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ABSTRACT3

This paper proposes an approach to the philosophy of mathematics,4

deductive pluralism, that is designed to satisfy the criteria of inclusiveness5

of and consistency with mathematical practice. Deductive pluralism views6

mathematical statements as assertions that a result follows from logical7

and mathematical foundations and that there are a variety of incompat-8

ible foundations such as standard foundations, constructive foundations,9

or univalent foundations. The advantages of this philosophy include the10

elimination of ontological problems, epistemological clarity, and objec-11

tivity. Possible objections and relations with some other philosophies of12

mathematics are also considered.13

1 INTRODUCTION14

This paper proposes an approach to the philosophy of mathematics, deductive15

pluralism, that is designed to be inclusive of existing mathematics and consistent16

with mathematical practice. Here mathematical practice refers to mathematical17

statements, such as definitions, examples, and theorems. We will also show that18

deductive pluralism is consistent with many of the attitudes expressed by math-19

ematicians towards the questions of the absolute or relative nature of concepts20

such as consistency, existence, or truth in mathematics – see section 1.1 for a21

discussion of terminology and concepts as used in this paper. Without inclu-22

siveness a decision would need to be made about what to exclude, creating a23

partial philosophy of mathematics, and without any generally acceptable crite-24

ria for what is to be excluded. Without consistency with mathematical practice25

a philosophy of mathematics would be incompatible with mathematics, an un-26

acceptable position for a purported philosophy of mathematics. The argument27

of this paper is that there are varieties of mathematics that have incompatible28

mathematical or logical foundations, sometimes implicit, and thus to satisfy the29

inclusiveness criterion a pluralist approach is required. By inclusiveness none of30

the varieties can be considered as true in an absolute sense (otherwise the others31

would be rejected) and so within a variety the statements need to be viewed as32

implications, requiring a deductivist approach. As we will see in the discussion33

of the attitudes of mathematicians and the reports by philosophers about these34

attitudes, modern mathematics has moved towards attitudes consistent with35

deductivism and pluralism. Thus a modern philosophy of mathematics should36

reflect these changes.37

Several varieties of mathematics will be discussed in the next section, includ-38

ing: “standard mathematics” which has as foundations the intended interpre-39

tation of Zermelo-Fraenkel set theory with the axiom of choice (ZFC) and with40
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First Order Predicate Calculus (FOPC) as the logic; constructive mathemat-41

ics; univalent foundations; and inconsistent mathematics. The mathematical or42

logical foundations of a variety, sometimes called a framework for the variety,43

have been systematized to varying extents: some have been axiomatized for a44

century, but others are works in progress and with different approaches within45

a variety.46

In deductive pluralism mathematical assertions state that a conclusion fol-47

lows from assumptions, ultimately from the logical and mathematical founda-48

tions after a long development of definitions and intermediate results. Thus49

deductive pluralism is a form of deductivism but may differ from other forms by50

allowing both the logical and the mathematical foundations to vary, by not re-51

quiring the foundations to be purely formal uninterpreted axioms, or by allowing52

foundations other than set theory.53

Section 1.1 below discusses some terminology and concepts used in this pa-54

per, and then section 2 discusses some varieties of mathematics that are dis-55

tinguished by incompatible mathematical or logical foundations, highlighting56

these inconsistencies. The attitudes of leading mathematicians developing or57

using a variety are cited to show substantial compatibility with deductive plu-58

ralism. Section 3 considers deductive pluralism as a philosophy of mathematics59

by discussing its ontology and epistemology as well as its consistency with math-60

ematical practice and attitudes. Section 4 considers some possible objections to61

deductive pluralism as a variety of deductivism. Section 5 then considers de-62

ductive pluralism as it relates to some other philosophies of mathematics. Since63

logical assumptions are part of a foundation for a variety there is an appendix64

on relevant logical concepts which may be referred to as needed. There is also65

an appendix giving some examples of the historical development of mathematics66

towards an axiomatic (thus deductive) viewpoint.67

1.1 Terminology and Concepts as Used in This Paper68

This section will discuss some terminology and concepts, with illustrations from69

standard mathematics. As used in this paper a variety of mathematics is not70

merely a theory: within a variety there may be many mathematical theories71

but these theories have the same foundation and thus these theories are not72

classified as varieties. Within a variety different theories are applicable to and73

illuminate other theories. For example in standard mathematics number theory74

is consistent with and uses results from analysis (analytic number theory) and75

algebra (algebraic number theory). A criterion for consideration as a variety is76

that the mathematics appears in professional publications such as journals or77

books. Since contemporary mathematics subsumes historical mathematics, clar-78

ifying and generalizing its implicit assumptions and foundations, this criterion79

embraces mathematics as it has been done throughout history.80

In this paper a fully formal proof is one that can be checked step by step,81

in particular by a computerized proof checker. Such a proof is objective in82

that mathematicians favoring any variety of mathematics would agree that a83

fully formalized proof within another variety does establish that the conclusion84
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follows from the logical and mathematical assumptions within that variety. We85

will consider a rigorous proof as one that can be fully formalized in a relatively86

straightforward manner, such as by filling in details. This concept of rigor is87

necessarily imprecise since it will vary between mathematicians, between areas88

of mathematics, and in different historical periods.89

A useful distinction applicable to a variety of mathematics is between syn-90

tax and semantics: that is, between the axiomatic, uninterpreted formalism (the91

syntax) and the interpretations of the formalism (the semantics). The formal-92

ism is used in fully formal or rigorous theorems and proofs, providing some ad-93

vantages including: explicit assumptions (axioms); clarification of relationships94

between systems of axioms; and applicability of results to all interpretations.95

The semantics will be in a system that is assumed to be better understood,96

more basic, or have other advantages over the formal system. An uninterpreted97

formal system usually needs a semantics in order to provide intuition, examples,98

or a basis for deciding such questions as existence, validity or satisfaction. In99

order to do this an interpretation requires a satisfaction predicate. An inter-100

pretation of a formal system is called a model for the system if the axioms of101

the system are satisfied. By Gödel’s completeness theorem a first order sys-102

tem has a model if and only if it is consistent. Since some assumptions are103

necessary – nothing comes from nothing, ex nihilo nihil fit – to avoid infinite104

regress the search for semantics or interpretations must stop somewhere with a105

satisfaction predicate that is assumed to be consistent. This distinction is best106

developed in standard mathematics in which model theory studies formal unin-107

terpreted axioms and their interpretations in set theory. Thus the foundation108

of standard mathematics must include both the formal axioms of ZFC and a109

set theory, such as the intended interpretation. Since ZFC and other first order110

theories containing Dedekind-Peano arithmetic cannot prove their own consis-111

tency by Gödel’s incompleteness theorem, consistency of both formal ZFC and112

its intended interpretation are usually implicitly assumed. The assumption of113

consistency then allows new axiomatically defined structures to be shown to be114

consistent relative to that theory. For example the Dedekind-Peano axioms for115

the natural numbers were proven by Dedekind to be consistent and unique up to116

isomorphism within ZFC and its intended interpretation. (Sometimes a concept117

is unique up to a unique isomorphism, as in the universal diagram definitions118

within category theory.)119

The next concept is that of truth. Since mathematics deals with abstracta,120

attributing truth to existential assertions can be problematical, so some relevant121

meanings of truth will be considered here. Standard mathematics has a concept122

of truth within model theory: a sentence in an axiomatic system is true if it is123

true in all models, and truth in a model is defined in terms of the interpretation124

of the axiomatic system within set theory. For example Gödel’s sentence is125

true in the intended interpretation of Dedekind-Peano arithmetic but not true126

in all interpretations. When mathematicians state that a sentence is true they127

may be using (possibly implicitly) one of several concepts: the mathematical128

(model theoretic) concept, so that in a first order theory true is equivalent to129

provable; true in the intended interpretation of ZFC but not necessarily provable130
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(as with Gödel’s sentence); or some concept which is independent of models131

or proofs and thus will be referred to as an absolute concept of truth rather132

than the mathematical concept of truth which is relative to model-theoretic133

interpretations. Since the ideas of truth may vary when discussing mathematical134

concepts, it may be necessary to clarify which concept is meant.135

Many mathematical statements assert the existence of a mathematical ob-136

ject, e.g., the empty set exists. The object may be asserted to exist relative to137

some explicit or implicit assumptions, e.g., given ZFC then there is an empty138

set, or absolutely. In this paper the use of the term “object” will reflect common139

mathematical usages and will not imply either absolute or relative existence.140

The final concept is the distinction between relative or absolute consistency.141

The assertion that system A is consistent relative to system B means that if142

B is consistent then A is consistent (i.e., in the context of foundational logi-143

cal and mathematical assumptions the consistency of B implies the consistency144

of A). We will say that a system is absolutely consistent if it is consistent as145

such, independent of the consistency of other systems. In the case of starting146

points for deductions where only one system is under consideration, such as the147

foundations for a variety of mathematics, the distinction is somewhat different.148

