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Abstract

Two compelling principles, the Reasonable Range Principle and the Preserva-
tion of Irrelevant Evidence Principle, are necessary conditions that any response
to peer disagreements ought to abide by. The Reasonable Range Principle main-
tains that a resolution to a peer disagreement should not fall outside the range of
views expressed by the peers in their dispute, whereas the Preservation of Irrele-
vant Evidence (PIE) Principle maintains that a resolution strategy should be able
to preserve unanimous judgments of evidential irrelevance among the peers. No
standard Bayesian resolution strategy satisfies the PIE Principle, however, and we
give a loss aversion argument in support of PIE and against Bayes. The theory
of imprecise probability allows one to satisfy both principles, and we introduce
the notion of a set-based credal judgment to frame and address a range of subtle
issues that arise in peer disagreements.

1 Reasonable Range

You and a colleague hold different beliefs on the truth of the proposition that it will
rain tomorrow in Riga. You think it is likely to rain. Your colleague believes otherwise.
Neither you nor he can claim an epistemic advantage about the matter. You have the
same evidence. The same level of expertise. The same powers of reasoning. You are
epistemic peers. Upon learning that you have a disagreement with an epistemic peer,
should you revise your beliefs? Should he? If so, how?

One response to an epistemic peer disagreement—or simply, peer disagreement—
is to be conciliatory with your epistemic equals by adopting a new belief that assigns
to each opinion in the disagreement equal weight (Elga 2007, p. 484) thereby splitting
the difference (Christensen 2007, p. 203).1 There are at least two versions of the equal-
weight response, however, which engender different assumptions about the nature of
the evidence a peer disagreement generates, and how that evidence should guide a peer
to change her view.

According to most proponents of the equal-weight view a peer disagreement de-
livers to you evidence that either you or your peer is mistaken about the proposition
in dispute. So, one version of the equal-weight view has it that the evidence from a
peer disagreement is undermining in character and therefore that your reaction to a

1For the moment we use the terms ‘belief,’ ‘judgment,’ ‘view,’ and ‘opinion’ interchangeably to refer
to an agent’s doxastic attitude toward a particular proposition.
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peer disagreement ought to be the same as your reaction to receiving any other new
but conflicting piece evidence: you ought to suspend judgment on the proposition until
additional evidence is gathered (Feldman 2010).

If belief is interpreted categorically, suspending judgment on a disputed proposi-
tion amounts to neither believing it nor its negation. If instead belief is interpreted
partially, and in particular is representable by a unique real-valued probability func-
tion, then suspension of judgment typically amounts to assigning a partial belief of 1/2

to the proposition in question. Either way, the motivation for suspending judgment is
the same. Since the evidence that one receives from a peer disagreement is taken to
undermine rather than ameliorate one’s current view, suspension-of-judgment versions
of the equal-weight view are guided by the notion that one ought to respond to a peer
disagreement by increasing one’s uncertainty about the proposition in dispute.

Another version of the equal-weight view counsels against suspending judgment.
On this version a peer disagreement supplies you with a range of informed opinions,
including your own, so you ought to exploit this information to improve upon your cur-
rent judgment. Here the evidence from a peer disagreement is taken to be ameliorative
in character, so one ought to respond by taking the equally-weighted average of the set
of peer judgments as one’s new partial belief (Douven 2010).2

One advantage opinion pooling strategies have over a naïve suspension of judgment
is that pooling strategies in general, and equally-weighted averaging in particular, yield
a new partial belief that is guaranteed to fall within the reasonable range of informed
opinions.

Reasonable Range Principle: For any group of peers, P, whose partial beliefs in
a proposition A range from x, the lowest confidence in the truth of A expressed by
a member P, to y, the highest confidence in the truth of A expressed by a member
of P, a new belief is said to be within the reasonable range for members of P if
and only if its value is within the closed interval [x,y].

