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Abstract: The increasing application of network models to interpret biological systems 
raises a number of important methodological and epistemological questions. What novel 
insights can network analysis provide in biology? Are network approaches an extension of 
or in conflict with mechanistic research strategies? When and how can network and 
mechanistic approaches interact in productive ways? In this paper we address these 
questions by focusing on how biological networks are represented and analyzed in a 
diverse class of case studies. Our examples span from the investigation of organizational 
properties of biological networks using tools from graph theory to the application of 
dynamical systems theory to understand the behavior of complex biological systems. We 
show how network approaches support and extend traditional mechanistic strategies but 
also offer novel strategies for dealing with biological complexity. 

1 Revisiting research strategies in biology 

Life scientists draw on a variety of research strategies to deal with biological complexity. 
The success of molecular biology stems from the development of powerful experimental 
strategies to manipulate molecular interactions underpinning biological functions. Drawing 
on a variety of case studies, in Discovering Complexity Bechtel and Richardson (1993) 
described how biologists use the strategies of decomposition and localization to reduce the 
problem space for biological analysis. These strategies imply the provisional assumption 
that biological systems can be subdivided into localizable operations of interrelated parts, 
organized in modules, from which the workings of larger (sub)systems can be recomposed. 
The result of a successful use of these discovery strategies, a mechanistic explanation, cites 
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how interacting and hierarchically organized parts causally produce the phenomenon 
(Bechtel and Abrahamsen, 2005; Bechtel, 2011; Machamer, Darden, and Craver, 2000). 

Mechanistic research strategies are very productive if the system is organized in such a 
way that functions can be localized to parts of a mechanism, and if the functioning of such a 
part is due to its internal organization and largely unaffected by its context, so that parts 
can be investigated in isolation (via decomposition) and their joint operation is relatively 
easy to understand (via recomposition). However, analyses of complex and highly 
integrated systems seem to defy these general assumptions, raising challenges for 
traditional mechanistic strategies. Indeed, Bechtel and Richardson have viewed 
decomposition and localization as heuristics because they fail in some cases. In the new 
introduction to the 2010 edition of Discovering Complexity, they point to recent biological 
research on complex networks (e.g., with extensive feedback loops) as cases where 
decomposability may not hold—while leaving the philosophical investigation of how such 
network research works as a project for the future. 

Additional strategies of mechanistic research have been philosophically articulated by 
Craver and Darden (2013). They cover not only experimental strategies for investigating 
mechanisms and validating mechanism schemas, but also several conceptual strategies that 
guide the formulation of hypothesized mechanism schemas, such as modular subassembly, 
forward chaining, and backward chaining. The recent accumulation of big quantitative 
datasets has motivated some life scientists to utilize network modeling as a research 
strategy for the organization and interpretation of data. Unlike mechanism diagrams, 
network models typically do not contain details about the molecular properties of the 
components. By representing interactions among a vast number of molecular species they 
enable an analysis of the organizational structure of larger systems, sometimes involving 
automated pattern-detection. Geared toward the analysis of the complex structure and 
dynamic operation of large-scale networks, these representational, computational, and 
analytical strategies appear to go beyond the conceptual strategies that have been listed by 
Craver and Darden. 

This calls for philosophers to revisit the question about prominent research strategies for 
dealing with biological complexity. How do these new strategies relate to the mechanistic 
research strategies described by Bechtel and Richardson (1993) and Craver and Darden 
(2013)? Are network approaches an extension of or at least complementary to mechanistic 
strategies? And what, more generally, can network analysis afford to researchers in the life 
sciences? In this paper we address these questions by focusing on how various types of 
biological networks are represented and analyzed. We investigate a variety of network 
analyses used in systems biology with the aim of identifying some of the distinctive aspects 
of this new research approach. Focusing on a set of representational and analytical 
strategies relying on network modeling, we also show that there are different ways of using 
network approaches that have different philosophical implications.  



 
 

3 
 

For this purpose, we draw on a set of case studies from systems biology. Systems biology 
differs from most other fields of biology by the lack of an explicit focus on a specific domain 
of phenomena (in contrast to cell biology, molecular biology, genetics, and developmental 
biology). Instead, the field distinguishes itself by new research strategies such as analyses 
of large quantitative datasets on gene regulation and protein interactions through 
computational simulations and network analysis. Although network analysis precedes 
systems biology historically and has been widely applied in a variety of other fields such as 
neuroscience, anthropology, and sociology (see Newman, 2010), the analysis of data-rich 
network models in systems biology presents a new and interesting direction in need of 
philosophical analysis. The cases we examine all target the organization and behavior of 
biological networks but also illustrate the diversity of representational and analytical 
strategies used in systems biology research. 

We begin with some examples in which graph theoretic tools have been successfully 
applied to investigate the organization of biological networks (Sections 2.1–2.4). These 
approaches have revealed important principles governing both the structural organization 
of biological networks and the timing of activities involved in these networks. We then 
examine cases where network approaches help scientists to explore and understand the 
dynamic features of biological system activity (Sections 3.1–3.2). Over the course of these 
different case studies, we gradually move from more local analyses of specific components 
of complex systems to ones that address their global operation (cf. Huang, 2004). Roughly 
speaking, the localist approaches are more in continuity with traditional mechanist 
research strategies than the globalist approaches. However, given the diversity of the 
network research discussed and the absence of a unique notion of ‘mechanistic’ research 
(e.g., there are mechanistic modes of explanation as well as mechanistic tools of 
experimental discovery), for each case of network research we will lay out in what aspects 
it is mechanistic, complements features of mechanistic research, or departs from classical 
mechanistic strategies. 

2 Graph-theoretic analyses of networks 

Large data-collection procedures have enabled biologists not only to identify many 
different genes, proteins, and metabolites, but also to explore how they interact. To filter, 
organize, and interpret this data, some biologists employ network modeling strategies from 
graph theory, a field of mathematics which uses combinatorial and geometrical principles 
to analyze relational structures (i.e., pairwise relationships between objects). A graph is a 
collection of objects called nodes or vertices, and a collection of edges or links, which 
represent connections between these objects. One distinctive feature of this type of 
approach is that systems biologists often start with large numbers of components, some 
interacting with a large number of other components. 
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To construct a graph representation of a biological network, researchers often turn to 
databases such as RegulonDB, BioGraph, Bioinformatic Harvester, or UniProt, from which 
large datasets can be downloaded. In network models, entities such as genes and proteins 
are represented as nodes and the relations between them as edges. Edges may be directed 
or undirected depending on whether, for example, one has causal or merely correlational 
information about their interactions. The goal of applying the tools of graph theory to the 
study of these biological networks is to identify organizational patterns that might be 
useful for predicting and explaining interesting features of biological organisms. We begin 
with efforts to identify small-scale patterns in biological networks, and then consider 
strategies for analyzing the large-scale organization of whole networks. 

2.1 Motifs within networks 

One strategy for extracting relevant patterns from large graphs is to focus on motifs—
patterns of connectivity between a small number of nodes (see Figure 1 for an example). 
Uri Alon, who pioneered this type of analysis, characterized these motifs as basic 
computational elements (Shen-Orr, Milo, Mangan, and Alon, 2002; Alon, 2007). As the word 
‘computational element’ suggests, such a node cluster is deemed to be a module capable of 
performing a specific function. Modules are connected to others to make the whole 
functional system. Researchers who seek out computational elements often characterize 
themselves as engaging in reverse engineering. This practice typically involves taking an 
already made product and exploring its behavior and component functions in systematic 
ways at many levels of description in order to build (synthesize) a similar product. By using 
these methods, biologists try to identify the functional organization of the system 
components, which gives rise to their global behaviors. This approach is motivated by the 
idea that biological functions, like engineered systems, may be characterized by basic 
organizational or ‘design principles’ (Green, Levy, and Bechtel, 2014), as we will see below. 

