of this paper are im-
portant for anyone who wants to use a quantization procedure to
construct quantum theories, including the Hilbert Space Conserva-
tive. Before one can even begin asking about the necessity of Hilbert
space representations, one must grapple with the question of how to
construct an appropriate C*-algebra in the first step of the quantiza-
tion procedure. According to the Imperialist, this is where all of the
interesting physical development happens in quantization, but even
the Conservative needs to have some algebra in mind before she can
take its representations. Different options for the abstract algebra of
observables appear in the physics literature, but so far only one of
these options has been discussed in the philosophical literature to my
knowledge. As such there has been no systematic discussion of how
to choose between different algebras. One contribution of this paper,
independent of the dispute between Imperialists and Conservatives,
will be to provide tools for choosing the appropriate algebra.

The paper is organized as follows. Section 2 briefly presents mathe-
matical preliminaries concerning both abstract algebraic methods and
Hilbert space representations. Section 3 presents the objection that
Imperialism allows for “too many” states, which we take up in Sec-
tion 4. There, we present a general result concerning the reduction of
the state space of an abstract algebra, and show that it specifically
allows the Algebraic Imperialist at least all of the same resources that
the Hilbert Space Conservative has for state space reduction. Section
5 concludes with a discussion of the significance of the results and
further open questions.
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2 Mathematical Preliminaries

The bounded observables of a physical theory carry the structure of a
C*-algebra.1 This means that one may add and multiply observables,
and multiply observables by scalars. In addition, a C*-algebra carries
an operation of involution that is a generalization of complex conjuga-
tion. A C*-algebra A comes equipped with a norm, which is required
to satisfy the C*-identity:

‖A∗A‖ = ‖A‖2

for all A ∈ A. The norm defines a topology, called the norm topology,
which is characterized by the following condition for convergence. A
net {Ai} ⊆ A converges to A in the norm topology2 iff

‖Ai −A‖ → 0

where the convergence is now in the standard topology on R. The
C*-algebra A is required to be complete with respect to this topology
in the sense that for every Cauchy net {Ai} ⊆ A, i.e. for every net
such that

‖Ai −Aj‖ → 0

there is an A ∈ A such that Ai → A in the norm topology. Standard
results in the theory of normed vector spaces tell us that every normed
vector space has a unique completion.3

Since A is a vector space, we can also consider the dual space A∗

of bounded (i.e. norm continuous) linear functionals ρ : A → C. A
state on a C*-algebra A is just a particular kind of element of the dual
space A∗—namely one that is positive and normalized.4

1In this section, we present only the minimal technical background required to state the
results of Section §4. For more on operator algebras, see Kadison and Ringrose (1997),
Sakai (1971), and Landsman (1998). For more on algebraic quantum theory, see Haag
(1992), Bratteli and Robinson (1996), Emch (1972), and Wald (1994). For philosophical
introductions, see Halvorson (2006) and Ruetsche (2011).

2One could restrict attention here to sequences because the norm topology is second
countable, but for the weak topologies considered later, which are not second countable,
one must work with arbitrary nets.

3A complete normed vector space is called a Banach space. A C*-algebra is thus a
Banach algebra whose norm is, in a certain sense, compatible with multiplication and
involution.

4A linear functional ρ ∈ A∗ is positive if ρ(A∗A) ≥ 0 for all A ∈ A and normalized if
‖ρ‖ = 1.
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The dual space A∗ can be used to define an alternative to the norm
topology on A, called the weak topology, which is characterized by the
following condition for convergence. A net {Ai} ⊆ A converges in the
weak topology to A ∈ A iff for every ρ ∈ A∗,

ρ(Ai)→ ρ(A)

where the convergence is now in the standard topology on C. The
weak topology is the coarsest topology on A with respect to which all
of the linear functionals in A∗ are continuous.