In these cases an absolute view would be, e.g., that ZFC is absolutely consis-149

tent while a contrasting position might be that it is reasonable to assume the150

consistency of ZFC.151

The concepts of truth, consistency and existence are often closely related.152

A mathematical statement to which truth may be assigned often asserts the153

existence of a concept or the consistency of a theory. Also, existence is sometimes154

defined in terms of consistency: as we will see in section 3.1 Hilbert wrote that155

a mathematical concept exists if it is consistent.156

2 VARIETIES OF MATHEMATICS157

Most of mathematics as practiced, both pure and applied, is standard mathe-158

matics, which constitutes the great majority of what is taught in educational159

institutions, appears in publications, and is used in applications. Since standard160

mathematics is so dominate and extensive most other varieties of mathematics,161

including those discussed below, are careful to include many of the same or162

similar theories and theorems as standard mathematics.163

2.1 Nonstandard Analysis164

Nonstandard analysis is an extension of standard mathematics that provides for165

infinitesimals and was developed by Abraham Robinson to put them on a rig-166

orous foundation. The logic is the same as in standard mathematics, and there167

are many approaches to developing the infinitesimals. Nonstandard analysis is a168

conservative extension of standard mathematics in that any proposition stated169

in the language of standard mathematics that can be proven using nonstandard170

analysis can also be proven using standard mathematics. An example of this171
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is the nonstandard proof by Bernstein and Robinson [1966] that every polyno-172

mially compact operator has a non-trivial invariant subspace, which appeared173

back to back with a standard proof. In his article Bernstein wrote that “[t]he174

proof is within the framework of Nonstandard Analysis” [Bernstein and Robin-175

son, 1966, p 421], which illustrates that when a variety of mathematics other176

than standard mathematics is used the foundations are made explicit, especially177

if the work is in a journal containing standard mathematics in which standard178

foundations would otherwise be implicitly assumed.179

2.2 Tarski-Grothendieck Set Theory180

Tarski-Grothendieck set theory (TG or ZFCU) is a nonconservative extension181

of ZFC using FOPC. A motivation is to provide a basis for category theory and182

in particular for Grothendieck’s work in algebraic geometry. Many categories183

of interest, such as the category of all topological spaces, are proper classes. To184

allow for these TG set theory adds an axiom U to ZFC, giving ZFCU, stating185

that every set is an element of a Grothendieck universe, where a Grothendieck186

universe is a set defined so that it is closed under the usual set operations187

such as the power set. A Grothendieck universe is equivalent to an inaccessible188

cardinal, where an inaccessible cardinal is one that cannot be reached from below189

by the usual set operations. Since a Grothendieck universe acts as an internal190

model for ZFC the consistency of TG implies the consistency of ZFC and so by191

Gödel’s second incompleteness theorem (which implies that ZFC cannot prove192

its own consistency) TG must be a nonconservative extension of ZFC. Thus a193

Grothendieck universe is an object that exists in ZFCU but not in ZFC.194

In spite of the conceptual clarity provided by Grothendieck universes (and195

the prestige of Grothendieck) there is a reluctance to go beyond ZFC even196

within algebraic geometry. The Stacks Project [2014], an open source collabo-197

rative ongoing textbook on algebraic stacks and the required algebraic geometry,198

explicitly avoids the use of universes. This is an example of the reluctance of199

mathematicians to add axioms to ZFC, which is supported by the fact that200

extensions of ZFC generally increase the possibility of an inconsistency and is201

contrary to the admonition of Ockham’s razor that entities should not be mul-202

tiplied beyond necessity.203

2.3 Constructive Mathematics204

Constructive mathematics is an example of a variety of mathematics in which205

the mathematical assertions and logic have both rules and interpretations dif-206

ferent from standard mathematics. The basic idea is that the existence of a207

mathematical object can only be asserted if there is a method of constructing208

the object. This requires that intuitionistic logic be used in which the Law209

of the Excluded Middle (LEM) fails: if P is an assertion then P ∨ ¬P can210

be asserted only when there is a constructive method of asserting P or a con-211

structive method of asserting ¬P , which is not always possible. Similarly an212

assertion that P implies Q is interpreted as stating that there is a construc-213
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tive way of transforming the construction for P into a construction for Q. The214

main version of constructivism was developed from the work of Bishop [1967], in215

which standard mathematics is a proper extension of constructive mathematics.216

Thus all theorems of constructive mathematics are also theorems of standard217

mathematics, but not conversely. An example of an object familiar to most218

mathematicians that exists in standard mathematics but not in constructive219

mathematics is the Dirichlet (or comb) function, which is defined on the unit220

interval so that it is 1 on the rational numbers and 0 on the irrational numbers in221

the interval. It cannot be defined constructively [Bridges and Palmgren, 2013],222

but in standard mathematics it is an important example of a function that is223

Lebesgue integrable but not Riemann integrable.224

2.4 Univalent Foundations225

The univalent foundations program, currently under active development, is an226

example of a variety of mathematics not based on set theory. It has as its ba-227

sis an extension of the predicative, intuitionistic Martin-Löf type theory with228

additional axioms such as univalence. Just as standard set theory assumes the229

existence of the empty set and has axioms that assert the existence of new230

sets given existing sets (e.g., unions), univalent foundations assumes the needed231

types, such as the natural number type. The logic is intuitionistic and in this232

approach there are several primitive concepts including type, identity of types,233

function types, and ordered pairs. The motivating interpretation is homotopy234

theory in which types are considered as spaces and with constructions as homo-235

topy invariants. The univalence axiom implies that isomorphic structures can236

be identified. Identifying structures up to isomorphism is common in standard237

mathematics, e.g., the von Neumann, Zermelo, and other interpretations of the238

natural numbers are isomorphic in standard set theory and thus can be consid-239

ered identical as a type. However in standard mathematics isomorphic objects240

are not necessarily identified. For example the singleton sets {0} and {1} are241

isomorphic as sets (and by a unique isomorphism) but if they are identified242

then by extensionality the elements would be the same and so as a consequence243

0 = 1. Thus univalent foundations are incompatible with standard set theory.244

Univalent foundations does, however, define a class of types that behave in a245

similar manner to classical sets in many applications. Unlike other versions246

of constructivism the univalence approach does not deny the Law of Excluded247

Middle in principle, but uses variations on it as needed in theorems. Addi-248

tional assumptions and particular care in the presentations of the theory are249

required due to the predicative nature of the type theory, as when presenting250

impredicative concepts such as the power set or the least upper bound. Another251

interesting feature is the use of the Coq proof assistant, which implements the252

logic. With regard to interpretations and consistency, the authors of the uni-253

valent foundations book [The Univalent Foundations Program Authors, 2013,254

p. 11] wrote:255

As with any foundational system, consistency is a relative question:256

consistent with respect to what? The short answer is that all of the257
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constructions and axioms considered in this book have a model in the258

category of Kan complexes, due to Voevodsky ... . Thus, they are259

known to be consistent relative to ZFC (with as many inaccessible260

cardinals as we need nested univalent universes).261

This quotation illustrates the common view, which also holds in deductive plu-262

ralism, that statements about consistency are relative rather than absolute.263

Since univalent foundations uses category theory, among other theories, as264

a basis for interpretation and consistency, it is appropriate to now consider it265

as a possible foundation.266

2.5 Category Theory267

There have been proposals that some variety of category theory (CT) be a268

foundation for mathematics as an alternative to set theory. This approach is269

similar to univalent foundations in that the primary objective is usually a dif-270

ferent foundation rather than a substantially different mathematics. It is also271

similar in that categorical foundations use topoi, which are a generalization of272

sets and whose logic is, in general, intuitionistic logic. Linnebo and Pettigrew273

[2011] survey some possibilities for using category theory as a foundation with274

some criteria, e.g., requiring independence from set theory and requiring some275

existential assertions (as ZFC asserts the existence of the empty set). Some276

theories are rejected: Synthetic Differential Geometry (SDG) as too narrow and277

the Category of Categories As Foundations (CCAF) as not independent of set278

theory. They then consider the Elementary Theory of the Category of Sets279

(ETCS) as a case study. ETCS is significantly different from set theory. In it280

everything is defined in terms of (category theoretic) arrows, including member-281

ship, which presents problems for set membership, e.g., an element cannot be a282

member of more than one set, extensionality does not hold for sets, and there283

are multiple (isomorphic) empty sets. In addition, although ETCS may be log-284

ically independent of set theory, it requires prior set theory for interpretations,285

for examples, and thus for comprehension.286

2.6 Inconsistent Mathematics287

Inconsistent mathematics is mathematics in which some contradictions are al-288

lowed [Mortensen, 1995]. If a contradiction implies all statements then the289

system is trivial, thus the logic used cannot be standard logic. The most com-290

mon alternative is some kind of relevant logic. Most of the work in this area has291

been in the logical foundations and their immediate consequences, although sug-292

gestions have been made for other possible applications including inconsistent293

databases, inconsistent pictures (such as those by Escher), earlier mathemat-294

ics (such as infinitesimals), alternative accounts of the differentiability of delta295

functions, or solutions of inconsistent sets of equations. Inconsistent set theory296

is one of the most widely studied topics within inconsistent mathematics. The297

objective is often to have a set theory based on two assumptions: unrestricted298
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comprehension (for any predicate P , ∃z∀x(x ∈ z ↔ P (x))) and extensionality299