Alon developed the network motif approach while exploring the organizational structures 
of gene regulatory networks, based on data on transcriptional regulation in bacteria. 
Reverse engineering in this context was highly exploratory in the sense that little was 
known about the function and structure of the network. The group compiled data on 
transcriptional regulation from RegulonDB and additional sources and represented the 
transcriptional interactions as a directed graph. He and his collaborators noticed that 
particular subgraphs involving three or four nodes occurred with a surprisingly high 
frequency. To elaborate this finding they developed and applied algorithms comparing the 
frequency of all the subgraphs of a particular type in a larger graph to randomly 
constructed graphs with the same degree of connectivity. The idea is thus that automatic 
pattern-detection (here via frequency of subgraphs) can be used to identify organizational 
patterns of possible functional significance. Hypothesizing that those subgraphs that 
appeared especially often were likely to display distinct functions (like circuits in 
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engineered systems), Alon and colleagues represented them as in Figure 1 and then used 
computational modeling to analyze their functionality. 

 

Figure 1. Example of a motif. A coherent feedforward loop of the sort investigated by 
Alon.  

Figure 1 shows one of the three-node subgraphs Alon found to be especially frequent, a 
motif which he labeled a coherent feedforward loop. In it, the node X (which receives  
the external signal from S) is connected to node Z both directly and indirectly through 
node Y. By analyzing the motif from an engineering perspective, Alon showed that 
when Z requires both of its inputs to respond, the network constitutes a computational 
element that will function as a persistence detector—Z will be active only with a 
sustained stimulation from S. This design is particularly useful in contexts in which 
chemical signals may be generated spuriously and where engaging in an activity such 
as synthesizing a protein unnecessarily can be particularly wasteful. Using simple 
Boolean modeling, Alon demonstrated that the coherent feedforward loop would 
perform this elementary computation as long as it takes time for a node to become 
active (see Alon, 2007). Since each node ceases to be active once input ceases and the 
activation through the indirect pathway takes longer than through the direct pathway, 
Z will be activated only when X remains active long enough for Y to become active so 
that both X and Y will be simultaneously sending input to Z. He also showed that 
changing Z to operate as an OR-gate (Z is active when at least one of its two potential 
inputs obtains) will yield a different behavior. Now Z continues to function even in the 
face of brief interruptions in the activity of X. This sign-sensitive accelerator design can 
be important in noisy environments in which it takes time to complete a process. 
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Following the initial analyses, software for automated motif-detection was developed. This 
enabled a more extensive search for network motifs in different biological systems and at 
different levels of biological organization.  Some critics have questioned Alon’s methods of 
evaluating whether the frequency of subgraphs is beyond what would be expected by 
chance (cf. Beber, Fretter, Jain, Sonnenschein, Muller-Hannemann, and Hutt, 2012). 
Searching for overabundant circuit patterns in networks can, however, be useful as a 
heuristic regardless of the soundness of the null hypothesis used in the comparison, 
provided that this the network analysis is combined with other strategies that account for 
the details that network analyses neglect or distort.2  Moreover, the research sparked a 
debate on whether functions are determined by the organizational structure of the 
regulatory circuits and can be generalized from an abstract analysis (Green, 2015; Levy and 
Bechtel, 2014). A requirement for such generalizations is that the mathematically 
computed motif functions can be isolated from the network as a whole in living cells. Initial 
experiments on extensively studied regulatory systems in E. coli provided an affirmative 
answer (Mangan, Zaslaver, and Alon, 2003). But some have cautioned about the situation 
for more complex organisms where the same motifs are also present (Isalan, Lemerle, 
Michalodimitrakis, Horn, Beltrao, Raineri, Garriga-Canut, and Serrano, 2008). In response, 
more recent research has focused on specifying the conditions (parameter spaces) for 
which the identified motif functions hold (Tyson and Novak, 2010).  

The network motif approach shares with mechanistic strategies the heuristic assumption 
of near-decomposability of biological systems, and network approaches and mechanistic 
research strategies are intertwined in the experimental investigation of the computed 
functions. Individual motifs that have been identified function similarly to what Machamer, 
Darden, and Craver (2000; see also Craver and Darden 2013) call mechanism schemas. The 
computational analysis of individual motifs is carried out at a higher level of abstraction 
than typical research in molecular biology, insofar as motifs abstract away from a wide 
range of details about the parts and operations of specific molecular mechanisms (cf. Levy 
and Bechtel, 2013). But the very search for motifs also provides a novel heuristic strategy 
for detecting regulatory units—the computational screening of vast networks—thus 
extending mechanistic research. This goes beyond the conceptual as well as experimental 
strategies of mechanism discovery that Craver and Darden (2013) have compiled: Alon’s 
approach allows for motif-detection from a representation of the large-scale structure of 

                                                        
2One limitation of this kind of network analysis is that it represents regulatory interactions 
as pairwise relations between discrete and static objects (nodes in the network) and 
assumes that these are uniformly distributed throughout the cell. However, in many 
regulatory systems (e.g. in development) the spatial distribution of molecules is crucial and 
needs to be accounted for. Mechanistic research providing such details can therefore 
provide a useful corrective to network analysis. (We would like to thank an anonymous 
reviewer for stressing this point.) 
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regulatory connections, without background information on specific functions of the 
subsystems. The detection of frequent organizational patterns allows for a data-intensive 
exploratory analysis, revealing motifs which are amenable to further investigation.  

We now turn to network analyses that reveal organizational patterns in networks at a scale 
above that of small subgraphs. As we will see, within these network approaches, 
researchers often differentiate modules that correspond to particular mechanisms, but, 
unlike in the case of more traditional mechanistic approaches, the analytical emphasis falls 
on how these modules are situated in larger networks. 

 

2.2 Tools for Analyzing Large-Scale Networks 

Graph theorists have developed various measures to characterize and analyze the patterns 
of interactions among the many components of graphs and to make inferences about how 
they function together. These take a somewhat different form if the edges in the graph are 
directed or undirected; we will consider only undirected graphs and focus on three 
quantitative measures that have played an especially prominent role in mathematical 
analyses of networks. 

As a global property of a whole network, the mean shortest path length (henceforth, MSPL) 
measures the average, for all pairs of nodes, of the minimum number of edges that must be 
traversed to get from one node to the other.3 Shortest paths are of interest in 
understanding how quickly or slowly activity at one node may affect activity at another; 
MSPL is then a measure of how quickly signals can be passed between different 
components of a network. Second, the clustering coefficient C is the degree to which a given 
node’s neighbors are connected among each other. When C for a given node is high, there 
will be high connectivity in the neighborhood around that node; these connected nodes are 
often viewed as modules. Below we will illustrate why the average clustering coefficient 
across all nodes (as a global network measure) is of analytical value. Finally, the degree k of 
an individual node is the number of other nodes to which it is connected; and the network-
wide degree distribution p(k) is the probability that a given node will have degree k. 