A C*-algebra A need not be complete with respect to its weak
topology; there may be nets {Ai} ⊆ A that are Cauchy in the sense
that

ρ(Ai −Aj)→ 0

for every ρ ∈ A∗ without the net having a limit point A ∈ A such that
Ai → A in the weak topology. However, a C*-algebra can always be
completed in its weak topology to form its bidual A∗∗, as follows.5

The bidual carries a topology known as the weak* topology, which
is a natural generalization of the weak topology on A. The weak*
topology is characterized by the following condition for convergence.
A net {Ai} ⊆ A∗∗ converges in the weak* topology to A ∈ A∗∗ iff for
every ρ ∈ A∗,

Ai(ρ)→ A(ρ)

The weak* topology on the bidual A∗∗ corresponds precisely to the
extension of the condition of convergence for the weak topology on A
to the larger algebra A∗∗. In particular, the weak* topology on A∗∗

is the coarsest topology on A∗∗ that makes every linear functional in
A∗ continuous. One can show that the bidual A∗∗ is complete with
respect to the weak* topology.

Moreover, the original C*-algebra A is canonically embedded in its
bidual by A ∈ A 7→ Â ∈ A∗∗, with Â defined by

Â(ρ) = ρ(A)

for all ρ ∈ A∗. With respect to this embedding, A is dense in A∗∗

in the weak* topology, so the bidual A∗∗ can be understood as the
completion of A in its weak topology, which is the subspace topology
of the weak* topology on A∗∗.

5See Feintzeig (2016b) for more on the completion of a C*-algebra into its bidual.
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Importantly, the algebraic approach can be translated back into
the familiar Hilbert space formalism for quantum mechanics. A rep-
resentation of a C*-algebra A is a pair (π,H), where H is a Hilbert
space and π : A→ B(H) is a *-homomorphism into the bounded linear
operators on H.6

We can use the Hilbert space structure of a representation (π,H)
to induce a new topology on the algebra π(A). The ultraweak topology
is characterized through the following condition for convergence: a net
π(Ai) converges to π(A) in the ultraweak topology if for every density
operator ρ on H,

Tr(π(Ai)ρ)→ Tr(π(A)ρ)

The ultraweak topology represents a notion of convergence of expec-
tation values by certain states.

A state ω ∈ A∗ has a density operator representative in the repre-
sentation (π,H) just in case there is a density operator ρω such that
ω(A) = Tr(Aρω) for all A ∈ A. In general, there may be states on
A without density operator representatives in a given representation
(π,H). In other words, the density operator states on a representation
may not exhaust the states on the abstract algebra A.7 However, we
know that a state ω ∈ A∗ has a density operator representative in a
given representation (π,H) of A just in case ω is ultraweakly contin-
uous in that representation. We will use these facts in our discussion
of appropriate state spaces below.

3 Interpretive Options

The procedure of quantization can be understood as involving two
steps. First, one finds a quantum algebra of observables A. Second,
one chooses a representation (π,H) of A on some Hilbert space. The
interpretive debate between Algebraic Imperialism and Hilbert Space
Conservatism concerns just whether this second step is necessary.8

According to the Algebraic Imperialist, it is not: a quantum theory

6One of the most fundamental results in the theory of C*-algebras, known as the GNS
Theorem (See Kadison and Ringrose, 1997), tells us that every C*-algebra has Hilbert
space representations.

7This follows immediately from the prensence of unitarily inequivalent representations
of an algebra, as discussed in Ruetsche (2011).

8For more on Algebraic Imperialism and Hilbert Space Conservatism, see Ruetsche
(2002, 2003, 2006, 2011).
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(or, at least its kinematics) can be captured by the abstract algebra A
in the sense that the physical quantities of a system can be adequately
represented by the elements of A—or perhaps by weak limits in A∗∗—
and the physical states can be represented by states on A. On the other
hand, according to the Hilbert Space Conservative, we need to pick
a representation (π,H). Then we represent the physical quantities of
our system by elements of π(A)—or perhaps by ultraweak limits—and
the physical states by density operators on H.

The objection that has been leveled at Algebraic Imperialism that
I want to discuss is that the Imperialist allows for “too many” states,
in the sense that many states on the abstract algebra A are unphysical
(See Arageorgis, 1995). Taking a Hilbert space representation allows
us to focus on an appropriate collection of physical states by focusing
our attention on only the states that have density operator represen-
tatives in our chosen representation. So the fact that Hilbert space
methods provide resources to rule out unphysical states is supposed
to count in favor of the Hilbert Space Conservative.