(y = z ↔ ∀x(x ∈ y ↔ x ∈ z)). As is well known the former leads to Russell’s300

paradox by setting P (x) = (x /∈ x), and so to avoid triviality, in which all301

predicates hold, a non-explosive logic must be used.302

In this section we have briefly examined several varieties of mathematics.303

The list is not meant to be exhaustive: some varieties not discussed are vari-304

ous versions of finitism. However the above varieties should be enough for the305

following discussion. If a philosophy of mathematics is to be inclusive of mathe-306

matical practice then it must accommodate these varieties, which have different307

logical assumptions (e.g., FOPC, intuitionistic), different set theoretic founda-308

tions (e.g., ZFC, ZFCU) or foundations not using set theory (e.g., univalent309

foundations, category theory), and even different approaches towards consis-310

tency (e.g., inconsistent mathematics). As a consequence objects, such as the311

Dirichlet comb function, may exist in one variety of mathematics but not in an-312

other variety. The discussions of the above varieties show that no single logical313

or mathematical foundation is feasible and have also given illustrations of the314

attitudes of mathematicians concerned with foundations that are compatible315

with deductive pluralism.316

3 DEDUCTIVE PLURALISM AS A PHILOSOPHY OF317

MATHEMATICS318

As shown in the previous sections there are varieties of mathematics with in-319

compatible logical or mathematical foundations. Deductive pluralism proposes320

that the simplest way to view mathematics with respect to the requirements of321

inclusiveness of and consistency with mathematical practice and attitudes is to322

allow for a plurality of varieties and with a form of deductivism within each vari-323

ety. The pluralistic component of deductive pluralism automatically satisfies the324

criterion of inclusiveness. Within the context of a variety the definitions, theo-325

rems, proofs, and examples (which in this paper are referred to as mathematical326

practice) hold whether the foundations are considered as true in some absolute327

sense or as useful assumptions. In practice little or no reference is made to stan-328

dard previous results, much less to the foundational assumptions, such as ZFC.329

However, when an alternative foundation is used then a reference is made, as in330

the example of Bernstein’s article discussed in section 2.1. Thus the deductive331

component of deductive pluralism satisfies the criterion of compatibility with332

mathematical practice. This section will concentrate on showing that deductive333

pluralism is consistent with the attitudes of mathematicians towards their work334

and with applications. Not all mathematicians will have the same attitude and335

there is no survey of attitudes, so what we need to show is that a substantial336

proportion, possibly a majority, of their attitudes are consistent with deductive337

pluralism. But before doing this we will discuss ontological and epistemological338

considerations which are relevant to any philosophy of mathematics.339
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3.1 Ontology and Epistemology340

One of the advantages of any version of deductivism is the elimination of onto-341

logical problems since no variety is considered as true in some absolute sense and342

the basic statements are assertions that the assumptions (ultimately the foun-343

dations) imply the conclusions. Thus there are no problematic questions about344

the existence of abstract objects. For example the assumptions of standard set345

theory immediately imply the existence, within that variety, of the empty set.346

This is similar to Carnap’s view that the “reality” of abstract entities can only347

be considered within a linguistic framework. Mathematicians working within348

standard mathematics will implicitly assume standard set theory and thus will349

use the empty set and set theoretic constructions without mentioning the foun-350

dational assumptions.351

Any attempt to go beyond deductivism requires confronting the problematic352

question of the existence of abstract objects. There are many views, such as that353

of Balaguer [1998, p. 22] who considered the question as essentially meaningless:354

Now I am going to motivate the metaphysical conclusion by arguing355

that the sentence – there exist abstract objects; that is there are356

objects that exist outside of space-time (or more precisely, that do357

not exist in space-time) – does not have any truth condition... .358

One of the clearest approaches to abstract objects within mathematics is that359

of Hilbert who equated existence of such objects with consistency in his 1900360

address introducing the Hilbert Problems when he stated:361

If contradictory attributes be assigned to a concept, I say that math-362

ematically the concept does not exist. ... But if it can be proved that363

the attributes assigned to the concept can never lead to a contradic-364

tion by the application of a finite number of logical inferences, I say365

that the mathematical existence of the concept ... is thereby proved.366

[Hilbert, 1902, pp. 9–10]367

From Gödel’s results we know that most mathematical systems of interest can-368

not prove their own consistency thus this condition must generally be replaced369

by relative consistency. In addition, Hilbert’s condition is explicitly violated in370

the case of inconsistent mathematics considered above in section 2.6. In order to371

include inconsistent mathematics the condition of consistency might be replaced372

by non-triviality.373

In deductive pluralism mathematical statements take the form of assertions374

that the assumptions, ultimately the foundations, imply the conclusions. With375

this approach the assertions (i.e., implications) are also objectively true in that376

mathematicians favoring different varieties of mathematics can agree that given377

the assumptions and a correct deduction from these then the conclusion fol-378

lows. Thus the question of epistemology for deductive pluralism centers on379

the reliability of these assertions. The assertions are usually supported by rig-380

orous, but not fully formal, proofs. There can be considerable disagreement381

on when a published proof has sufficient detail, but, as discussed in section382
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1.1 above, a common idea is that it should be possible to expand such a pub-383

lished proof to obtain a fully formal proof, e.g., one which can be checked by384

a computer proof verification program. The proof verification system Mizar385

(www.mizar.org) uses Tarski-Grothendieck set theory as its basis and the re-386

sults are in the Journal of Formalized Mathematics. As an example Gödel’s387

completeness theorem has been verified using Mizar. The univalent foundations388

program uses Coq (coq.inria.fr) in a much more extensive way, using proof as-389

sistants “not only in the formalization of known proofs, but in the discovery390

of new ones. Indeed, many of the proofs described in this book were actually391

first done in a fully formalized form in a proof assistant...”[The Univalent Foun-392

dations Program Authors, 2013, p. 8]. According to Mackenzie [2001, p. 323]393

mechanization of proofs in the mathematical literature has supported the belief394

that these rigorous, semi-formal proofs are reliable:395

Research for this book has been unable to find a case in which the396

application of mechanized proof threw doubt upon an established397

mathematical theorem, and only one case in which it showed the398

need significantly to modify an accepted rigorous-argument proof.399

This is testimony to the robustness of “social processes” within400

mathematics.401

Nothing is perfect and there are errors in published proofs which may lie unde-402

tected for many years, especially in those which are seldom examined. However403

mechanical checking, as with Coq or Mizar, substantially reduces the chance for404

error and provides a robust check on mathematics.405

The questions of mathematical ontology and epistemology are related to how406

mathematics is viewed: is it discovery or creation. Deductive pluralism provides407

a clear perspective on this question. A mathematician works within the con-408

text of a variety of mathematics with foundational mathematical and logical409

assumptions, definitions, and previous results. Within this context necessary410

consequences are discovered. Sometimes a mathematician generalizes and ab-411

stracts out features of existing examples to create a new definition, such as412

the development of the abstract group concept in the nineteenth century. Or413

a mathematician may extend an existing variety to accommodate mathemati-414

cal requirements, such as the extension of ZFC to ZFCU by Grothendieck, or415

develop a new variety such as constructive mathematics. These activities can416

be viewed as the creation of new theories or varieties of mathematics. Thus417

mathematics involves both discovery of new mathematical results (from exist-418

ing mathematics) and creation of new concepts (by generalization, unification,419

and abstraction).420

3.2 Consistency with Attitudes of Mathematicians421

This section will consider the consistency of deductive pluralism with the atti-422

tudes of mathematicians towards foundations – do mathematicians regard some423

variety or its foundations as true in some absolute sense? If this were so, then424
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there would be a conflict between deductive pluralism and the attitudes of math-425

ematicians. Almost all the work in mathematics, past or present, is within stan-426

dard mathematics and for those within this tradition there is no need to consider427

or mention the foundational assumptions – FOPC and standard set theory. If a428

mathematician uses another foundation then that is usually mentioned, as was429

illustrated in the above section 2.1 on nonstandard analysis. Also, the attitudes430

of contemporary mathematicians towards foundations tend to be consistent with431

deductive pluralism in that when foundations are considered they are not viewed432