Most mathematical analyses of graphs in the mid-20th century focused on either randomly 
connected networks, which are characterized by a short MSPL and a low average clustering 
coefficient, or lattice structures, which have a long MSPL and high average clustering. Watts 
and Strogatz (1998) attracted much attention when they theoretically introduced the class 
of small-world networks that exhibit both short MSPL and high average clustering. They 

                                                        
3 In this context, ‘path length’ does not measure physical distance (only number of edges) 
and ‘organization’ does not track spatial organization of the target system (but rather its 
functional organization). 
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argued that these characteristics are important as they allow for a high degree of 
coordination throughout the network yet also specialization of function in clustered units. 
This illustrates how some representational notions and analytical strategies of network 
research are not so much about the specific functioning of a network segment—as in the 
analysis of individual motifs discussed above—but about a network’s overall organization. 
Network researchers focusing on gene-regulatory, protein interaction, and metabolic 
networks in a variety of species found that these biological networks indeed exhibit small-
world structure. 

However, it turns out that, as a matter of statistical probability, nearly every network with 
a large enough number of nodes and connections will be a small-world network (Newman, 
2010). This motivated the search for a more precise description of biological networks 
using the tools (and measures) of graph theory. Historically, graph theorists assumed that 
the degree distribution p(k) would be normal (e.g., Gaussian), but Barabási and Albert 
(1999) found that in many real world networks, node degree is distributed according to a 
power law of the form p(k)=c∙k-a (where the parameter a is often between 2 and 3). This 
exponentially declining distribution means that there is great variation in the number of 
connections for individual nodes. Most nodes have a very low degree (e.g., only 1 or 2 edges 
to other nodes) but a small number of nodes—called hubs—have a many connections. 
Since the tail of a power-law distribution extends over many orders of magnitude and the 
node degree across the system cannot be characterized using a unique scale, these 
networks have been called scale-free networks. 

An analytical implication of a scale-free network organization is that it tends to exhibit 
robustness, i.e., its functioning is usually not seriously affected by perturbations. For while 
the elimination of a highly connected hub may detrimentally impact functioning, most 
nodes in a scale-free network are not hubs and have only small impact on the overall 
network. Given that robustness is a biologically important feature for a system to have, this 
highlights the usefulness also of global measures of network structure. In the specific 
philosophical context of explanation, Huneman (2010) has argued that the explanation of a 
network’s robustness in terms of its scale-free structure is an instance of what he calls 
topological explanation, which he deems to be non-mechanistic, on the grounds that an 
account purely in terms of structural organization does not explain by tracking activities 
during a mechanism’s operation (see also Brigandt, Green, and O’Malley, in press; Jones, 
2014). A discussion of the scope of specific accounts of explanation is beyond the scope of 
this paper, but we mention these aspects to highlight how representing abstract system 
organization and topology is a strength of network approaches that extends the analytical 
toolkit in biological research.  

As concrete illustrations of the potential of using graph theoretical methods and measures 
in the study of biological organisms, we turn in the next two subsections to discussing two 
network analyses; one revealing hierarchical modular organization within metabolic 
networks, the other temporal dynamics of protein-protein interactions. 
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2.3 Hierarchical modular networks 

Traditional mechanistic approaches identify modules through research strategies that start 
from a specific phenomenon (e.g., a concrete function), identify a system taken to be 
responsible for it, and decompose that system into functionally relevant components 
(Bechtel and Richardson, 1993). In contrast, graph-theoretic analyses that abstractly 
represent the organization of large numbers of components and their interactions identify 
modules as classes of nodes that are highly interconnected (compared to the degree of 
connectedness across modules). Hence, graph-theoretic approaches offer a new 
perspective on modules, highlighting how they are situated in the broader organization of 
the network. One type of analytical strategy that has gained considerable popularity 
focuses on the hierarchical organization of many modules in larger networks. 

The characterization of hierarchical modular networks was introduced by Ravasz, Somera, 
Mongru, Oltvai, and Barabási (2002) to resolve a tension they had identified between two 
network measures that were concomitantly exhibited by a wide class of biological 
networks. In analyzing metabolic networks in E. coli, Wagner and Fell (2001) had shown 
that they both (1) have high average clustering—standardly associated with the presence 
of fairly isolated modules—and (2) are scale-free, having some hub nodes with many 
connections across the network. So, is the metabolism of E. coli organized as a collection of 
specialized modules or as a highly integrated network (Ravasz et al., 2002)? 

The combination of modules and nodes with high degree (which Ravasz et al. found in 43 
other species) seems contradictory—modules are relatively isolated, whereas nodes with 
high degree interconnect the whole system. Ravasz and colleagues proposed to resolve this 
tension by constructing a model of a network that would exhibit both properties. They 
began with a module of four completely interconnected nodes arranged as in Figure 2A. 
They then created three replicas, connecting the peripheral nodes of each replica to the 
central node of the original module (Figure 2B). This procedure was then iterated (the next 
iteration is shown in Figure 2C). The network that resulted after several iterations exhibits 
high average clustering (C ≅ 0.6), due to it being built by replicating highly-clustered units, 
and is scale-free (the parameter a of the power law is 2.26), as a consequence of connecting 
the peripheral units in a replica only to a common unit in the original. 
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Figure 2. The process Ravasz et al. employ to construct hierarchical modular 
networks that have high clustering and are scale-free. The module shown in A is 
replicated three times, where in B the peripheral nodes of each replica are connected 
to the central node of the original module. This process is iterated one more time in C, 
but can be iterated indefinitely. From Ravasz et al. (2002).  

Ravasz and colleagues observe that nodes that appear in the center of the network model 
have the highest degree (i.e., are hubs) and the lowest clustering coefficient, while the 
nodes at the periphery of each of the super-modules have low degree and the largest 
clustering coefficient. In between are nodes with moderate degree and moderate 
clustering; these serve to link the smallest modules into larger modules. This creates a 
hierarchy in which the nodes generated at each replication step are connected not only to 
their own central node but also to the central node of the entire structure. Ravasz et al. 
refer to this network structure as a hierarchical modular network and propose that 
networks organized in this way might account for the combination of high clustering and 
scale-freeness in the metabolic networks of the 43 species they examined. 

In particular, Ravasz et al. focused on showing that their theoretical model can be used to 
represent the organization of the metabolic network of E. coli. They considered each 
substrate as a node and chemical interactions between substrates as edges and executed 
several simplifying procedures that did not distort the topology of the network. To identify 
modules, they constructed an overlap matrix (Figure 3) that shows, for each pair of 
substrates, the probability that any two substrates i and j are connected to the same other 
substrate (a white empty spot in the matrix indicates that the substrates are not connected 
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to any common substrate, green that the two substrates are connected to very few of the 
same substrates and dark red indicates that they are connected mostly to the same 
substrates). From the overlap matrix representation as the first step in the system analysis, 
one can visually identify regions with high overlap and regions with less substrate overlap. 
The high overlap regions were taken to correspond to the component modules in the 
proposed type of hierarchical modular organization. 

 

Figure 3. Overlap matrix in which colors indicate degree of overlap. At the bottom the 
chemical classes of the molecules is indicated and on the top and right the resulting 
of a clustering algorithm are shown. From Ravaszet al. (2002).  
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Since the network was assumed to be hierarchical, Ravasz et al. then used a clustering 
algorithm to group substrates based on their overlap; the results of this analysis are shown 
along the top and right-hand edges of the matrix square in Figure 3. Because these clusters 
closely correspond to known chemical groups, they were interpreted as picking out 
modules that correspond to biochemical functions. Ravasz et al. then focused in more detail 
on the module corresponding to pyrimidine metabolism and linked each sub-module to 
particular pathways in the module. 