Before we can see what these unphysical states are, we need to
specify the algebra of observables we are using—after all, different
algebras will in general have different state spaces. The algebra of
observables that gives rise to the unphysical states at issue is known
as the Weyl Algebra. This algebra puts the canonical commutation
relations between position and momentum observables in bounded
form by considering only exponentiated forms of those observables.9

The states that one might consider unphysical come in may va-
rieties. For example, the Weyl algebra allows for non-regular states
(Halvorson, 2001, 2004; Beaume et al., 1974), ones which fail to satisfy
a continuity condition and in doing so fail to allow one to simultane-
ously define both position and momentum observables from the Weyl
operators. These non-regular states do not have density operator rep-
resentatives in the usual Hilbert space representation (the Schrödinger
representation) of the Weyl algebra. It is a standard move in algebraic
quantum theory to restrict attention only to regular states on the Weyl
algebra and their representations to rule out these non-regular states.

But there are many other states on the Weyl algebra that one might
consider ruling out as unphysical. Arageorgis (1995) mentions a pro-

9These Weyl operators take the form U(a) := eiaQ and V (b) := eibP for position Q,
momentum P , and constants a, b ∈ R (at least in the usual Schrödinger representation).
For more on the Weyl algebra, see Petz (1990) and Clifton and Halvorson (2001). I save
more detailed application of results in Section §4 to the Weyl algebra for future work.
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posal that we ought to restrict attention to locally definite states, ones
which vanish on smaller and smaller regions of spacetime. Or perhaps
we ought to restrict attention to Hadamard states, ones which allow
for an appropriately well-defined stress-energy observable (See Wald,
1994). And Halvorson (2006) takes up a suggestion by Doplicher,
Haag, and Roberts that we use only what he calls DHR states, ones
which differ only locally from the vacuum. In addition, we might
want to restrict attention to Fock states, ones that allow for an in-
terpretation in terms of particle states with creation and annihilation
operators (See Petz, 1990). For the purposes of this paper, I will
not analyze these suggestions in detail. The results that I present in
the next section are meant to be sufficiently general to apply to any
of these suggestions for appropriate physical state spaces, although
further work is required to make these connections explicit.

Furthermore, I should stress that it is not my purpose here to
judge whether any of the proposals cited above provide an adequate
specification of the states that we ought to deem physical. I mention
these concrete proposals only to show that others have expressed an
interest in restricting the space of quantum states. My goal in this
paper is only to show that however one wants to specify the collection
of physical states, there is an intimate relationship between this state
space and the algebra of observables of the quantum theory.

The fact that the abstract Weyl algebra allows for so many sup-
posedly unphysical states has been taken by some (e.g., Arageorgis,
1995) as an argument against Algebraic Imperialism. However, I pro-
pose that this only gives us reason to use a different algebra. Even if
one particular algebra allows for unphysical states, this does not imply
that all abstract algebras allow for unphysical states. There are other
options for the abstract algebra of observables.

In the next section, I will present general algebraic results that
allow us to change the algebra implementing the canonical commuta-
tion relations in order to restrict its physical state space. But before I
present these results, I want to note that we already have a procedure,
at least in the case of a simple system with finitely many degrees of
freedom,10 for eliminating unphysical states by choosing an appropri-
ate algebra. For these simple systems, it is standard to restrict atten-
tion to only regular states because a result known as the Stone-von
Neumann Theorem tells us that there is a unique irreducible represen-

10Specifically, the procedure will work for quantizing a classical system with finitely
many degrees of freedom and simply connected phase space R2n.
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tation11 of the Weyl algebra in which all of the regular states (and, it
turns out, only the regular states) have density operator representa-
tives. This representation is just the usual Schrödinger representation,
and in this representation the ultraweak closure of the Weyl algebra is
the algebra B(H). So this leads us back to the familiar setting for non-
relativistic quantum mechanics, where every (self-adjoint) element of
B(H) is considered as a physically significant observable and every
physical state has a density operator representative.12

However, for these simple systems with finitely many degrees of
freedom, there is another path one can take to get the same theory
without using Hilbert space methods.13 Instead of choosing the Weyl
algebra, one can directly use the algebra of compact operators on a
separable Hilbert space (i.e., L2(R)).14 Then one immediately finds
that the state space of this algebra is equivalent to the collection of
regular states. One way to see this is to notice that the compact
operators have a unique irreducible representation,15 so one has an
immediate analog of the Stone-von Neumann Theorem. The bidual of
the algebra of compact operators is its ultraweak closure in this repre-
sentation, the familiar algebra B(H). And there are no non-regular or
otherwise unphysical states on the algebra of compact operators that
cannot be represented as density operators on this representation.