To motivate why the Reasonable Range Principle is reasonable and a policy of naïve
suspension of judgment is not, imagine that your degree of belief in rain tomorrow
in Riga is 8/10 but your epistemic peer’s is 9/10. Upon learning of this disagreement
it would be foolish to advise either you or your peer to naïvely suspend judgment by
adopting a partial belief of 1/2 that it will rain tomorrow. After all, you both agree that
it is more likely to rain in Riga than it is for a fairly tossed coin to land heads, and
no strategy to resolve a disagreement among peers should mandate that each ought to
suspend judgment on a proposition they both believe is overwhelmingly more likely
to be true than false. Whatever uncertainty this peer disagreement may introduce, it
should not wipe out this point of agreement.

2Equally-weighted averaging seems to be a natural belief revision method of the equal-weight view,
but the approach has been disputed in the recent literature (Christensen 2011; Kelly 2013). Weighted
averaging has a long history in opinion aggregation tracing back to de Finetti (1954) and Stone (1961),
who each, independently, proposed weighted averaging to resolve group disagreements among a set
of Bayes agents that share the same utility function. Stone used the phrase opinion pool to describe
this general scenario, and democratic opinion pool for the special case when all opinions are equally
weighted.
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One may nevertheless worry that some disagreements warrant adopting a position
outside the range prescribed by the Reasonable Range Principle. Discovering you are
party to a disagreement introduces you to variance where there was comparatively little
or none before, and sometimes the reasonable response to a channel of information that
increases your variance is to fault the channel rather than submit to constraints imposed
by the information it delivers.3 For example, Christensen (2009, p.759) describes an
agent who is confident but not dogmatic that a treatment dosage to a patient is correct
(0.97) yet responds to a colleague’s strong but slightly less confident belief in the same
(0.96) by boosting his confidence that the dosage is right. But this is an unreasonable
response to an epistemic peer. For while the agent in Christensen’s example expresses
low confidence that the administered treatment is the incorrect dosage, his colleague is
slightly less confident that this error is avoided. Yet if the confidence-boost response
were right, the agent would be licensed to infer from his colleague’s judgment that the
prospect of administering the incorrect dosage is now lower than he originally believed,
which is absurd unless he views his colleague’s judgment to be biased away from the
truth in a way that his own judgment is not. That’s no way to treat a peer.

Responding to a disagreement by adopting a judgment that falls outside the range
of group opinion is reasonable only if your colleagues are not your epistemic peers.
For if every peer’s partial belief that A is between x and y, where [x,y] is the smallest
span covering every peer’s judgment, then violating the Reasonable Range Principle
entails adopting a belief whose value is outside the range considered reasonable by
one’s peers. A response to a peer disagreement which did not satisfy the Reasonable
Range Principle would in effect either deny that the disagreement is among epistemic
peers or license one to deliberately move away, without reason, from the considered
opinions of her peers.

That said, equally-weighted averaging is not the only response to a peer disagree-
ment that satisfies the Reasonable Range Principle. This is fortunate since there are
cases where it is unreasonable to resolve a disagreement among peers by taking some
or another non-extreme weighted average of peer opinions.4 If you are party to a peer
disagreement in which nine out of ten agree yet one outlier does not, the reasonable
response may be for the outlier to fall in line with the majority rather than for the ma-
jority to move partway to meet the outlier. Peerage does not confer infallibility, after
all. Sometimes what a peer learns from a disagreement with his equals is that he is
in the wrong. We will return later to discuss ‘higher-order’ evidence that a group dis-
agreement can produce. For the moment, we only wish to point out that allowing a
single peer to change his view to join a steadfast majority is a case where the Reason-
able Range Principle is satisfied but non-extreme weighted averaging is not. In fact,
any ‘permissive’ response to peer disagreement which allows a party to a disagreement
to stick to her original judgment will trivially satisfy the Reasonable Range Principle.5

3Thanks here to Richard Dawid for pressing us on this point.
4A weighted average is non-extreme just in case every peer’s opinion takes values in the open interval