Ravasz et al.’s analysis showed that modules closely corresponding to traditionally 
characterized biochemical pathways or mechanisms can be recovered from large-scale 
networks. Noting that the fit between the modules derived via their graph-theoretical 
analysis and previously established metabolic pathways is not perfect, they suggested that 
“further experimental and theoretical analyses will be needed to understand the relation 
between the decomposition of E. coli metabolism offered by our topology-based approach 
and the biologically relevant subnetworks” (Ravasz et al. 2002, p. 1555).  

We conclude that while Ravasz et al. succeed in recovering classically defined mechanisms, 
their discovery strategy  differs from more traditional methods of investigating biological 
modules in the following way. It starts with the whole network and only arrives at modules 
by identifying clusters in that network—in contrast to starting with an isolated mechanism 
and looking out to other mechanisms. This hierarchy, achieved by nodes with low 
clustering but high degree that serve as hubs that connect modules, provides the basis for 
coordinated regulation of flux in different biochemical pathways. By invoking the graph-
theoretic measures of clustering and node degree and characterizing a network 
architecture compatible with high values on both, Ravasz et al. take advantage of the 
representational power of graph theory. They propose a new way of thinking about 
biological mechanisms, according to which they can both be specialized and closely 
integrated into a larger network—where the latter goes beyond the assumption of 
traditional mechanistic research that systems can be treated as decomposable. And unlike 
standard approaches in molecular biology, these network analyses abstract from the 
molecular details and focus instead on the extracted graph structure which is then shown 
to represent a type of organization that is biologically relevant. 

 

2.4 Temporal dynamics of activity in networks 

Most graph-theoretic studies of biological networks offer a static view of the systems under 
investigation—edges between nodes represent activity that occurs at some time, but the 
timing of activities at nodes is not differentiated. In real cells, different metabolic or gene 
expression activities occur at different time-scales and cellular functioning requires the 
precise coordination of a large number of events. Accordingly, a proper understanding of 
cellular function requires the identification of the temporal execution of the interactions 



 
 

13 
 

characterized by edges. How can network approaches and graph-theoretical 
representations incorporate the temporal aspects of biological phenomena? We address 
this question by analyzing a study by de Lichtenberg, Jensen, Brunak, and Bork (2005) of 
protein-protein interactions during the cell cycle of yeast. 

Protein-protein interactions (PPIs) occur when two or more proteins are shown to be able 
to bind, which is taken to indicate that they might interact in living cells. High-throughput 
proteomics technologies have allowed the collection of numerous PPI datasets for many 
organisms that have led in turn to the development of PPI network analyses investigating 
principles of cell organization and function. The general goal of such network approaches is 
to identify complexes of proteins that are co-localized and co-expressed, and to establish 
how they are organized as modules to perform specific functions within cells. Although the 
interpretation of PPI data raises a series of methodological concerns (Mackay, Sunde, 
Lowry, Crossley, and Matthews, 2007; Chatraryamontri, Ceol, Licata, and Cesareni, 2008), 
de Lichtenberg and colleagues are representative of a larger community of scientists who 
have argued that robust biologically relevant conclusions can be derived from network 
analyses by integrating various types of data. Working on budding yeast, Saccharomyces 
cerevisiae, the researchers integrated information about protein complexes from large-
scale static PPI datasets with time series data about gene expression data in order to 
investigate the functional organization of protein complexes during the yeast cell cycle. 

Gene expression data allowed de Lichtenberg et al. to distinguish so-called dynamic 
proteins, which are expressed only at specific steps in the cell cycle, from static proteins, 
which are constitutively expressed. They then used the PPI data to link the dynamic 
proteins to those expressed constitutively. Out of the 595 dynamic proteins identified in 
the study, the researchers focused on the interactions between 184 dynamic proteins and 
116 static proteins that are represented by the graphs in the center of Figure 4. Unlike the 
metabolic network in the previous example, these protein interaction networks do not 
form a completely connected graph but a collection of independent graphs. The 412 
dynamic proteins for which no interactions could be identified are shown as unconnected 
circles around the outside. The researchers used color to represent the phase of the cell 
cycle during which these proteins are present (e.g., green for the S phase). The same 
coloring scheme is used to represent the phase of the cell cycle at which the proteins 
shown in the center are expressed, with white circles indicating constitutively expressed 
proteins. 
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Figure 4. Protein-protein interaction networks in yeast identified by de Lichtenberg 
et al. The color-coding represents the period in the cell cycle in which specific 
proteins are synthesized. From de Lichtenberg et al. (2005).  

The center of Figure 4 shows 29 graphs of three or more interacting proteins, most of 
which are associated with particular well-characterized cell-cycle functions. Some of these 
graphs include only dynamic proteins that are expressed at the same phase in the cell cycle, 
but most present a much more complex pattern involving proteins expressed constitutively 
or at different phases in the cell cycle. For instance, the Sister chromatid cohesion graph 
contains a sizable subgraph of dynamic proteins expressed at the same phase of the cell 
cycle, while the Cdc-cyclin graph captures a more complex patterns of interacting proteins. 
The coloring scheme introduced by Lichtenberg et al facilitates the representation of these 
temporally heterogeneous modules. Focusing on three of these modules (additional 
modules are discussed in the supplemental material) the authors show how their 
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integrative approach can be used for further analytical steps: (i) to predict new functional 
roles for known protein complexes, (ii) to formulate a general principle that governs the 
construction of protein complexes, and (iii) to provide a dynamic characterization of the 
interaction between static and dynamic protein complexes. We discuss each of these in 
turn. 

First, some of the modules represented in Figure 4 were newly discovered through analysis 
of the temporal expression data. An example is the Nucleosome/Bud formation module 
shown in detail in Figure 5A. The newly identified module includes two proteins, Nis1p and 
Yol070p, whose function had not been previously identified. By linking them with other 
proteins in a temporally expressed module whose functional role was already known, and 
connecting this module to two others, the Sister Chromatid Cohesion complex and the 
Nucleosome complex (again, whose functions were known), the researchers were able to 
suggest functional roles for these proteins. For instance, the previously uncharacterized 
phospho-protein Mmr1p has been shown to have a cell-cycle role in activating 
transcription at the G2/M cell phase transition.  

 

Figure 5. Detailed representation of three of the networks shown in Figure 4. A: a 
network only identified through the use of information about temporal expression of 
proteins. B: a network illustrating just-in-time assembly. C: a network illustrating a 
node that serially interacts with proteins synthesized at different times. From de 
Lichtenberg et al. (2005).  

Second, from the analysis of temporal expression data, de Lichtenberg et al. infer a 
general principle of construction for yeast protein complexes: they are assembled just 
in time for their use. Many of the proteins in a complex are constitutively expressed 
and already available, but only assembled into the requisite complex when one or a few 
additional proteins are synthesized. This process contrasts with the pattern McAdams 
and Shapiro (2003) found in bacteria—there all the proteins needed to form a complex 
are synthesized just when the complex is formed. De Lichtenberg et al. illustrate just-
in-time assembly in Figure 5B. The members of the pre-replication complex, Orc1p to 
Orc6p, are all constitutively expressed and bound to DNA throughout the cell division 
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cycle. But their analysis reveals that at different phases in the cycle different proteins 
are synthesized and bind with the Orc proteins.4 

Third, de Lichtenberg et al. advance a dynamic perspective on the previously identified 
module consisting of Cdc28p and nine associated cyclins (which are proteins regulating the 
cell cycle progression). Previously all the cyclins had been viewed as active parts of the 
module at all times even though Cdc28p can only interact with a single cyclin at a time. De 
Lichtenberg et al. established, as shown in Figure 5C, that eight of the cyclins are expressed 
at different phases of the cell cycle. Thus, although qualifying as a module in the non-
dynamic network (which shows any interactions occurring at some time), a dynamic 
analysis reveals Cdc28p to be a dynamically changing collection of entities: different cyclins 
constitute it at different phases in the cell cycle. The dynamic study also identified Ypl014p, 
whose function had previously been unidentified, as a member of Cdc28p complex. 