as true or false in some absolute sense. Some examples will be given from lead-433

ing mathematicians when they consider foundational questions. The univalent434

foundations group wrote that “we therefore believe that univalent foundations435

will eventually become a viable alternative to set theory as the ‘implicit foun-436

dation’ for the unformalized mathematics done by most mathematicians” [The437

Univalent Foundations Program Authors, 2013, p. 1], thus demonstrating both438

a pluralistic and deductive attitude. Mumford [2000, p. 208] has suggested that439

statistical random variables should be a primitive concept with stochastic set440

theory as a foundation for mathematics. In order to do this he made explicit441

some assumptions about standard mathematics when he wrote: “This calls for442

the most difficult part of this proposed reformulation of the foundations: we443

need to decide how to define stochastic set theory. Clearly we must drop either444

the axiom of choice or the power set axiom.” If they can be dropped, then they445

cannot be regarded as true in some absolute sense.446

Philosophers have commented on the attitudes of mathematicians towards447

foundations. Maddy [1989, p. 1223–4] generalized about the attitude of mathe-448

maticians when she wrote that “[w]hat you hear from the mathematician intent449

on avoiding philosophy often sounds more like this: ‘All I’m doing is showing450

that this follows from that. Truth has nothing to do with it. Mathematics is just451

a study of what follows from what.’ ” Of course, from the point of view of de-452

ductive pluralism the characterization of mathematics as studying “what follows453

from what” is not an avoidance of philosophy but an assertion of philosophy, i.e,454

some form of deductivism. In a similar vein Clarke-Doane [2013, p. 470] wrote455

that “[m]athematicians are overwhelmingly concerned with questions of logic —456

questions of what follows from what” and Hellman and Bell [2006, p. 65] express457

a compatible view that “[t]o be sure, classical practice itself does not imply en-458

dorsement of Platonism, as many mainstream mathematicians, if pressed, fall459

back on some kind of formalism or fictionalism.” These views are also supported460

by Hersh [1997, p. 39] who wrote: “Writers agree: The working mathematician461

is a Platonist on weekdays and a formalist on Sundays.” This can be interpreted462

as stating that when doing mathematics (on weekdays) within the context and463

implicit assumptions of a variety a mathematician can assert existence, e.g., of464

the empty set, but when reflecting on mathematics or considering foundational465

questions (on Sundays) a more deductivist view is adopted.466

The above examples of specific statements by mathematicians when consid-467

ering foundational questions show that there is support for deductivism and468

pluralism. Also, if the above statements by philosophers and others discussing469

the views of mathematicians are correct, then attitudes consistent with deduc-470
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tivism are widespread. For some arguments supporting a form of absolute truth471

or consistency, see section 4.1 below.472

3.3 Consistency with Applied Mathematics473

We will now consider the consistency of deductive pluralism with applications474

of mathematics. Deductivism views mathematical statements as asserting that475

certain conclusions follow from the assumptions within a variety. There is some-476

thing of an analogy in applications which use models of natural systems and de-477

rives conclusions from these models using mathematical theory. In more detail,478

a natural system, physical or social, is modelled by selecting some components479

that are relevant to the scientist. This model is often designed with regard480

to the available mathematical techniques and a correspondence is set up be-481

tween mathematical elements and natural elements. Mathematical deduction482

then produces consequences that map back to the natural system, thus giving483

supporting or disconfirming evidence for the model when compared to data.484

Usually the mathematical theory used is part of standard mathematics since485

it was axiomatized to be consistent with existing mathematical practices in-486

cluding applications. However the use of other varieties is possible, e.g., there487

has been some interest in using nonstandard analysis in applications such as488

by Albeverio et. al. [1985]. Sometimes within science the term “model” is489

explicitly used: e.g., the “standard model” in particle physics, the “Hodgkin-490

Huxley model” in biology, the “General Circulation Model” in climatology, and491

the “Gibbs model” in thermodynamics. The models are not viewed as true in492

some absolute sense, but as approximations; e.g., when a better model is found493

it replaces the previous model as when General Relativity replaced Newtonian494

gravitational theory. The consistency of deductivism with applied mathematics495

was supported by Resnik who wrote “it [deductivism] appears to account nicely496

for the applicability of mathematics, both potential and actual; for when one497

finds a physical structure satisfying the axioms of a mathematical theory, the498

application of that theory is immediate” [Resnik, 1980, p. 118].499

One factor that allows immediate application of a theory is the fact that500

sometimes the mathematical theory and its applications are developed together501

by the same person or as part of a long tradition. Some examples in physics502

of interaction between mathematical theory and physical theory are the New-503

tonian gravitational model which was developed by Newton along with the cal-504

culus; Einstein’s General Relativity of the early twentieth century which relied505

on Riemann’s theory of differential manifolds from the mid-nineteenth century,506

but which also spurred research on semi-Riemannian manifolds; the interac-507

tion between the development of quantum mechanics and operator theory; and508

string theory which has had major interactions with new mathematics such as509

Calabi-Yau manifolds and mirror symmetry. As an example of the conjoined510

development of models and theory in biology and statistics, Ronald Fisher has511

been called a founder of modern statistics and the greatest biologist since Dar-512

win by Dawkins [2011]: “Not only was he the most original and constructive513

of the architects of the neo-Darwinian synthesis, Fisher also was the father of514
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modern statistics and experimental design.” These examples of the joint devel-515

opment of mathematical theory and natural system models will be referred to516

below in section 4.2 when objections to deductivism based on applications are517

considered.518

This section has shown that deductive pluralism is consistent with math-519

ematical practice, applications and attitudes about mathematics. Mathemati-520

cians work within a variety of mathematics and thus their assertions, either521

formal or informal, implicitly assume the foundations of that variety. But when522

considering the foundations, especially in recent times, mathematicians do not523

view the foundations as true in some absolute sense. In applications a variety of524

mathematics is applied to a model of a natural system to deduce consequences525

and compare with data. Some criticisms of deductivism related to applications526

are discussed below in section 4.2.527

4 POSSIBLE CRITICISMS528

This section will consider some possible objections to deductive pluralism. Since529

deductive pluralism can be viewed as an extension of previous versions of de-530

ductivism (if-thenism) some objections to earlier versions of deductivism will be531

discussed as they may apply to the philosophy presented here.532

4.1 Objections Based on Absolute Views533

Some objections are based on the view that some foundation is true or false in534

an absolute sense rather than merely in the sense within mathematical model535

theory, and mathematics more broadly, in which a sentence is true if and only536

if it is true in all models. An example is Platonism, a strong version of which537

considers the entities and concepts as eternal, acausal, objectively true, and538

mind independent. There are also weaker versions of objections based on ab-539

solute truth or consistency. Resnik [1997, p. 142] wrote that “[deductivism] is540

an unsatisfactory doctrine. Mathematicians want to know that their systems541

have models; and they want to know this absolutely, and not just relative to a542

metaphysical theory.” Wants cannot always be satisfied: “if wishes were horses,543

beggars would ride.” However, contrary to Resnik’s assertion, we have seen that544

mathematicians who consider foundational questions accept relative consistency,545

e.g., as quoted above in section 2.4: “[a]s with any foundational system, con-546

sistency is a relative question” [The Univalent Foundations Program Authors,547

2013, p. 11]. More generally this view contradicts the previously discussed548

assertions by Maddy, Clarke-Doane, and individual mathematicians that math-549

ematicians are concerned with “what follow from what.” From a more technical550

point of view the absolute existence of a model would conflict with Gödel’s result551

that having a model implies consistency, and (first order) systems of the power552

needed cannot prove their own consistency. Thus such views require some form553

of Platonism in which consistency is assumed absolutely rather than relatively554

or implicitly. This contradicts our requirement of inclusiveness since adherents555

of different varieties of mathematics want contradictory things: users of TG556
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set theory want it to be consistent, while strict constructivists may not believe557

that ZFC, much less TG, is consistent. Even Resnik in the pages preceding558

this assertion in a discussion of mathematical practice wrote that “[t]he real559

issue concerns what is true if [the axioms] are true, and in the course of proving560

theorems one provides conclusive evidence for such conditional truths” [Resnik,561

1997, p. 140].562

As another example of an objection relying on an absolute concept of truth563

Hellman [1989, p. 26] wrote that a “decisive objection” to if-thenism is to sup-564

pose that an arithmetic sentence is implied by some assumptions but that the565

antecedent is false, e.g., that there is no natural number sequence. Then using566