(0,1), excluding 0 and 1.
5Permissivism is the view that a fixed body of evidence does not necessarily determine a uniquely

rational judgment, and there are several varieties of this view in the recent literature (Rosen 2001; Kelly
2010; Douven 2009; Schoenfield 2014; Kopec 2015). In the probabilistic setting, where doxastic judg-
ments are represented by a probability function, a trivial version of permissivism has been acknowledged
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Even though the Reasonable Range Principle is satisfied by a variety of competing
peer disagreement strategies—including Savage’s Minimax, calibrated maximum en-
tropy, Maximax, and Levi’s E-admissibility—classical Bayesian methods that satisfy
the Reasonable Range Principle nevertheless appear to rule out an important insight
from the suspension-of-judgment view, namely that at least some peer disagreements
deliver greater uncertainty to each member of the group. It is wishful thinking to sup-
pose evidence from every peer disagreement to be ameliorative in character: sometimes
the correct response to a peer disagreement is to be more uncertain about the proposi-
tion in dispute. But if it is true, as we will return to argue, that some peer disagreements
warrant a response that increases one’s uncertainty, how can a peer’s newfound uncer-
tainty from a peer disagreement be reconciled with the Reasonable Range Principle?
That is one of the questions we address in this paper.

Another set of questions we will address concerns a problem Bayesian views have
preserving some shared points of agreement among peers. It is this latter issue we turn
to next.

2 Preservation of Irrelevant Evidence

Discussions of peer disagreement typically focus exclusively on the special case of two
peers disputing a single proposition,6 thus ignoring other forms a peer disagreement
may take and the different responses each form may warrant. For instance, a single
outlier capitulating to his nine peers illustrates how the distribution of group judgments
may yield evidence warranting some members of the group to respond differently than
others. One motivation for restricting attention to two-peer disagreements, however,
is precisely to set aside disagreements that are easily defused by ‘swamping’ higher-
order evidence (Kelly 2010). Since higher-order evidence is not always available, the
restriction to two peers helps to bring the problem of peer disagreement into sharper
focus.7

The same however cannot be said for restricting attention to a single proposition.
Any proposal for resolving a peer disagreement involving one proposition should be
able to handle a disagreement involving two. Yet, two peers disagreeing over two
propositions puts the kibosh on non-extreme weighted averaging strategies. To see
why, consider the following modification of our weather forecasting example.

since Savage’s remark that theories of subjective probability “postulate that the individual concerned is
in some ways ‘reasonable,’ but they do not deny the possibility that two reasonable individuals faced
with the same evidence may have different degrees of confidence in the truth of the same proposition”
(Savage 1954, p. 3). Non-trivial versions of permissivism arise when peers are presumed to share the
same values and same goals of inquiry, where it is a standard assumption in the judgment aggregation
and belief pooling literatures to fix such conditions by, for instance, stipulating a single, shared utility
function. Because the plausibility of permissivism varies wildly depending both on how one models
peer disagreement and how one formulates ‘permissivism’ in a particular model, a general discussion of
permissivism is meaningless.

6For example, see (White 2005; Elga 2007; Christensen 2007; Christensen 2009; Kelly 2010; Feld-
man 2010; Ballantyne and Coffman 2011; Schoenfield 2014; Levinstein 2015; Russell, Hawthorne, and
Buchak 2015).

7For discussions on high-order evidence in peer disagreements, see (Christensen 2010; Kelly 2010;
Lasonen-Aarnio 2014).
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Heads and Rain Example: Suppose that Meteorologist One and Meteorologist Two
share the same data provided by the European Center for Medium Range Weather
Forecasting and they each use this data to forecast rain in Riga for the following
day (R). Meteorologist One’s partial belief in R is 0.40 and Meteorologist Two’s
partial belief in R is 0.55. Included in their shared knowledge is information
about a biased coin to be flipped today and the two meteorologists disagree about
that outcome, too. One’s credence in the coin landing heads today (H) is 0.2,
while Two’s credence in H is 0.6. Even so, both agree that rain tomorrow in Riga
and the coin landing heads today are stochastically independent. So, while the
meteorologists disagree on rain tomorrow and they disagree on the coin landing
heads today, both agree that there is no value in knowing the outcome of the coin
flip to forecasting rain tomorrow in Riga.