Thus, one can construct the same quantum theory that we get by
using the Weyl algebra and the Stone von-Neumann theorem by in-
stead using the compact operators and forgoing the need to restrict
attention to some subspace of states. This procedure provides a route
for the Algebraic Imperialist to arrive at the same collection of phys-
ical states the Hilbert Space Conservative arrives at. The key to this
procedure is an auspicious choice of algebra of observables for our
quantum theory. So, I suggest that one might pay closer attention to
the choice of algebra in quantization procedures in other cases when

11A representation (π,H) of a C*-algebra A is irreducible if the only subspaces of H
that π(A) leaves invariant are {0} and H.

12See Summers (1999) or Petz (1990) for more on the Stone-von Neumann theorem and
the Schrödinger representation of the Weyl algebra.

13For more on this algebraic approach to regular states, see Feintzeig (2016a).
14For example, one might arrive at this algebra through the prescription known as

Berezin quantization (Landsman, 1998, 2006). If one is worried that one needs a Hilbert
space to define this algebra, note that Landsman (1990) provides a way to understand this
construction from a purely C*-algebraic point of view.

15See Thm. 10.4.6 of Kadison and Ringrose (1997, p. 751).
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constructing quantum theories. The next section shows that if one
takes seriously the importance of this choice of algebra, then one can
develop powerful algebraic tools generalizing this procedure for repre-
senting physical systems with specified state spaces.

4 Algebraic Adaptability

The purpose of this section is to develop a general response on behalf
of the Algebraic Imperialist to the objection that the abstract alge-
bra allows for “too many states”. First, in §4.1 we prove a general
result providing necessary and sufficient conditions under which one
can find a C*-algebra with a restricted state space. This allows the
Algebraic Imperialist far more flexibility than previously thought in
constructing a theory with the appropriate state space. Next, in §4.2
we illustrate how this result can be applied to transform any alge-
bra sufficiently similar to the Weyl algebra to the algebra B(H) of all
bounded operators on a separable Hilbert space. This shows that the
Algebraic Imperialist has at least as much power as the Hilbert Space
Conservative to limit the collection of states she deems physical. The
Algebraic Imperialist always has the option to choose the collection of
states with density operator representatives in a given Hilbert space
representation as her priveleged collection of states and then apply
the results here to find a new algebra with precisely that state space.

4.1 General Algebraic Results

Suppose that we have a C*-algebra A and some preferred subset of its
dual space V ⊆ A∗. This section shows necessary and sufficient con-
ditions for the existence of an algebra inheriting “the same” algebraic
relations but with V as its entire dual space.

First we will need some conditions to ensure that V can be dual
to a space supporting an appropriate C*-norm. To that end, define
‖·‖V : A→ R as follows for all A ∈ A:

‖A‖V = sup
ω∈V ;‖ω‖=1

|ω(A)|

With this definition, consider the following conditions on V :

(i) For all A ∈ A,
‖A∗A‖V = ‖A‖2V
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(ii) For all A,B ∈ A,

‖AB‖V ≤ ‖A‖V ‖B‖V

(iii) If {An} ⊆ A is a sequence such that

lim
n,m→∞

‖An −Am‖V = 0

then there is an element A ∈ A such that

lim
n→∞

‖An −A‖V = 0

The first two conditions are minimal technical conditions that ensure
V can be the dual space to a C*-algebra: condition (i) ensures that V
can be dual to an algebra satisfying the C*-identity, and (ii) ensures
that V can be dual to an algebra whose multiplication operation is
norm continuous. Condition (iii) ensures that V can be dual to an
algebra that is complete in norm, but we can consider this as a tech-
nical redundancy because every normed vector space has a unique
completion.