FOPC, in which a false sentence implies all statements, the assumptions would567

imply all sentences. There is an implicit assumption that the assertion that568

there is a natural number sequence can be classified as true or false in some569

absolute sense. How can this be done? A natural number sequence is an ab-570

stract object, so we return to the vexed question of conditions for the existence571

of abstracta. For example, using Hilbert’s criterion for non-existence, which is572

that the concept leads to a contradiction, the only way that it can be deter-573

mined that there is no natural number sequence is to find a contradiction in574

the Dedekind-Peano axioms, which is possible but seems very unlikely. Math-575

ematicians do sometimes look for such contradictions. For example in 2013 a576

well-known mathematician, Edward Nelson, posted a claim that he had found577

a contradiction within the Dedekind-Peano axioms, but an error in his reason-578

ing was soon found and the claim was withdrawn. This example illustrates the579

fact that although consistency is generally (implicitly) assumed mathematicians580

sometimes look for contradictions within the standard foundations, and the fail-581

ures of these explicit efforts give additional support to the assumption that the582

standard foundations are consistent. If such a contradiction were found then a583

likely result would be a modified set of axioms that avoids the contradiction and584

preserves (almost all) mathematics as occurred with the discovery of Russell’s585

paradox.586

Some philosophers argue against deductivism on the basis of absolute views587

about sets. For example in discussing the continuum hypothesis (CH), which588

states that any infinite subset of the reals must have the same cardinality as589

(be equinumerous with) either the reals or the natural numbers, Maddy [1989,590

p. 1124] wrote that “if we move to the idea of second order consequence, the591

Continuum Hypothesis becomes a real question in its own right, in the sense592

that it either follows or doesn’t follow from second order ZF. But CH is just593

the sort of question If-thenism hopes to count as meaningless.” A problem594

with this objection is that for second order ZF (which assumes proper classes)595

to determine CH requires an absolute concept of sets. Jané [2005, p. 797]596

wrote that “claiming that canonical second-order consequence is determinate597

requires taking a strong realist view of set theory.” Such a strong realist view598

assumes existential conditions on abstracta that are hard to justify and that are599

unnecessary from the point of view of deductive pluralism. In practice there600

is little or no use of CH outside of logic. If it were needed then deductive601

pluralism could view ZFC+CH as a reasonable foundation for mathematics.602
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Also, if-thenism (or deductivism, or deductive pluralism) would not view CH as603

meaningless but as indeterminate using standard axiom systems.604

Some mathematicians do have attitudes that assert the absolute existence605

of abstract objects, especially in set theory. An example is a possible extension606

of ZFC by the Axiom of Constructibility, which asserts that the universe of sets607

(V ) is identical to all constructible sets (L), i.e., V = L. This axiom resolves608

some major questions in set theory, in particular the continuum hypothesis:609

ZFC+V=L implies CH. However ZFC+V=L is inconsistent with many of the610

large cardinal axioms (although it is consistent with Grothendieck Universes).611

Thus Hauser and Wooden [2014, p. 13] wrote: “In fact the assertion V = L itself612

is almost certainly false because among other things it rules out the existence of613

measurable cardinals.” More generally, Hamkins [2014, p. 25] wrote that this is614

a common view: “Set theorists often argue against the axiom of constructibility615

V = L on the basis that it is restrictive.” But he also wrote that this view616

is based on an absolute set concept. Such absolute attitudes are inconsistent617

with deductive pluralism since they would rule out those with other views, for618

example those who would accept ZFC+V=L.619

The belief in the absolute existence of some mathematical object contra-620

dicts deductive pluralism since such a belief would require that contradictory621

assumptions be rejected, thus violating pluralism. Such a belief may provide622

motivation for research, but does not affect mathematical statements since these623

statements assert that an implication holds: an assumption implies a conclusion.624

If the mathematical argument is valid, then the implication holds whether or625

not the assumption is viewed as an absolute truth. For example, in the case of626

extending ZFC with the large cardinal axiom of measurable cardinals the rigor-627

ous proof that the existence of a measurable cardinal implies that V 6= L holds628

whether or not one believes in the absolute truth of the existence of measurable629

cardinals.630

4.2 Objections Based on Applications631

Other objections view applications as determining the validity of foundations:632

the existence of applications of mathematics is sometimes used not only to justify633

mathematics but to allow attribution of absolute truth or falsity to mathemati-634

cal statements. This view would contradict pluralism since varieties, or theories635

within varieties, not supported by applications would be viewed as false. As636

an example Resnik [1997, p. 99] wrote: “On my account, ultimately our evi-637

dence for mathematics and mathematical objects is their usefulness in science638

and practical life.” Similarly Azzouni [1994, p. 84] wrote: “In particular, the639

truth or falsity of a particular branch of mathematics or logic turns rather di-640

rectly on whether it is applied to the empirical sciences.” First let us consider641

what portion of mathematics is relevant to applications to the empirical sci-642

ences. Physics is the area of science most often discussed in the philosophy of643

mathematics, but the mathematical physicist Roger Penrose [2005, p. 18] wrote644

that “[it] is certainly the case that the vast preponderance of the activities of645

pure mathematicians today has no obvious connection with physics.” Thus if646
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Penrose is even approximately correct any philosophy of mathematics that re-647

quires applicability will be unable to satisfy the condition that a philosophy of648

mathematics be inclusive. Another problem is that this view has mathematical649

objects flickering in and out of existence. As an example of this applicability cri-650

terion for mathematical existence Riemann’s differentiable manifolds, developed651

in the nineteenth century, flickered into existence in the twentieth century with652

Einstein’s General Relativity, and entire branches of mathematics may flicker653

out of existence if theories such as loop quantum gravity or the speculations by654

Einstein and Feynman that space and time are discrete result in superior dis-655

crete models replacing continuous models in physics. Few people would reject656

a field of mathematics merely on ephemeral considerations of applicability.657

Other objections also centered on applications criticize deductivism. For658

example Maddy [1989, p. 1124–1125] wrote that:659

[b]ut for all this, the argument that seems to have clinched the case660

against If-thenism for Russell and Putnam is a version of Frege’s661

problem, a problem about applications. Reformulated for the If-662

thenist, it becomes: how can the fact that one mathematical sen-663

tence follows from another be correctly used to derive true physical664

conclusions from true physical premises?2665

Consider a natural model, such as Newtonian gravitation. It is not a physical666

“truth”: it is a model of physical reality, which is now an approximation to an667

improved model, General Relativity. Objections to deductivism that rely on ap-668

plicability to natural systems seem to often assume, sometimes implicitly, that669

physical theories are absolutely true rather than approximate models: models of670

reality should not be conflated with reality. It also should be noted that mathe-671

matical deductions sometimes give results applicable to natural system models672

because they are designed to do so since, as the previous section on consistency673

with applied mathematics illustrated, in many cases the mathematical theory674

and applications to natural systems are developed together by an individual or675

by a research community.676

In this subsection we have seen that objections based on applications do677

not hold. Some objections are based on the mistaken belief that models of678

natural systems are true in some absolute sense; other objections are based on679

an extreme view of mathematics as necessarily playing a subordinate role to680

ephemeral models of natural systems.681

2It is not clear that Russell abandoned his original view. In the preface to the second
edition of Principles of Mathematics Russell [1937, p. v] wrote: “The fundamental thesis
of the following pages, that mathematics and logic are identical, is one which I have never
since seen any reason to modify.” This logicism is Russell’s version of if-thenism: “PURE
Mathematics is the class of all propositions of the form ‘p implies q’;” [Russell, 1937, p. 3].
What Russell did criticize in the second edition is strict formalism in which the symbols
are uninterpreted. However deductive pluralism (and possibly if-thenism) does not require
uninterpreted symbols.
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4.3 Objections Based on Mathematical Practice and Attitudes682

Objection to deductivism are sometimes based on mathematical practice. Maddy683

[1989, p. 1124] wrote that “we need to ask what mathematicians were doing be-684

fore arithmetic was axiomatized. Was it not mathematics?” It was mathemat-685

ics, which has been expanded, rationalized, and given additional interpretations686

throughout history. These changes have incorporated previous mathematics.687

For example the study of natural numbers assumes they are infinite (or po-688

tentially infinite) and is abstracted from experience with finite collections of689

discrete persistent objects. The Dedekind-Peano axiomatization of the natural690

numbers in the 1880s incorporated this experience and since then the elementary691

number theoretic results are consequences of these axioms. This is an example692

of the axiomatization of mathematics which has occurred over many decades693

and has made implicit assumptions explicit. Deductivism might be viewed as694

an incorporation of this development into philosophy: just as the properties of695

the natural numbers follow from the Dedekind-Peano axioms, so do the proper-696

ties of a variety of mathematics follow from the foundational mathematical and697

logical axioms.698

Resnik [1980, pp. 133–136] wrote that “deductivism is a powerful and ap-699

pealing philosophy of mathematics”, but he expressed concerns about “loose700

ends” related to mathematical practice. The first concern was that the deduc-701

tivist “would need to explain why realism is acceptable in nuclear physics but702

not in mathematics.” Some concepts of realism will be discussed later, but the703

basic answer to this objection is that physics develops models of space-time704

objects and processes while mathematics does not, although it may be applied705

to such models as previously discussed. This objection also suggests the error706