Both Meteorologist One and Meteorologist Two believe that rain in Riga tomor-
row and the coin landing heads today are stochastically independent: that is, both
p1(R^H) = p1(R)p1(H) and p2(R^H) = p2(R)p2(H), where p1 and p2 represent
the partial beliefs of Meteorologist One and Meteorologist Two, respectively. So, how-
ever One and Two decide to resolve their disagreements about today’s coin flip and
tomorrow’s weather, their resolution should preserve the judgment that heads today
yields irrelevant evidence for forecasting rain tomorrow.

Preservation of Irrelevant Evidence (PIE) Principle: If every member of a
group of peers, P, believes that her partial belief in the truth of proposition A
should remain unchanged whether or not another proposition B is true, and no
member of the group changes her mind about the irrelevance of B to A after the
disagreement becomes common knowledge to the group, then the resolved peer
disagreement should preserve the judgment that B is irrelevant evidence to A.

p1(·^ ·) p2(·^ ·) p⇤(·^ ·) p⇤(·)p⇤(·)
H R 0.08 0.33 0.205 0.19
H Rc 0.12 0.27 0.195 0.21
Hc R 0.32 0.22 0.27 0.285
Hc Rc 0.48 0.18 0.33 0.315

Table 1: Forecasters p1 and p2 and their equally-
weighted average p⇤.

The problem is that any
non-extreme weighted aver-
age of p1 and p2 that One and
Two might propose to resolve
their disagreement will vio-
late the PIE Principle. With-
out loss of generality, con-
sider the specific case of p⇤

in Table 1, which is the
equally weighted average of
p1 and p2, i.e., p⇤ = 1

2 p1 +
1
2 p2. The ‘middle-ground’ de-
termined by p⇤ fails to pre-
serve independence between the coin toss today and the weather tomorrow,8 so re-
solving One and Two’s disagreements by p⇤ would not satisfy the PIE Principle.

8For example, to verify the first row of Table 1, p1(R^H) = p1(R)p1(H) = (0.4)(0.2) = 0.08, and
p2(R^H)= p2(R)p2(H)= (0.55)(0.6)= 0.33., yet p⇤(R^H)= p1(R)p1(H)+p2(R)p2(H)

2 = 0.205 6= 0.19=
p1(R)+p2(R)

2 ⇥ p1(H)+p2(H)
2 = p⇤(R)p⇤(H).
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Although we find the PIE Principle intuitively compelling, not everyone agrees.
Lehrer and Wagner (1983), for instance, have argued that violations of the PIE Principle
are of “negligible epistemic significance.” Even critics of weighted averaging schemes,
such as Jon Williamson (2015), would ague that the PIE Principle should not constrain
rational belief. But flouting the PIE Principle is not merely unintuitive; it is irrational.

To see why violating the PIE Principle is irrational, suppose One and Two reconcile
their disagreement by p⇤ yet persist in believing that heads today is irrelevant to the
event of rain tomorrow. A clever gambler may then compel them to accept a contract
consisting of the following two bets.9 The first bet consists of the gambler buying from
the peers a ticket, T1, for e 20.50, that pays the gambler e 100 if the coin lands heads
today and it rains in Riga tomorrow, and pays him nothing otherwise. The second bet
consists of the gambler buying from the peers a second ticket, T2, for e 60.75, that
pays the gambler e 225 if the coin lands tails today and it rains in Riga tomorrow, and
pays him nothing otherwise. The payoffs to the gambler for each possible outcome are
given in Table 2.