Overall, while proving to be a fruitful means of discovering various molecular features, this 
type of investigation doesn’t start with particular functions (as in classical mechanistic 
research). Rather than beginning with a mechanism and determining its temporal patterns, 
as in more traditional mechanistic research, the strategy consists in building a system-wide 
representation of the time of expression across the whole network which reveals how 
nodes in a cluster relate temporally throughout the cell cycle. Moreover, this focus on the 
temporal dimension of the protein interaction network gives rise to a research strategy for 
discovering new mechanisms and their organization.   

 

3 Dynamical Systems Analyses of Biological Networks 

Although often represented as operating at steady-state, living systems are highly dynamic, 
transitioning between different operating states. The behavior of components of a 
biological system is dependent on such contexts and in this section we focus on attempts to 
deal with the context-dependency of causal effects as biological networks enter into 
different regimes over time. We outline important characteristics of these system dynamic 
approaches and discuss their philosophical implications by drawing on similarities and 
differences between two related, yet different, approaches. Both are illustrated in the 
context of cancer research, a field where analyses are particularly important since cancer 
involves altered dynamical behavior of cells. The first uses systems analysis as a stepping-
stone to identifying specific molecular components that are causal difference-makers, and 

                                                        
4 Mcm2p and Mcm3p, along with Cdc46p, Cdc47p, and Cdc54p are all synthesized during 
the M/G1 cell phase transition and form a complex with constitutively expressed Mcm6p. 
Next Cdc6p (also expressed at the M/G1 transition) recruits this complex to the Orc 
complex during the G1 phase. Finally, Cdc45p is expressed early in the S phase and is 
proposed to then recruit the whole complex to the site where replication originates. 
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as such retains strong links to mechanistic approaches. In contrast, other system 
theoreticians aim to go beyond the focus on properties of specific molecular components. 
To clarify this, Section 3.2 analyzes the philosophical implications of an analysis inspired by 
Dynamical Systems Theory where network-wide activity is captured by mathematical 
models and investigated via state-space analysis. 

3.1 Difference-making in dynamical networks 

One of the cornerstones of molecular biology is reliance on difference-making experiments 
to identify the causal roles of different components of a system (Woodward, 2003; Craver 
and Darden, 2013, Ch. 8). Complex systems, however, pose two challenges for this type of 
experimental practice. First, high-throughput methodologies offer a vast number of 
potential targets for experimental intervention, and testing all of them individually in 
various combinations would be prohibitively time and resource demanding. How do 
scientists narrow the space of promising candidates for intervention? Second, the problem 
of context-sensitivity: as complex systems change their state over time it is possible for one 
and the same intervention on a component to have different, or even opposite, effects. How 
is the causal structure to be investigated when effects are context-sensitive? The present 
section looks in detail at two cases involving apoptosis, or programmed cell death, in which 
network strategies helped scientists to elucidate the behavior of the systems—leading to 
the identification of a partial mechanism underlying cellular context-sensitivity. Our 
discussion shows that thinking in terms of large-scale networks of interactions is both 
analytically useful and experimentally productive. 

Janes, Albeck, Gaudet, Sorger, Lauffenburger, and Yaffe (2005) investigated the cellular 
changes that determine whether or not human colorectal adenocarcinoma cells enter into 
apoptosis. Previous research had generated conflicting data about the role of c-Jun N-
terminal kinase (JNK): one study found it to be pro-apoptotic; another found it to be anti-
apoptotic; and yet a third found it to be unrelated to apoptosis. The authors hypothesized 
that changing cellular network states over time might explain these results—JNK as an 
individual difference-making cause would have different effects depending on the state of 
the surrounding signaling network. To test the hypothesis, they systematically exposed cells 
to different regimes of apoptosis-related cytokines such as tumor necrosis factor (TNF), 
epidermal growth factor (EGF), and insulin. Levels of JNK and apoptosis were measured for 
each regime. The findings of this combinatorial experiment supported the context-
sensitivity hypothesis: depending on the levels and combinations of cytokines, increases in 
JNK were seen to be correlated with increases in apoptosis, decreases in apoptosis, or no 
change (see especially Fig. 1B-E in Janes et al., not reprinted here). 

Reasoning in terms of states of cellular networks provides a conceptual strategy for 
thinking about context-sensitive effects such as those of the protein JNK. Janes et al. focused 
on the downstream effects of TNG, EGF and insulin: they analyzed data on a large number 
of quantitative measures (maximum signal, mean signal, area under the curve, activation 
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slope, and decay rate) of cellular proteins that were known to be downstream effects of 
these signal molecules. Applying the statistical tool of principal components analysis, the 
authors showed that the different cytokines activated different parts of the overall 
network: while TNF activated a pro-apoptosis group of components, EGF and insulin 
activated a pro-survival group of components. Interestingly, the reaction to combinations 
of TNF, EGF, and insulin was not predictable by merely summing the individual responses. 
Instead, the statistically identified groups exhibited specific interactions when TNF+EGF or 
TNF+insulin were paired. While EGF mainly antagonized TNF’s apoptotic response, insulin 
exerted its antagonistic effect to TNF by activating the pro-survival components of the 
network. This indicated the existence of different underlying mechanisms of signal 
interaction. 

Janes et al. thus provided evidence for the existence of both a pro-apoptosis cluster of 
cellular signals and a pro-survival cluster of signals. Various cytokines were shown to 
activate one and antagonize the other when combined in different ways. Thus, thinking in 
terms of changing network states could in principle explain the inconsistent results that 
had been obtained concerning the JNK protein. Depending on network states, the protein 
was in fact pro-apoptotic, anti-apoptotic, or neutral. 

A subsequent study from the same laboratory, Lee, Ye, Gardino, Heijink, Sorger, MacBeath, 
and Yaffe (2012), applied the strategy of thinking in terms of changing network states to 
the treatment of cancer. In the spirit of the conclusion from Janes et al. they proposed that 
the causal effectiveness of chemotherapeutic agents might depend on the state of cellular 
networks. Recognizing that this undermines the “component-by-component approaches to 
understanding human disease” (p. 780), Lee et al. posed new epistemic questions: How can 
we detect coordinated changes in large numbers of cellular components that serve similar 
functions? How can the most relevant of these components be identified for further 
experimental investigation? 

Like Janes et al., they began with a systematic combinatorial experiment. They exposed a 
particular line of cancer cells—triple-negative breast cancer (TNBC) cells—to 
combinations of signaling inhibitors and DNA-damaging agents (to which TNBC cells are 
particularly resistant). As in the previous study, apoptosis was the measured effect. 
Importantly, the authors not only tested different combinations of signal inhibitors and 
chemotherapeutics. They also studied time-staggered presentations in which cells were 
given signal inhibitors a variable number of hours before or after chemotherapeutic agents. 
The results of this systematic approach were striking: giving erlotinib (an inhibitor of EGF 
receptors) several hours before doxorubicin (a DNA-damaging compound) resulted in a 
marked, several-fold increase in levels of apoptosis compared to giving erlotinib alone, 
doxorubicin alone, or erlotinib after doxorubicin. Importantly, this increase in the 
apoptosis response was found only in TNBC cells and not in other cancers. 
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As an interpretation of these findings, the authors proposed that giving erlotinib changed 
the state of one or several cellular signaling networks in TNBC cells, thereby rendering the 
cells more susceptible to DNA damage induced by doxorubicin. The time delay required for 
the intervention to work (a delay of roughly 24 hours was found to be optimal) was seen as 
consistent with the time required for network state changes to take effect, since this may 
require changes in translation and transcription. To investigate this hypothesis, Lee et al. 
employed high-throughput methodologies on both TNBC and other cancer cells to identify 
thousands of genes that are differentially expressed under erlotinib treatment. Using the 
GeneGO pathway annotation software, they linked these genes to functions such as DNA 
damage response, apoptosis, and inflammation. 