discussed above in section 4.2 in which models of reality are conflated with re-707

ality. Another of Resnik’s concerns was that “deductivism may be unable to708

present a satisfactory epistemology for deductive reasoning itself.” As has been709

noted, different varieties of mathematics have different views about the rules for710

deductive reasoning (e.g., the acceptance of LEM), so in deductive pluralism the711

logic is part of the foundational assumptions. Resnik also wrote that according712

to the deductivist the “sincere affirmations of the mathematician that a certain713

mathematical structure exists and that certain statements are true are ellipti-714

cal” and that the mathematician denies that they are elliptical. However such715

statements are made in a context of implicit assumptions, such as standard set716

theory, definitions, results, and methods. In the given context the statements717

are true in that they follow from the implicit assumptions. In addition, Resnik’s718

claim about the attitude of mathematicians is inconsistent with the statements719

cited in section 3.2 by mathematicians and by philosophers that mathematicians720

are concerned with “what follows from what.”721

A final objection along related lines is that deductivism is incomplete. Hell-722

man [1989, p. 9] wrote that “a straightforward formalist or deductive approach723

is ruled out by the Gödel incompleteness theorems: no consistent formal system724

can generate all sentences standardly interpreted as truths ‘about the intended725

type of structures(s).’ ” This objection has several problems: it primarily ap-726
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plies to deductivism when the foundations are fixed unlike in deductive pluralism727

where the foundations vary; the incompleteness theorems apply to most philoso-728

phies of mathematics and deductive pluralism’s pluralistic component allows it729

to handle incompleteness as well as other philosophies; and a problematic abso-730

lute concept of truth seems to be used since what is considered as true will vary,731

e.g., in set theory is CH true? does a Grothendieck Universe exist? – questions732

which most mathematicians do not even consider since they do not impinge on733

their work and where there is no common view.734

5 RELATED PHILOSOPHIES735

This section considers the relationship between deductive pluralism and some736

other philosophies of mathematics. One problem of discussing these is that737

there are often multiple versions of each philosophy. Thus only some features738

of other philosophies most relevant to deductive pluralism are considered.739

5.1 Fictionalism740

Fictionalism is a variety of nominalism since it asserts the non-existence of ab-741

stracta. Balaguer [2013] wrote that the basic tenets of fictionalism are that742

(1) mathematical theorems and theories assert the existence of abstracta, (2)743

abstracta do not exist, (3) and thus mathematical theorems and theories are744

false. Deductive pluralism denies this syllogism since (1) is not accepted: math-745

ematical theorems and theories are about “what implies what.” As has been746

shown in section 3.2 this is consistent with the attitudes of mathematicians and747

philosophers (e.g., Mumford, Clarke-Doane, Maddy, and univalent foundations)748

and with the fact that mathematicians leave as implicit the foundations, es-749

pecially when they use standard mathematics, but make them explicit when750

using an alternative variety (e.g., in Bernstein and Robinson’s paper quoted751

in section 2.1). Balaguer also discussed another fictionalist slogan that asserts752

mathematical statements are “true in the story of mathematics.” This use of753

the word “story” asserts an analogy to fiction, and adds unnecessary baggage754

to nominalism. Literary fictions deal with events in imaginary space-times, e.g.,755

Sherlock Holmes in London, which is not the case for mathematical objects such756

as numbers. As Burgess [2004, p. 35] wrote in his conclusion to a discussion757

of fictionalism: “I think that in view of this radical difference between mathe-758

matics and novels, fables, or other literary genres, the slogan ‘mathematics is759

a fiction’ not very appropriate, and the comparison of mathematics to fiction760

not very apt.” In any case, the slogan “true in the story of mathematics” can761

be given an interpretation consistent with deductive pluralism. To do this we762

consider a “story” to be a variety of mathematics and the assertion that “a763

statement is true in a story of mathematics” becomes “a statement is implied764

within a variety of mathematics.”765
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5.2 Realism766

Some philosophies of mathematics have a realistic view of mathematical con-767

cepts or entities. Platonism is a strong realism since the entities and concepts768

are viewed as eternal, acausal, objectively true, and mind independent. Such769

views usually contradict deductive pluralism since they reject incompatible va-770

rieties. However there are many versions of realism, including the one given by771

Putnam [1975, pp. 69–70] who wrote:772

I am indebted to Michael Dummett for the following very simple773

and elegant formulation of realism: A realist (with respect to a given774

theory or discourse) holds that (1) the sentences of that theory or775

discourse are true or false; and (2) that what makes them true or776

false is something external – that is to say, it is not (in general) our777

sense data, actual or potential, or the structure of our minds, or our778

language, etc.779

In deductive pluralism the fully formalized statements are implications that are780

true or false, possibly automatically verified. Also, these statements depend781

only on the logical and mathematical syntax. Thus the statements of deduc-782

tive pluralism may satisfy Putnam’s the criteria for realism, depending on the783

interpretation of the second condition.784

5.3 Other Forms of Pluralism785

Various forms of pluralism have been advocated. Rudolf Carnap in The Logical786

Syntax of Language [Carnap, 1937, p. xv] wrote:787

Let any postulates and any rules of inference be chosen arbitrarily;788

then this choice, whatever it may be, will determine what meaning is789

to be assigned to the fundamental logical symbols. By this method,790

also, the conflict between the divergent points of view on the problem791

of the foundations of mathematics disappears ... . The standpoint792

which we have suggested – we will call it the Principle of Tolerance793

... [thus] before us lies the boundless ocean of unlimited possibilities.794

Koellner [2009, p. 98] considered Carnap’s position as too radical and that “[t]he795

trouble with Carnap’s entire approach (as I see it) is that the question of plu-796

ralism has been detached from actual developments in mathematics.” Koellner797

then went on to consider pluralism with respect to additional axioms for ZFC798

with the general view that the choices are not arbitrary and that there is a ques-799

tion of truth other than model-theoretic truth. (His paper used the last lyrical800

phrase of the quotation from Carnap as an epigraph and coda.) Since both pos-801

tulates and rules of inference are included in Carnap’s position it can be viewed802

as a generalization of deductive pluralism. However since deductive pluralism803

is based on actual mathematical practice, it avoids Koellner’s criticism.804

Another form of pluralism was advocated by Pedeferri and Friend [2011].805

Their proposal was a form of methodological pluralism, allowing “deviant”806
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proofs “where mathematicians use steps which deviate from the rigorous set807

of rules methodologies and axioms agreed to in advance.” Rigorous proofs were808

not required to be fully formal: there can be missing steps that in principle809

can be filled by relatively routine work in to produce a formal proof, which is810

consistent with the usage of this paper. They claimed that there are many de-811

viant proofs and gave as the central case study the classification of finite simple812

groups. The basis for the claim that a portion of the classification was deviant813

was an interview with Serre [Raussen and Skau, 2004] in which, according to814

Pedeferri and Friend, Serre found that deviant methods were used to overcome815

an impasse. This does not correctly represent the issue, which was the classifi-816

cation of “quasi-thin” groups and which at one point relied on an unpublished817

manuscript. Those who considered that the classification was complete at that818

time viewed the quasi-thin case as having been satisfactorily dealt with by the819

manuscript. Serre considered it as a substantial gap. The question was not one820

of “deviant” methodology: all the classification was carried out with standard821

mathematics and methods. The question was whether the manuscript was suffi-822

cient. As it turned out Serre was correct and the quasi-thin case was completed823

at about the time of the Serre interview. Methodological pluralism was con-824

sidered as part of a larger program of pluralism in Friend [2013]. In this work825

Friend advocated pluralism with respect to mathematics, including inconsistent826

mathematics. She did not consider foundations containing both mathematical827

and logical components. Instead she suggested the use of some paraconsistent828

logic when the varieties of mathematics are compared. No specific version of829

the many types of paraconsistent logic was advocated, and no example of its use830

was given. There is also the problem that any overarching logic used to compare831

and contrast the varieties of mathematics must include intuitionistic logic (as832

in constructive mathematics) or predicative mathematics (as in the univalent833

foundations approach) as well as other possible logics. When the mathematical834

and logical foundations are considered together, as in deductive pluralism, the835

attempt to use an overarching logic is unnecessary.836

There are also advocates for pluralism of two varieties of mathematics or for837

pluralistic extensions of an existing variety. Davies [2005] discussed standard838

(called “classical” in the paper) and constructive mathematics, with an emphasis839

on the justification of constructive mathematics. The paper viewed each of these840

two varieties as valid within its own context. He wrote [Davies, 2005, p. 272] that841

“[o]ne should simply accept each mathematical theory on its merits, and judge842

it according to the non-triviality and interest of the results proved within it.”843