We need one more piece of background before we can present the
main result. The following piece of apparatus allows us to ensure that
V has enough structure to support algebraic operations inherited from
A, as we will make precise in a moment. For any ω ∈ A∗, define a
relation ∼ω on A by

A ∼ω B iff for all C ∈ A, ω(AC) = ω(BC) and ω(CA) = ω(CB)

And define a relation ∼V on A by

A ∼V B iff for all ω ∈ V , A ∼ω B

One easily checks that for any ω ∈ A∗, the relation ∼ω is an equiv-
alence relation, and similarly for any V ⊆ A∗, the relation ∼V is an
equivalence relation. Now consider the following condition:

(iv) V is maximal in the sense that

V = {ω ∈ A∗ : for all A,B ∈ A, if A ∼V B, then A ∼ω B}

Condition (iv) guarantees that V is as big as possible, by containing
all states compatible with the states in V . As we will see, condition
(iv) is used to ensure that V is “big enough” to support the algebraic
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operations of A. But, like condition (iii), it can be seen as a technical
redundancy because we can generate a maximal subspace from any
other subspace V0 ⊆ A∗ by the following proposition.16

Proposition 1. Let A be a C*-algebra and let V0 ⊆ A∗. Let

V = {ω ∈ A∗: for all A,B ∈ A, if A ∼V0 B, then A ∼ω B}

Then V is maximal in the sense of condition (iv) above, i.e.

V = {ω ∈ A∗: for all A,B ∈ A, if A ∼V B, then A ∼ω B}

In this case, we will say that the vector space V is generated by V0.
Given a collection of states in V0, V is the smallest maximal collection
of states containing V0. Now we are ready to present our main result,
which says that the conditions listed above are necessary and sufficient
for reducing the state space of our algebra.

Theorem 1. Let A be a C*-algebra and let V ⊆ A∗. Then there exists
a C*-algebra B and a surjective *-homomorphism f : A → B such
that B∗ ∼= V with the isomorphism given by ω ∈ B∗ 7→ (ω ◦ f) ∈ V iff
conditions (i)-(iv) are satisfied.

The main idea of the proof (contained in the appendix) is to construct
the C*-algebra B by taking the quotient of the original algebra A by
the equivalence relation ∼V ; in other words, B = A/ ∼V . Moreover,
we can show that the algebra we get through this construction is, in
a certain sense, unique.

Theorem 2. Let (B, f) be the pair given by Thm. 1. For any other
C*-algebra C and surjective *-homomorphism g : A → C such that
C∗ ∼= V with the isomorphism given by ω ∈ C∗ 7→ (ω ◦ g) ∈ V , there is
a *-isomorphism α : B→ C such that α ◦ f = g.

These theorems show that one can specify the physical state space
however one likes, as long as it satisfies conditions (i)-(iv). Whenever
these conditions are satisfied (and only when these conditions are sat-
isfied) we can find a new algebra A/ ∼V that inherits the algebraic
relations of A through the surjective *-homomorphism f , and this new
algebra has precisely the physical state space as its entire state space.

16Proofs of all results are contained in the appendix.
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4.2 Example: B(H)
In this section we deal with the same simple quantum theories of sys-
tems with finitely many degrees of freedom considered in §3. Such a
theory has as physical states the density operators on a Hilbert space
H with observables given by all operators in B(H). But suppose that
we’ve chosen some other algebra of quantum observables. Let A be
any C*-subalgebra of B(H) that contains the constants and separates
density operator states in the sense that for any two density operators
ρ1, ρ2 on H, there is an A ∈ A such that Tr(Aρ1) 6= Tr(Aρ2). The
Schrödinger representation of the Weyl algebra mentioned in the pre-
vious section is an example of just such an algebra. Here we show that
there is a natural way to transform A into all of B(H) using purely
algebraic methods.

Why do we need such a procedure, given that we can just take
the ultraweak closure of the algebra A in the natural inclusion repre-
sentation on H to get all of B(H)?17 Of course, we could obtain all
of B(H) in this way, but there is something unsatisfying about this
approach from the algebraic perspective. Why should we complete A
in the ultraweak topology when there may be states on A that are not
ultraweakly continuous? There’s a sense in which completing A in the
ultraweak topology does not respect the algebraic structure (or really
the state space) of A, because the completion of A in its abstract weak
topology (as opposed to the ultraweak topology) to form the bidual
A∗∗ in fact leads us to a much larger algebra than B(H).18

I will show that there is a general procedure one can perform by
applying Thm. 1 to transform A into B(H). To see this, notice that
there is a sense in which A is too small and a sense in which it is
too large. A is too small in the sense that it may not contain many
elements of B(H) like projections. But A is too large in the sense
that it may allow for states that are not ultraweakly continuous and
so cannot be represented by density operators on H. As such, we will
first enlarge A to A∗∗ to obtain all of the missing operators including
the projections onH. Then we will restrict attention to an appropriate
collection of physical states by applying Thm. 1.