To gain a more precise understanding of the signaling network changes underlying the 
increased sensitivity to doxorubicin in erlotinib-treated cells, the authors identified 35 
candidate genes for a detailed high-throughput analysis (including some previously known 
genes and some that they found to be differentially expressed under erlotinib treatment). 
Using principal component analysis combined with partial least-squared regression they 
statistically identified a cluster of differentially expressed genes in TNBC cells that were not 
found in other cancer cells. They proposed that these differentially expressed genes were 
responsible for the increased sensitivity of TNBC cells to the time-staggered treatment with 
erlotinib and doxorubicin. In particular, they targeted four cellular components in TNBC 
cells that were strongly correlated with increased doxorubicin efficacy of which the most 
strongly correlated was cleaved caspase-8. To determine whether caspase-8 really is a 
cause influencing increased sensitivity to doxorubicin treatment they created small 
interfering RNA (siRNA) to knock out caspase-8 in TNBC cells. The results of this 
difference-making experiment confirmed the causal interpretation of the correlation found 
previously: The intervention reduced the sensitivity of TNBC cells to doxorubicin to the 
same level as found in other cancer cells. Thus, the success of the time-staggered erlotinib 
and doxorubicin treatment in TNBC cells could be assumed to involve a caspase-8 pathway 
specific to these cells. 

In this section we have discussed two challenges for difference-making methodologies in 
the case of complex systems: first, the effects of particular interventions can vary with 
context; and second, the systems are generally made up of too many components for 
component-by-component analysis to be feasible. We have seen that network strategies 
help in dealing with context-sensitivity as well as system size. In one of the cases discussed, 
investigators found that the same chemotherapeutic agent had different causal effects 
depending on the previous treatment of cells with cytokines. To elucidate this context 
sensitivity, the investigators first used combinatorial experiments to determine which 
combinations of cytokines (and which order of administration) made cells particularly 
vulnerable to chemotherapy. High-throughput methodologies then revealed the large-scale 
changes of cellular gene expression under cytokine treatment. The investigators found that 
individual cytokines caused coordinated changes of whole sets of cellular components, 
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which suggested changes in the functional state of entire regulatory networks. In a classical 
difference-making approach, the many affected components would have been intervened 
upon one-by-one in order to test their relevance to the cell’s susceptibility to 
chemotherapy. Using statistical techniques for network analysis, however, the investigators 
were able to pinpoint components whose activity seemed to be particularly closely 
correlated with susceptibility to chemotherapy. The most promising candidates were then 
subjected to quite classical difference-making experiments in order to determine their 
actual causal roles. 

We here see an extension of classical causal and mechanistic methods by network 
approaches. In attempting to identify molecular components of interest, the research 
maintains a tight connection to mechanistic approaches. However, it also considerably 
expands the set of conceptual strategies for analyzing molecular mechanisms that 
philosophers have previously articulated to include both statistical methods and analytical 
strategies for dealing with interconnected complex systems. In the next section we will 
encounter network researchers who propose a more radical reconceptualization of 
biological systems. 

 

3.2 Cancer as Dynamic Attractor States 

Some systems biologists have proposed a shift of focus from particular mechanisms that 
are involved in individual cases of cancer to the multitude of ways the organization of cells 
and tissues can be disrupted and enter specific dynamic states. The focus on activity states 
of a regulatory network rather than specific mutations is motivated by recent empirical 
studies showing that there is high heterogeneity of mutations in sequenced tumors for non-
hereditary cancers (Creixell, Schoof, Erler, and Linding, 2012). The importance of context 
and reversible dynamics of cell states is further supported by experimental interventions 
showing that normal cells can turn cancerous when placed next to neoplastic tissues and 
that cancer cells can be normalized if transplanted from tumors to a location next to normal 
stroma (Lang, Shi, and Chin, 2013). 

To account for such experimental results, some researchers appeal to the mathematical 
framework of Dynamical Systems Theory (DST). This approach represents the dynamic 
state of a system in a state space in which each point represents a possible state of the 
whole system (e.g., expression rates of genes or concentrations of various proteins). 
Activity of the system is represented as a trajectory through state space. By mapping the 
trajectories that biological systems do or can follow, investigators can identify attractors to 
which the system will evolve and where it will remain unless perturbed. A distinctive 
feature of this modeling strategy, which we will illustrate below, is that the account is 
based on concrete biological interaction networks, yet—unlike the studies discussed in 
Section 3.1—the theoretical analysis also captures and visualizes different dynamic 



 
 

21 
 

possibilities, i.e., system state trajectories that are biologically possible or impossible 
(beyond a single trajectory taken by an experimental system). 

Kauffman (1971) pioneered the idea of describing cancer in terms of attractor states over 
40 years ago, building on Waddington’s (1940, 1953) much older ideas of epigenetic 
landscapes. While this approach initially appeared rather speculative, new experimental 
technologies are providing data that can be used for the development of models and to 
empirically test the predictions they make. Proponents argue that viewing cancer in terms 
of dynamic attractor states may resolve some of the problems facing the traditional view 
that cancer is caused by somatic mutations or specific molecular pathway-interfering 
causes (e.g., Huang 2011). The view of cancers as attractors aligns with the ‘cancer stem 
cell hypothesis’ that highlights similarities between carcinogenesis and developmental 
processes, such as clonal expansion, fast proliferation, sustained angiogenesis, and tissue 
invasion. To make sense of how cells with the same genome can differentiate into 
qualitatively distinct cell types, some researchers investigate the conditions that enable 
both transformations and stable dynamic states of gene regulatory networks. An important 
question in this context is why living systems often display stable discrete (or 
discontinuous) phenotypes, rather than continuous ones that would follow if genetic 
changes directly caused phenotypic changes (Jaeger and Crombach, 2012). 

One approach to understanding the lack of continuity between phenotypic states, including 
normal and cancer cell states, is to investigate whether there are constraints that make 
intermediate states unstable so that they follow trajectories into one or another attractor. 
Kauffman (1969) simulated hypothetical networks in which genes, depending on their 
states, turned other genes on or off. By starting with different random inputs, he showed 
that they settled into stable states that were largely independent of the initial states of 
specific network nodes. Kauffman argued more generally that even highly complex 
networks often converge to a limited set of stable states because of internal constraints. 