This is pluralism with respect to two varieties and the phrase “proved within it”844

contains a suggestion of deductivism. Thus deductive pluralism is compatible845

with this view, extending it to general varieties of mathematics and grounding846

them in an explicitly deductivist format. An example of pluralism within a847

particular area is the approach to set theory developed by Hamkins [2014],848

which he calls the set-theoretic multiverse, in which there are many distinct849

concepts of set, each instantiated in a corresponding set-theoretic universe.850

This section has considered some related work in the philosophy of math-851

ematics and has shown that some approaches are consistent with pluralism or852
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deductivism. Thus deductive pluralism as advocated in this paper provides a853

systematic approach that encompasses much of this other work.854

6 CONCLUSION855

This paper shows that deductive pluralism is inclusive of and consistent with856

mathematical practice and attitudes. It is inclusive of mathematical practice857

since it allows various logical and mathematical foundations, and is flexible858

enough to allow for future developments. Its consistency with mathematical859

practice and attitudes is shown in several ways: by the statements of mathe-860

maticians who base their work on something other than standard mathematics861

who explicitly state their foundations (such as nonstandard analysis); by the862

expressed view of mathematicians who consider altering the standard founda-863

tions (such as Mumford and those working in Univalent Foundations); and by864

the statements of philosophers of mathematics who report that mathematicians865

are concerned with “what follows from what.”866

Deductive pluralism also has significant philosophical advantages. Mathe-867

matical statements take the form of deductions, ultimately from the foundations.868

As a consequence the ontological problem of the existence of abstract objects is869

eliminated and the problem of epistemology is reduced to the validity of proofs.870

Also, given the validity of a proof, possibly verified by a proof assistant, then871

the statement is objectively true in that mathematicians supporting any variety872

of mathematics would agree that within another variety the conclusion follows873

from the assumptions.874

7 APPENDIX: LOGIC875

This appendix will present in more detail some logical assumptions that dif-876

fer between the varieties of mathematics and will discuss some logical results877

used in the discussion of these varieties. There is a distinction between syntax878

(primarily form) and semantics (related to meaning or truth). Thus when a879

statement is considered as true, it is implicitly meant as true in some interpre-880

tation. As an introduction to interpretations of formal systems some examples881

of interpretations of logics in terms of sets will also be given.882

7.1 Classical Sentential Logic883

Most of mathematics uses classical sentential logic and its extension to First884

Order Predicate Calculus (FOPC). Propositions are combined using conjunction885

∧, disjunction ∨, negation ¬, and other connectives into new propositions. If a886

formula has a free variable, e.g., P (x), the universal quantifier ∀ or existential887

quantifier ∃ can be used to bind the free variables, e.g., ∀xP (x), producing a888

sentence, which by definition has no free variables. The main deductive rule is889

modus ponens: if P holds and if P → Q holds then Q holds. In classical logic890

implication is defined as “material implication”: P → Q is equivalent to (or891
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defined as) ¬P holds or Q holds, i.e., ¬P ∨ Q. In this logic a false sentence892

implies every sentence, since if P is false, ¬P is true, ¬P ∨ Q holds, and so893

P → Q (“explosion” is when a false statement implies every statement). Non-894

classical logics often retain modus ponens but do not use material implication.895

A second element of classical sentential logic that varies is the Law of Excluded896

Middle (LEM): for any sentence P either P holds or ¬P holds and so P ∨ ¬P897

always holds.898

An interpretation of sentential logic can be given in which a sentence cor-899

responds to a set in the Boolean algebra of all subsets of a fixed set U (the900

universe). In this interpretation ∨ corresponds to set union ∪, ∧ corresponds901

to set intersection ∩, and negation ¬ corresponds to set complement. When902

discussing interpretations the same letter will used for a sentence and its inter-903

pretation to simplify notation if there is no danger of confusion.904

7.2 Intuitionistic Logic905

Intuitionistic logic is used in several varieties of mathematics, including con-906

structive mathematics. This logic rejects LEM and consequently rejects the gen-907

eral form of proof by contradiction ¬¬P → P . However some particular proofs908

by contradiction still go through since by a theorem of Brouwer ¬¬¬P → ¬P909

holds in intuitionistic logic.910

An interpretation of intuitionistic logic can be given in which a sentence911

corresponds to an open set in a fixed topological space U where ∨ and ∧ are912

as in the Boolean set interpretation of classical sentential logic (since the union913

and intersection of two open sets are both open), but negation corresponds to914

the interior of the set complement int(Ac) (since the complement of an open915

set is not generally open) and instead of material implication, where A→ B is916

defined as ¬A ∨ B, the intuitionistic interpretation takes the interior: A → B917

corresponds to int(Ac ∪ B). Since false corresponds to the empty set and true918

corresponds to its complement, U , LEM corresponds to A∪ int(Ac) = U , which919

need not hold for all A. Thus LEM fails as desired in this interpretation of920

intuitionistic logic.921

7.3 Paraconsistent Logic922

A paraconsistent logic is one that does not allow the derivation of all sentences in923

the case that some sentence and its negative have both been derived. In classical924

logic if both P and ¬P are asserted, then any sentence Q can be asserted – from925

a contradiction everything follows –ex contradictione quodlibet (ECQ). Thus a926

paraconsistent logic must change classical logic to prevent this explosion and927

thus triviality (in which all statements can be derived). Various proposals have928

been made for paraconsistent logic; one of the most common is relevant logic929

in which the conclusion of a deduction must be relevant to the assumption. A930

way of doing this is to require both A and B to have a common term as a931

precondition for the assertion of A → B. In ECQ the conclusion need not be932

relevant to the assumption, so relevant logic blocks explosion.933

22



An interpretation of paraconsistent logic is closed set logic, a dual to the934

interpretation of intuitionistic logic. In this approach a sentence corresponds to a935

closed set in a fixed topological space. As with the interpretation of intuitionistic936

logic, ∨ corresponds to union and ∧ corresponds to intersection. The interesting937

case is again negation. Since in general the complement of a closed set is not938

closed, negation corresponds to the closure of the complement Ac. In parallel939

with the intuitionistic case A ∧ ¬A corresponds to A ∩ Ac, which need not be940

empty (i.e., false).941

7.4 Model Theory942

A few results are used from FOPC (in which there is only one type of variable),943

model theory, and Gödel’s theorems.944

Let L0 be a logic, in this case FOPC. A first order language L is an extension945

of L0 obtained by adding relation, function, and constant symbols. (These can946

all be considered relation symbols, e.g., a constant symbol is a 0-ary relation947

symbol.) One of these relation symbols will be the binary equivalence relation of948

equality, if it is not considered to be part of the logic. A first order L-theory T is949

L together with a collection of sentences, which can be viewed as axioms, in the950

language L. (Sometimes the term “theory” is used for both the axioms and all951

sentences that can be deduced from them.) If S is a collection of sentences and952

a sentence φ can be deduced from S by a finite number of applications of the953

rules of deduction (such as modus ponens) then φ is a syntactic (or deductive)954

consequence of S, which is written symbolically as S ` φ. A collection S of955

sentences is inconsistent if there is some sentence φ such that both φ and ¬φ956

can be deduced, i.e., S ` φ and S ` ¬φ.957

Standard model theory uses sets, often not in the context of a specific set958

theory. In this approach an interpretation of L is an L-structure: a set (or959

domain) over which the variables range together with assignments sending con-960

stant, relation and function symbols to constants, functions, and relations on961

the domain. Thus we have four elements: a logic, a language, a theory (all three962

formal and generally uninterpreted), and an interpretation of the language. The963

L-structure interpreting T is assumed to have a consistent way of determining964

if a relation is satisfied. The logic, language, and theory are together referred965

to as a (first order) deductive system. An L-structure M is said to be a model966

of an L-theory T , or M satisfies T , if all the sentences of T interpreted in M967

are satisfied in M . Symbolically this is written M |= T , read as M models968

T . A sentence φ in the language L is defined to be true or semantically valid969

(or model-theoretically valid) if it is satisfied in all interpretations, i.e., M |= φ970

for all interpretations M . Thus “true” in model theory (and more generally in971

mathematics) means true in all models. The models symbol is also used in the972

slightly different form S |= φ where S is a collection of sentences in L, φ is a973

sentence in L, and S |= φ means that every model of S is also a model of φ.974

When S |= φ holds we say that φ is a semantic consequence of S. Thus there975

are two versions of consequence: syntactic consequence S ` φ and semantic976

consequence S |= φ.977
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The following results from logic and model theory are used:978