Let V Q
0 be the collection of bounded linear functionals on A that

17Notice that the natural inclusion representation of the algebra A on H is irreducible
and employ Prop. 1.21.9 of (Sakai, 1971, p. 52).

18More precisely, the algebra B(H) will in general be properly embedded in the A∗∗,
which one can see directly in the universal representation of A (See Feintzeig, 2016b).
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are ultraweakly continuous on H. The following proposition shows
that reducing A∗∗ by Thm. 1 with this preferred collection of states
brings us back to the usual setting of B(H).

Proposition 2. Let VQ be the vector subspace of bounded linear func-

tionals on A∗∗ generated by V Q
0 Then the C*-algebra A∗∗/ ∼VQ in

Thm. 1 is *-isomorphic to B(H).

This shows that one can generate B(H) by first adding to A the (weak)
limit observables in A∗∗ and then reducing the algebra by Thm. 1 to
restrict attention to only states with density operator representatives
on H. Again, the first step of enlarging the algebra to A∗∗ is necessary
because there may be many bounded operators outside A. In partic-
ular, we cannot reduce A directly to the compact operators (recall
that B(H) is the bidual and hence ultraweak closure of the compact
operators) because there may be compact operators that are not in A,
as in the case of representations of the Weyl algebra.

This shows that the Algebraic Imperialist always has the resources
to reduce the physical state space of her algebra in at least all of the
ways the Hilbert Space Conservative can. Where the Hilbert Space
Conservative would take an irreducible representation of the algebra
and restrict attention to density operator states in that representa-
tion, the Algebraic Imperialist can just choose that vector space of
states (i.e., the density operator states in that representation) as her
priveleged collection of states and directly apply Thm. 1 to obtain a
new algebra with precisely this state space.

5 Discussion

I have argued that Thm. 1 gives a general tool for the Algebraic Im-
perialist to use to respond to the “too many states” objection. I have
shown that there is a very general procedure the Algebraic Imperialist
can use to rid herself of unphysical states. The result in Prop. 2 shows
that this procedure can apply to any collection of physical states that
consists of all and only the density operator states on some Hilbert
space representation. Specifically, this procedure applies to the regular
states on the Weyl algebra, which exhaust the density operator states
in the Schrödinger representation. But it is still an open question
whether the Algebraic Imperialist can apply this procedure to other
existing candidates for physical state spaces. In other words, it is still
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left to be shown that standard proposals for physical state spaces (e.g.,
the Hadamard states, locally definite states, or Fock states) actually
satisfy conditions (i)-(iv) of Thm. 1. Answering this question would
inform us about precisely how much freedom the Imperialist has in
responding to the objection that she allows for “too many states”.

The results of this paper show that the Algebraic Imperialist has
at least as much flexibility for restricting the state space as does the
Hilbert Space Conservative. Prop. 2 shows that when the physi-
cal states themselves form the space of density operator states on a
Hilbert space representation, then it is possible to reduce the algebra
to one with an appropriate state space. But I have also claimed that
the flexibility or adaptability the Algebraic Imperialist gains through
Thm. 1 is a virtue of the algebraic point of view. As such, one ought
to ask whether Thm. 1 gives us more freedom for reducing the state
space than the Hilbert Space Conservative has. In other words, are
there any subspaces of states V satisfying (i)-(iv) that do not form the
space of density operator states of some Hilbert space representation?
If not, then the procedure I have outlined for reducing the state space
of an abstract algebra works in exactly the same cases that the Con-
servative’s procedure would work. Thus, I have not yet made the case
that this virtue I have brought to our attention—adaptability of the
algebra and state space—is a virtue of Imperialism over Conservatism.
My results do show that the Imperialist can deal with the objection
that she allows for “too many” states, but I admit that this may just
bring the Imperialist in line with the Hilbert Space Conservative.