New experimental technologies in genomics have started to provide insights into how the 
organizational structure of gene regulatory networks, through inhibitory and activating 
connections, may constrain, but also stabilize, the transcriptome signatures of different cell 
types. We illustrate this approach for a very simple network employing a double negative 
feedback loop (Figure 6, see also Tyson and Novak, 2010). Its two nodes might represent 
genes whose products inhibit each other’s expression (A and B in Figure 6). The possible 
dynamic states and trajectories of the two-node network are represented on as a state 
space in which the expression levels of genes A and B are represented on the 
corresponding dimensions. The third dimension, labeled ‘potential’ (or other times, 
‘energy’) indicates how stable (low value) or unstable a particular combination of 
expression levels is. Trajectories are paths from less stable states to more stable ones, 
ultimately terminating in attractors. The dynamical landscape shows the state space 
trajectories the system would follow from various possible states to one of the two 
attractors. In this case, each of the two attractors consists in high expression of one gene 
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and low expression of the other. The simple network illustrates a common dynamics that is 
found in many biological systems. For instance, the situation in Figure 6 corresponds to a 
simplified model used to describe the development of different segments in Drosophila (an 
instance of discontinuous phenotypic patterns). Protein expression of the gap genes giant 
and Krüppel never co-occurs in the same nucleus because the stable expression patterns 
are mutually exclusive (Jaeger and Crombach, 2012).5 

 

 

Figure 6. The possible trajectories of a double-negative feedback network between 
two genes are plotted on a landscape. It has two attractors (stable states of network 
activity), where some unstable states are also shown. From Huang et al. (2009).  

Some researchers have suggested that this visual representation strategy can be also used 
to indicate what happens in complex networks with thousands of genes. It would require a 
high-dimensional state space to capture the multitude of stable states, but the number of 
attractors need not increase proportionately. Because many molecular changes can lead to 
the same stable cell state, and many lower-level changes will have no effect on the overall 
state of the system, Huang (2011) argues for a shift of focus from linear molecular 
pathways (which have been the focus of mechanistic research) to dynamic states of whole 
networks. Due to the high dimensionality of state spaces for complex networks, this kind of 

                                                        
5 The expression patterns change in response to initial conditions, in this context 
maternally expressed transcription factors that can be measured experimentally and 
manipulated, and the state space analysis can be based on systems parameters fitted to 
gene expression data. 
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analysis is dependent on advanced representational strategies that transform causal 
interactions into dynamic states of whole networks.  

 

 

Figure 7. Illustration of multi-stable dynamical profile of a complex network. From 
Huang et al. (2009). 

 

A network with many nodes but whose dynamical profile (due to constraints within the 
whole network) has a limited number of attractors is shown in Figure 7. Note that in 
addition to the two trajectories to stable, mature cell types (indicated by solid arrows), 
there is another trajectory indicated by a dotted arrow that terminates in an attractor 
corresponding to cancer. Along the trajectory is a hill denoted as an epigenetic barrier. 
Under normal conditions the system will not cross this barrier, but perturbations, such as 
somatic mutations, can have the effect of lowering the barrier, allowing the system to settle 
into the cancer attractor. This landscape representation thereby reveals that the available 
trajectories of network activity can change as either the network organization is altered 
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(e.g., mutations in a cell’s gene regulatory network) or the conditions in which the system is 
operating is altered (e.g., epigenetic and pharmaceutical influences).  

Thinking in terms of cancer attractors leads to a shift of focus from how mutations interfere 
with specific activities in cells to how they reshape the landscape, alter the possible 
trajectories, and allow access to new cancer attractors (Huang, Ernberg, and Kauffman, 
2009). This representational strategy using landscapes also provides the analytical insight 
of how the same mutation can be associated with both carcinogenesis and tumor 
suppression, depending on the current state of the network as a whole. If the cell is in the 
normal state, a mutation lowering the barrier between this state and a cancer attractor can 
allow the system to enter the attractor. If, however, the cell is already trapped in the cancer 
attractor, the same mutation may allow the system to return to the normal state. Thus, in 
the analysis of gene regulatory networks through mathematical state space 
representations, epigenetic landscapes offer an intuitive depiction of how the effects of 
genetic changes are dependent on the dynamic context of the cell. Huang (2013) appeals to 
the evidence of normalizing cancer cells via transfer to normal tissue environments to 
suggest that there may be differentiation therapies that can push cancer cells back to the 
normal state. Huang and Kauffman (2013) also interpret Lee et al.’s (2012) discovery of the 
need for sequential application of drugs that we discussed in the previous section from this 
perspective: the first treatment is needed to change network dynamics to a landscape 
profile in which the second drug can push the cell back into a normal trajectory. 

Although intuitively appealing, it is less clear how the ‘normalizing’ of network dynamics 
by means of interventions would work in practice. But an important therapeutic 
implication suggested by this network perspective is that the most efficient treatment may 
target a dynamic state of the network as a whole, rather than specific disease-inducing 
causal pathways. Thus, the analysis directs focus away from ‘broken mechanisms’ that can 
be easily delineated towards global dynamical states (Gross, 2011).  

Although the DST approach emphasizes that the existence of robust macroscopic dynamics 
renders many molecular details explanatorily irrelevant for studies of many general 
features of living systems, the empirical applicability of the models is dependent on 
extensive gene expression data to bridge the gap between abstract state representations 
and empirical observables (Huang et al., 2005, 2009). Although researchers have 
succeeded in building dynamical models from experimental analysis of gene expression 
profiling for simple regulatory circuits in studies of insect development (Jaeger and 
Crombach, 2012; Jaeger and Sharpe, 2014), the research is still far from developing multi-
dimensional models capturing the dynamic states of cells involved in multiple coordinated 
processes. The impact of the DST approach on future cancer therapy is therefore an open 
question. In any case, Huang and Kauffman argue that the DST framework still can offer a 
fruitful alternative for guiding research and therapy, which is an improvement over what 
they describe as “ad hoc, direct interpretation of gene network topologies” (2013, p. 276). 
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Among the different network research approaches we have discussed, the Dynamical 
Systems Theory framework is the one that most decisively differs from traditional 
mechanistic strategies. Not only does it call for the experimental investigation of larger 
networks as opposed to individual pathways (a perspective all network approaches share), 
but in terms of the conceptual analysis of systems, it questions the utility of the heuristic 
strategy to approach a system as nearly-decomposable (Bechtel and Richardson, 1993; see 
also Kaiser, 2015). Paradigmatic mechanistic procedures start by assuming that the 
behavior of a whole can be understood from the individual component functions arranged 
in a fairly linear sequence (Machamer, Darden, and Craver, 2000), and move toward a more 
complex organization only once a linear structure has been shown to be inadequate. Yet on 
the dynamical systems approach, since many different mechanisms can lead to the same 
attractor state, rather than mapping specific pathways, the proposal is to focus on 
attractors (which entail possible system trajectories). Even in the case of the existence of 
only a small number of attractor states (e.g., corresponding to different cell types), these 
attractors emerge from the activity and dynamical features of the whole network. The two-
node network from Figure 6 notwithstanding—which we merely used to illustrate the 
basic approach—the DST approach presumes that a more global representation and 
analysis of large networks is required, where important characteristics of network 
functioning cannot be recovered from combining the activities of individual network 
components (component activities outside the systemic context of the larger network), as a 
reductionist mechanistic approach assumes. 

4 Discussion 

We have presented several examples of network analyses that were published in systems 
biology in recent years. To bring out what is distinctive of these approaches, we have 
discussed in what respects they align with, extend, or depart from more traditional 
mechanistic strategies. Our presentation of examples of network approaches started with 
localist analyses of subgraphs and modules within larger networks and proceeded to more 
globalist analyses of dynamical activity in whole networks. To a first approximation, we 
argued that localist analyses directly enhance mechanistic approaches through 
identification of the ways that mechanisms are organized. Some globalist approaches, on 
the other hand, either connect indirectly or induce a departure from the previously 
articulated strategies for mechanism discovery. In the following, we outline the types of 
relations that can obtain between network approaches and the mechanistic framework by 
highlighting distinctive contributions made by network approaches in each of the cases 
examined. 