Ticket 1 Ticket 2 Net

H ^ R e 79.50 � e 60.75 e 18.75
H ^ Rc � e 20.50 � e 60.75 � e 81.25
Hc ^ R � e 20.50 e 164.25 e 143.75
Hc ^ Rc � e 20.50 � e 60.75 � e 81.25

Table 2: Gambler’s payoffs.

According to p⇤, both
T1 and T2 are consid-
ered fair by the reconciled
peers.10 Yet, since both
the gambler and the peers
agree that the coin flip to-
day yields irrelevant evi-
dence to the weather tomor-
row, the gambler may opt
to determine his payoff ac-
cording to the product of the
pooled marginal probabili-

ties for each state by swapping the values in the third column of Table 1 for the values
in the fourth. But now the gambler’s expected gain according to the swapped values is
positive.11 So, no matter which of the four states obtains, the peers’ expected payoff
is now negative. Finally, suppose the gambler compels the peers to accept two more
called-off bets in the same spirit as the first pair, only now the bets are arranged for the
peers to judge as fair a pair of bets under the product of the pooled marginal distribu-
tions that incurs an expected loss on the pooled joint distribution. For instance, suppose
the gambler sells to the peers a ticket T3 for e 13.30 that pays them e 70 on heads and
rain but zero otherwise, and he sells to them another ticket T4 for e 32.20 that pays
them e 120 on tails and rain but zero otherwise. Then, with this contract of four bets,
T1–T4, the peers are booked in an expected sure loss whichever way they decide to
resolve their bets with the gambler.

One way around this argument is to double-down on weighted averaging by adopt-
9Our argument is a variation of one that Henry Kyburg and Michael Pittarelli (1996) make against

Levi’s E-admissibility decision rule, which, in Levi’s original form, presupposes non-extreme weighted
averaging. Also, for the sake of the argument, we assume throughout that the utility of money for peers
is linear.

10That is, e 18.75(0.205)�e 81.25(0.195)+e 143.75(0.27)�e 81.25(0.33) = 0
11That is, e 18.75(0.19)�e 81.25(0.21)+e 143.75(0.285)�e 81.25(0.315) ⇡ e 1.88.
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ing the new betting odds given by p⇤ as rational and deny that the coin and weather
should remain independent in the reconciled judgment. However, this response would
enjoin the peers to place some value in the information provided by today’s coin flip
to further their epistemic goal of forecasting tomorrow’s weather. So, according to
this line, it would be rational for the peers to pay a fee, even if only a fraction of a
cent, to learn the outcome of today’s coin flip in order to better forecast tomorrow’s
weather. This is clearly absurd. While this move forecloses the possibility of suffering
a sure loss (in expectation), it opens another for snake oil salesmen to sell to the peers
epistemically useless information.

The upshot of this argument is a dilemma for conciliatory Bayesians. On the one
hand the measure p⇤, which is the obvious function for the Bayesian version of the
equal-weight view, cannot preserve independence. Thus, the Bayesian equal-weight
view cannot accommodate the PIE Principle. This argument applies to any conciliatory
Bayesian who adopts a non-extreme weighted averaging of probabilities, and it extends
to other conciliatory methods that fail to preserve independence.12 On the other hand
a conciliatory Bayesian who rejects the PIE Principle is committed to the view that a
shared judgment of irrelevance among peers cannot, and should not, be preserved by
any resolution strategy. Thus, the Bayesian without PIE becomes a mark for swindlers
and soothsayers.

One way to escape the Bayesian’s dilemma is simply to permit extreme weighted
averaging. But this amounts to conciliation by ultimatum: you can hold any opinion
you like so long as it is mine. This response is hardly a conciliatory strategy. With-
out a principled reason for picking one peer’s judgment over another, there is little to
recommend the ultimatum strategy for resolving a disagreement among peers. Another
response is simply to leave the set of peer judgments unchanged. Each peer in the set
would satisfy the PIE Principle by digging in her heels and rejecting any change to her
view. To be clear, we do not think there is a compelling argument for the view that
it is always rational to respond to a peer disagreement by remaining steadfast. With-
out appealing to higher-order evidence, it is difficult to conceive of adequate grounds
to warrant picking one view over others or remaining steadfast, and it is doubtful that
such higher-order evidence is always available.