Even with these open questions, I believe the results of this paper
have significance for the interpretation of algebraic quantum theories.
They show that considerations of the physical content of the abstract
algebra, its states, and topologies, can lead us to new technical and
conceptual tools beyond those of Hilbert space representations. I can
only hope these tools will prove useful for understanding algebraic
quantum theories.

Appendix: Proofs of results

In this appendix, we prove the results of §4. The arguments rely
on some technical notions not defined in the body of the paper; for
explicit definitions, see Kadison and Ringrose (1997). First, we prove
the results of §4.1.
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Proposition 1. Let A be a C*-algebra and let V0 ⊆ A∗. Define V by

V = {ω ∈ A∗: for all A,B ∈ A, if A ∼V0 B, then A ∼ω B}

Then V is maximal in the sense of condition (iv) above, i.e.

V = {ω ∈ A∗: for all A,B ∈ A, if A ∼V B, then A ∼ω B}

Proof. (⊆) Suppose ω ∈ V . If A,B ∈ A are such that A ∼V B,
then A ∼V0 B since V0 ⊆ V . It follows from the definition of V that
A ∼ω B. Hence,

ω ∈ {ω ∈ A∗: for all A,B ∈ A, if A ∼V B, then A ∼ω B}

(⊇) Suppose ω ∈ {ω ∈ A∗: for all A,B ∈ A, if A ∼V B, then A ∼ω B}.
Suppose A,B ∈ A are such that A ∼V0 B. Let ρ ∈ V . Then, by the
definition of V , A ∼ρ B. Since this holds for all ρ ∈ V , it follows that
A ∼V B. This implies, by the assumption on ω, A ∼ω B. And by the
definition of V , it follows that ω ∈ V .

Theorem 2. Let A be a C*-algebra and let V ⊆ A∗. Then there exists
a C*-algebra B and a surjective *-homomorphism f : A → B such
that B∗ ∼= V with the isomorphism given by ω ∈ B∗ 7→ (ω ◦ f) ∈ V iff
conditions (i)-(iv) are satisfied.

Proof. First, we show that the conditions (i)-(iv) are jointly sufficient.
Suppose that V ⊆ A∗ satisfies conditions (i)-(iv). One easily checks
that condition (iv) implies that V is a norm closed subspace of A∗.

Let B = A/ ∼V , whose elements will be denoted [A] ∈ B for each
A ∈ A. We define algebraic operations on B as follows:

[A] + [B] := [A+B]

α[A] := [αA]

[A]∗ := [A∗]

[A][B] := [AB]

(The definition of ∼V guarantees that multiplication is well-defined.)
Let f : A→ B be defined by: for all A ∈ A,

f(A) := [A]

Define a norm on B by [A] ∈ B,

‖[A]‖ = ‖A‖V
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for all A ∈ A. One easily checks that this is well-defined and indeed
satisfies the conditions for being a norm.

Now for any ω ∈ B∗, it follows from condition (iv) that ω ◦ f ∈
V . Hence, it is easy to check that ω ∈ B∗ 7→ (ω ◦ f) ∈ V is an
isomorphism.

Now, we show that B is a C*-algebra with the above operations.
Condition (ii) implies that multiplication on B is norm continuous
because for any [A], [B] ∈ B,

‖[AB]‖ = ‖AB‖V ≤ ‖A‖V ‖B‖V = ‖[A]‖‖[B]‖

Condition (i) implies that the C*-identity is satisfied because for any
[A] ∈ B,

‖[A]∗[A]‖ = ‖A∗A‖V = ‖A‖2V = ‖[A]‖2

Finally, condition (iii) implies that B is complete with respect to this
norm because if {[An]} ⊆ B is a Cauchy sequence, then

lim
n,m→∞

‖An −Am‖V = lim
n,m→∞

‖[An]− [Am]‖ = 0

and hence there is an A ∈ A such that

lim
n→∞

‖An −A‖V = 0

from which it follows immediately that

lim
n→∞

‖[An]− [A]‖ = 0

One easily checks now that f is indeed a surjective *-homomorphism.
It is also easy to check that each of the conditions (i)-(iv) is nec-

essary in order to guarantee that B is indeed a C*-algebra.