Alon’s identification of individual motifs began with the computational screening of a 
whole network consisting only of gene regulatory connections to identify unusually 
frequent motifs (Section 2.1). We argued that his procedure differs from more typical 
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mechanistic strategies which begin by considering a specific function and  then reason 
locally about the pathways that realize it. The localist perspective only comes in later in 
Alon’s functional analysis of specific motifs, i.e. after the global search for frequent patterns 
in the network. Once identified, the motifs were modeled and manipulated experimentally 
by relying on the mechanistic strategy of decomposition, assuming that a motif’s function 
can be explained in isolation from the rest of the network. This approach adds to 
mechanistic methods by providing an alternative route to the same type of explanation. At 
the same time, however, it complements the focus on concrete causal mechanisms with a 
focus on generalizable design principles that are independent of specific contexts of 
implementation. 

To characterize larger networks, investigators sometimes invoke graph theoretical 
representations including global measures, such as the node degree distribution across a 
whole network, which go beyond the arsenal of mechanistic strategies. Discovering 
clustered nodes (modules) in complex networks using algorithms is relevant for 
mechanistic research insofar as they can be identified with specific biological functions. But 
the definition and thus identification of modules is novel. From a traditional mechanistic 
perspective, a module or part of a mechanism is defined by its concrete internal structure 
(which underlies its functioning), whereas module identification within large-scale 
networks initially does not characterize the specific internal organization of modules (as 
the representation of a motif would), but instead identifies a module in terms of its 
relatively low number of connections to other modules of the overall network.6 This 
strategy enables the identification of modules without any knowledge about the functions 
of different system parts or the specific causal nature of their connections. Instead of 
properties of specific parts or operations, the focus is on the relational structures and 
patterns and their implications for system behavior. In some cases these module clusters 
were taken to reveal some global features of the network. As we saw in Section 2.3, the 
motivation for Ravasz et al.’s (2002) research was the challenge of combining a network’s 
functional modularity (segregation into internally highly clustered modules) with the 
existence of a few highly connected nodes, indicating functional dependency across 
modules. As a possible solution to this tension they introduced the notion of hierarchical 
modular networks and based on experimental evidence about the metabolic network of E. 
coli showed how various smaller networks might be integrated into the larger metabolic 
network. 

Graph representations of networks are usually limited to static portrayals of biological 
phenomena. De Lichtenberg et al. (2005) provided an interesting way of incorporating 
timing information (specifically, timing within the cell cycle) into a graph representation 
(Section 2.4), and using timing to identify possible mechanisms. The resulting graph 
revealed 29 interconnected modules in which one or more protein is represented as being 

                                                        
6We would like to thank an anonymous reviewer for making this point.  
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expressed at a specific time. This enabled the researchers to establish that some modules 
are assembled just at the time they are needed while in other modules a central protein 
binds with different proteins at different phases in the cell cycle. De Lichtenberg et al. 
linked these 29 modules to different activities involved in the cell cycle, thereby treating 
them as mechanisms. The goal, however, was not to map the temporal sequence of 
complete pathways but to relate the timing of different cellular components so as shed light 
on their synchronization at the cell (cycle) level. This instance of research employed 
conceptual strategies to analyze the dynamic organization of networks—computational 
tools as well as means of visual representation (e.g., Figure 4)—in a way that motivates 
subsequent analytical exploration and discovery. By capturing some aspects of activity 
timing these tools enhance the value of standard graph-theoretic representations.  

Unlike graph theory, dynamical approaches to networks are explicitly geared at 
characterizing the temporal character of biological phenomena. Biological systems 
constantly change their state either due to activities within the system or in response to 
external perturbations. The studies by Janes et al. (2005) and Lee et al. (2012) showed that 
the efficacy of drug therapies could be very different depending on the state the network is 
in at a given time, so that sequential administration of drugs could be effective where 
simultaneous administration would not be (Section 3.1). To interpret and discover such 
results in the first place, it was useful for researchers to conceptualize and analyze the 
system in terms of dynamically changing networks states, where system components may 
respond differently when in different states. The use of statistical tools on high-throughput 
data allowed investigators to hone in on putative mechanism components and interactions 
that warranted further investigation by classical difference-making methodologies. 

The final case analyzed in section 3.2. marks a significant departure from  a traditional 
mechanistic perspective by rejecting the core strategy of decomposition, i.e., the 
assumption that systems can be understood by investigating systems parts and their 
operation in isolation, and that the behavior of the whole can be recomposed from the 
parts in a largely sequential fashion. Rather than thinking in terms of specific pathways and 
mechanisms, such global systems approaches push for the analysis of the dynamics of 
interconnected networks, revealing possible system trajectories, where the most efficient 
treatment for a specific disease may be an intervention on the state of the whole network 
(so as to change the system’s dynamical profile consisting in attractors and epigenetic 
barriers). Representing biological processes as attractors in state space rather than 
connections between specific molecular entities in a mechanism diagram reveals 
significant differences in the conceptual approach. A specific attractor state can be reached 
by many different mechanistic pathways. Therefore, the proposed therapeutic intervention 
need not target any specific mechanism but the dynamics of the network as a whole. The 
predictive potential of these newer approaches is still dependent on grounding the 
dynamic analysis in details of actual biological systems (such as patterns of gene 
expression or molecular concentrations in cells). Yet, conceiving of cancer in terms of 
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attractor states has important implications for the view of what cancer is, as it presents a 
therapeutic alternative to the focus on specific somatic mutations or specific molecular 
pathway-interfering causes.  

Apart from the important, although generic mechanistic strategies of decomposition and 
localization (originally articulated by Bechtel and Richardson 1993), Craver and Darden 
(2013) have recently laid out further strategies for mechanism discovery. However, their 
conceptual strategies, such as modular subassembly, forward chaining, and backward 
chaining, come from philosophically investigating traditional molecular biology and pertain 
to reasoning about individual pathways. Our discussion of different instances of network 
research has covered additional strategies for analyzing systems, which are geared toward 
the characterization of complex molecular networks. This research often starts out with 
experimentally acquired data about large-scale networks, so that (although sometimes 
further experimental steps follow) a good deal of the intellectual burden is on employing—
and even developing—strategies for analyzing some aspects of the structure and function 
of complex networks, so as to provide guidance for further discovery steps. In addition to 
the use of mathematical measures and statistical and computational tools, these novel 
network strategies include means of visually representing system aspects. Many of such 
representations are neither mechanism diagrams nor depictions of the whole network. A 
good example is the overlap matrix depicted in Figure 3 (from Ravasz et al., 2002), which 
zeroes in on some aspects of system activity, and not only summarizes previous 
information, but has the crucial intellectual function of guiding further analysis and 
discovery. Dynamic landscape representations like the ones in Figures 6 and 7 also go 
beyond mechanism and network diagrams because the landscapes are derived from a 
theoretical analysis of network functioning, and point to system potentialities such as 
possible therapeutic targets that can be explored in future discovery. 

Our aim in this paper has been to motivate a philosophical analysis of network approaches 
as a means increasingly used by life scientists to deal with biological complexity. 
Throughout the paper we have emphasized the benefits of network approaches for biology, 
which use the tools of graph theory and dynamical systems theory. Biologists have been 
drawn to these tools as they confronted the challenge of coping with the complexity of 
highly interconnected and non-linear biological systems. We have emphasized both how 
the various network strategies can be (and have been) used to complement mechanistic 
approaches but also how there is already a wide spectrum of network approaches where 
some differ from traditional mechanistic strategies. As these methods and their 
applications are in constant development, we think that future careful philosophical 
analyses can further clarify the types of inferences that these methods support in the 
investigation of biological phenomena. 
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