• Gödel’s completeness theorem for first order systems implies that the two979

notions of consequence agree: S |= φ if and only if S ` φ.980

• Gödel’s completeness theorem and the Gödel-Mal’cev theorem imply that981

a first order theory is consistent if and only if it has a model. Thus an982

interpretation should not be referred to as a model unless consistency is983

proven (or assumed).984

• Gödel’s first incompleteness theorem and its extensions imply that in any985

consistent formal system containing arithmetic there are statements in the986

language of the system such that neither the statement nor its negative987

can be proven in that system.988

• Gödel’s second incompleteness theorem implies that any consistent first989

order system containing arithmetic cannot prove its own consistency. Thus990

most results are about relative consistency rather than consistency. Note991

that if a system is inconsistent then in FOPC any statement can be proven,992

including the statement that the system is consistent.993

• The compactness theorem implies that if every finite subset of a first order994

system with countably many variables has a model, then the system as a995

whole has a model.996

• The Löwenheim-Skolem theorem implies that a first order system has a997

model with a countably infinite domain if and only if it has a model with998

an uncountably infinite domain.999

As an example of these concepts we will consider the first order Dedekind-1000

Peano axiomatization of the natural numbers (with intended interpretation N =1001

{0, 1, ...}). The formal language LN of the natural numbers is (S, 0,=) where S1002

is a function symbol (interpreted as successor), 0 is a constant symbol, and =1003

is the equivalence relation of equality. The theory PN of the natural numbers1004

adds to the language LN the Dedekind-Peano axioms:1005

i. ∀x¬(S(x) = 0)
ii. ∀x∀y(S(x) = S(y)→ x = y)
iii. (φ(0) and ∀x(φ(x)→ φ(S(x))))→ ∀xφ(x)

1006

Axiom (iii) is the axiom schema of induction where, for simplicity, φ is assumed1007

to be any unary predicate formula. (In general n-ary predicate formulas are1008

used.) The arithmetic operations can be defined using these three axioms to1009

give the full set of axioms for the formal first order theory of Dedekind-Peano1010

arithmetic, PA.1011

The formal theory PA has the intended interpretation (N, S, 0,=) (where for1012

simplicity the relations in this interpretation are again given the same names1013

as the formal relation symbols). By the Löwenheim-Skolem theorem if there1014

is a countable model for a first order theory, then there are models of all infi-1015

nite cardinalities. This is an example of the inability of first order theories to1016
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distinguish orders of infinity. By the second incompleteness theorem if PA is1017

consistent it cannot prove its own consistency, and thus by the completeness1018

theorem the intended interpretation (N, S, 0,=) cannot be proven to be a model1019

of PA (without additional assumptions).1020

Assume that PA is consistent and so has a model M . Then a nonstan-1021

dard model of PA can be constructed from it by adding a new natural number1022

constant symbol c to LN giving L′
N with symbols (S, 0,=, c). (The constant c1023

can be interpreted as an infinite number.) The theory T ′
N is defined to have1024

the same sentences as PA with the addition of the countable set of sentences1025

¬(c = 0),¬(c = S(0)),¬(c = S(S(0))), ... . Let F be a finite subtheory of T ′
N .1026

Then F has a model with c interpreted as a suitable element of the domain of1027

M not corresponding to any element of F . So by the compactness theorem for1028

first order logic there is a model for the infinite theory T ′
N , and thus for PA.1029

This model is a nonstandard model that is not isomorphic to M .1030

Since proofs in standard mathematics apply FOPC to the axioms of ZFC, a1031

(fully formalized) proof holds in all interpretations. This can cause some seeming1032

contradictions. For example the Löwenheim-Skolem theorem implies that a1033

first order system such as ZFC has a model (i.e., is consistent) with a countably1034

infinite domain if and only if it has a model with an uncountably infinite domain.1035

So, assuming consistency, the real numbers can be defined and proven to be1036

uncountable in any interpretation. This appears to be a contradiction to the1037

Löwenheim-Skolem theorem, but it is resolved by recalling that a set is countable1038

if and only if there is a one-to-one function from the natural numbers onto the1039

set. Thus from the (internal) perspective of an interpretation there may not1040

exist enough such one-to-one functions so that a set is uncountable, while from1041

the (external) perspective of another interpretation such a one-to-one function1042

exists. Thus every interpretation “thinks” that it is the intended interpretation.1043

From a deductive perspective this does not matter since a deduction from the1044

axioms of ZFC applies to all interpretations.1045

7.5 Second Order Logic1046

Some considerations concerning second order logic are needed in this paper. In1047

second order logic there are two types of variables, first order variables ranging1048

over the elements of the domain and second order variables ranging over sets of1049

elements. The second order variables are sometimes considered as properties,1050

but we will take an extensional approach in which a set corresponds to all1051

elements having that property. The standard (or canonical) interpretation of1052

second order logic is to use “all” subsets of a domain, although there is a problem1053

in deciding what “all” means. The model-theoretic results listed above do not1054

generally hold for second order logic: second order logic is not complete, since1055

S |= φ may hold but not S ` φ; the compactness theorem does not hold; and1056

the Löwenheim-Skolem theorem does not hold.1057

Quine famously referred to second order logic as “set theory in sheep’s cloth-1058

ing” [Quine, 1970, p. 66], and Shapiro wrote that “second-order logic, as un-1059

derstood through standard semantics, is intimately bound up with set theory”,1060
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[Shapiro, 2012, p. 305]. Considering the problems of second order logic such1061

as incompleteness, its close relation to set theory, its use of sets in its model-1062

theoretic semantics, its relative lack of development compared with FOPC, and1063

no clear mathematical advantages, mathematicians have generally stuck with1064

the traditional approach of standard set theory with FOPC rather than use1065

second order logic.1066

8 Appendix: Historical Examples1067

Mathematics has been practiced for thousands of years. Over this period math-1068

ematicians have abstracted, generalized, reinterpreted and axiomatized past1069

work. This section gives two examples.1070

One of the oldest practices is natural number arithmetic. The use of the1071

natural numbers grew over many centuries in many cultures, initially used for1072

counting and then in some cultures for arithmetic. Often counting is done1073

algorithmically, without any assumptions about the nature of the numbers. For1074

example natural numbers may be learned as one-to-one correspondences with1075

number names (or fingers!). This one-to-one approach is now the basis for1076

equinumerosity in standard set theory. Definitions of the natural numbers have1077

been given since early times. For example, Euclid [1908], Book VII, definition1078

1 states that “a unit is that by virtue of which each of the things that exist is1079

called one” and definition 2 states that “[a] number is a multitude composed of1080

units.” The definition of unit is unclear or circular, and multitude is not defined.1081

Of course, not all concepts can be defined if infinite regress is to be avoided.1082

Euclid also uses implicit assumptions, and there have been various proposals on1083

how to fill in the gaps. When it comes to proof Euclid interprets numbers as1084

geometrical line segments. For example, proposition 1, in which a condition is1085

given for two numbers to be prime to one another, begins “[f]or, the less of two1086

unequal numbers AB, CD . . .”, where these are line segments. Thus Euclid is1087

an early example of the use of definitions, interpretations (as line segments), and1088

implicit assumptions. Newton [1769, p. 2] defined numbers, including rationals1089

and irrationals, by abstracting from ratios: “By number we understand not so1090

much a multitude of unities, as the abstracted ratio of any quantity, to another1091

quantity of the same kind, which we take for unity.” By the end of the nineteenth1092

century the widely used properties of the natural numbers were axiomatized by1093

the Dedekind-Peano axioms, and by their extension to Peano Arithmetic, PA.1094

The applicability of the natural numbers is thus to be expected since PA is based1095

on the natural practice of cultures with discrete, stable, numerous (but finite)1096

objects. The finiteness property is a notable difference between many applied1097

uses of numbers and the axioms of PA which might lead to inconsistency: the1098

inductive axiom produces an infinity, potential or actual, of natural numbers. As1099

noted in the above discussion of standard mathematics, some mathematicians1100

have believed that PA is inconsistent due to the inductive axiom.1101

As another example of the growth of mathematical concepts consider the1102

group concept. As discussed in Kleiner [1986] the concept developed from a va-1103
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riety of sources: in the eighteenth century Euler studied modular arithmetic and1104

Lagrange studied permutations of solutions to algebraic equations; in the nine-1105

teenth century Jordan defined isomorphisms of permutation groups and Cayley1106

extended the study of groups beyond permutations to other examples, such as1107

matrices. Although Cayley was ahead of his time in abstracting the concepts to1108

sets of symbols, group elements were usually considered as transformations until1109

the twentieth century. The first study of groups without assuming them to be1110

finite, without making any assumptions as to the nature of their elements, and1111

formulated as an independent branch of mathematics may have been the book1112

“Abstract Group Theory” by O. Shmidt in 1916. Thus analogous to the axiom-1113

atization of the natural numbers the axiomatization of group theory occurred1114

as the result of a long period of development.1115

In these and other examples history shows that basic mathematical concepts1116

can arise over a long period of gradual development, abstraction, generalization,1117

and eventual axiomatization. These concepts are not arbitrarily selected vari-1118

ations on existing concepts, and in many cases the development is intertwined1119

with applications so that the rigorous definition is naturally applicable.1120
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