Theorem 3. Let (B, f) be the pair given by Thm. 1. For any other
C*-algebra C and surjective *-homomorphism g : A → C such that
C∗ ∼= V with the isomorphism given by ω ∈ C∗ 7→ (ω ◦ g) ∈ V , there is
a *-isomorphism α : B→ C such that α ◦ f = g.

Proof. Suppose C is a C*-algebra with surjective *-homomorphism
g : A→ C such that C∗ ∼= V with the isomorphism given by ω ∈ C∗ 7→
(ω ◦ g) ∈ V . Then define α : B→ C by α([A]) = g(A) for all [A] ∈ B
(one requires the axiom of choice to choose a representative A for each
[A] ∈ B). One easily checks that α is well-defined (because A ∼V B
implies ‖g(A) − g(B)‖ = 0, which implies g(A) = g(B)) and a *-
isomorphism. Furthermore, it follows immediately that α ◦ f = g.
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Now we prove the results of §4.2. Here, A is a C*-subalgebra of
B(H) containing the constants and separating density operator states.
Let π denote the representation π(A) = πU (A)P of A on HU , where
(πU ,HU ) is the universal representation and P is the projection de-
termined through Thm. 10.1.12 of Kadison and Ringrose (1997) as-
sociated with the inclusion mapping of A on H. To prove Prop. 2, we
will need the following lemma characterizing P .

Lemma 1. P is the projection onto the span of all subspaces of HU
carrying a subrepresentation of πU quasi-equivalent to π.

Proof. Let (π1,H1) and (π2,H2) be representations of A. Let P1, P2 ∈
πU (A) be their associated central projections. First, we show that if
π1, π2 are quasi-equivalent, then P1 = P2. The representation ϕ1 :
A 7→ πU (A)P1 is quasi-equivalent to π1 and ϕ2 : A 7→ πU (A)P2 is
quasi-equivalent to π2. So if π1, π2 are quasi-equivalent, then so are
ϕ1 and ϕ2. By Thm 10.3.3 (ii) of (Kadison and Ringrose, 1997, p.
736), the central carriers of P1 and P2 are equal, i.e. CP1 = CP2 .
Since P1, P2 are central projections, P1 = CP1 = CP2 = P2.

Next, we show that if π1, π2 are disjoint, then P1P2 = 0. If π1, π2
are disjoint, then so are ϕ1 and ϕ2—for suppose there were a subrep-
resentation of ϕ1 quasi-equivalent to a subrepresentation of ϕ2. Then
we would have a subrepresentation of π1 quasi-equivalent to a subrep-
resentation of π2 (by composition of the relevant *-isomorphisms, see
Kadison & Ringrose 10.3.4, p. 737). Hence, by Kadison & Ringrose
10.3.3, P1P2 = CP1CP2 = 0.

Proposition 2. Let VQ be the vector subspace of A∗∗∗ generated by

V Q
0 = {ω ∈ A∗: ω is ultraweakly continuous on H}

Then the C*-algebra A∗∗/ ∼VQ in Thm. 1 is *-isomorphic to B(H).

Proof. First, notice that by Prop. 10.1.14 of (Kadison and Ringrose,
1997, p. 722), V Q

0 is the collection of functionals ω ∈ A∗ such that
ω = Pω, where Pω is defined as in (Kadison and Ringrose, 1997, p.
721-2). Let π(A) denote the ultraweak closure of π(A).

Define j : (A∗∗/ ∼VQ)→ π(A) by

j([A]) = π̃U (A)P

for any A ∈ A∗∗, where π̃U is the unique weakly continuous extension
of πU to A∗∗. This map j is well-defined because for any A,B ∈ A∗∗,
A ∼VQ B implies AP = BP .
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j is onto: for every Â ∈ π(A), Â = j([A]) for A = π̃−1U (Â).
Furthermore, j is one-to-one: if AP = BP for A,B ∈ A∗∗, then

[A] = [B].
Since j obviously preserves algebraic operations, it follows that j

is a *-isomorphism, and since π is quasi-equivalent to the inclusion
mapping of A on H by Thm. 10.1.12 of Kadison and Ringrose (1997),
it follows that A∗∗/ ∼VQ is *-isomorphic to B(H).
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