Before continuing to consider an argument against non-conciliatory responses to
peer disagreements, which we do in Section 4, a natural question to ask is whether
there is some other option for reconciling the PIE Principle with the demands of con-
ciliation. The short answer is, Yes: it is straight-forward to formulate conciliatory
responses to peer disagreements with imprecise probability theory that satisfy both the
Reasonable Range Principle and the PIE Principle. The first conclusion to draw from
our approach, which we introduce in the next section, is that one should question ap-
proaches that mandate a single determinate credal probability long before calling into
question conciliatory responses that satisfy the PIE Principle.

12See (Stewart and Ojea Quintana 2015) for an excellent review of Bayesian pooling methods and
their properties, and (Wheeler 2012) for an objection to Williamson’s Objective Bayesian approach.
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3 Set-based Credal Judgments

Stripped of bells and whistles, a set-based credal judgment is a straight-forward exten-
sion of numerically determinate degrees of belief pioneered by Frank Ramsey (1926)
and Bruno de Finetti (1937, 1974). Mathematically, degrees of belief (or partial beliefs
or credences) are represented canonically by a finitely additive probability function,
p, that assigns to events of an algebra A over a (finite) set of states W a real number
between 0 and 1. A set-based credal judgment, to be explained in this section, is rep-
resented in terms of a (non-empty) set P of probability functions, each defined with
respect to the same structure, (W,A ). For the moment, one may think of P as a set of
Bayes agents, or set of peers, each with her own view about a set of propositions A .

In our heads and rain example, P = {p1, p2} represents the judgments that Mete-
orologist One and Meteorologist Two have regarding the state of affairs of the coin
landing heads today and the event of rain in Riga tomorrow. The reasonable range of
opinions on whether it will rain tomorrow in Riga is from 0.4 to 0.55, and likewise the
reasonable range is 0.2 to 0.6 for today’s coin flip landing heads. Generally, for each
event E in A , there is some probability p in P whose value is the smallest of any in P,
which is the lower probability of E, and some p in P whose value is the largest of any
in P, which is the upper probability of E.

We adopt a common abuse of notation by identifying the proposition E with
the indicator of the event E occurring, writing for example p1(E) = 0.4 instead of
p1(1E(w) = 1) = 0.4 and p1(¬E) = 0.6 instead of p1(1E(w) = 0) = 0.6, where w 2 W
and E ✓ A such that

1E(w) =

⇢
1 if w 2 E,
0 if w 62 E.

Call the quadruple (W,A ,P,P) a lower probability space, where W is a set of states,
A is an algebra over W, P is a nonempty set of probability functions on A , and P and
P are functionals on A such that for each event E in A :

(Lower probability) P(E) = inf{ p(E) : p 2 P},
(Upper probability) P(E) = sup{ p(E) : p 2 P}.

Lower probability and upper probability satisfy a conjugacy relation, P(E) = 1 �
P(¬E), which means that we only need to specify one of the two functionals. By
convention, the lower probability P is usually specified.

If F is in A and P(F) > 0, then conditional lower probabilities and conditional
upper probabilities are defined as

(Conditional lower probability) P(E | F) = inf{ p(E | F) : p 2 P},

(Conditional upper probability) P(E | F) = sup{ p(E | F) : p 2 P}.

If F is the sure event W, conditional lower probability and conditional upper probability
reduce to unconditional lower probability and unconditional upper probability, respec-
tively. For the remainder, assume that all lower and upper probabilities are defined with
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respect to the same lower probability space. We also omit reference to the underlying
space (W,A ) when the context is clear.

When the lower and upper probabilities are the same for all events in the algebra,
we say that the peers (so represented) are in full agreement. When a set of peers are in
full agreement, the set P is a singleton set consisting of a unique probability function
realizing the upper and lower probabilities for every event:

(Full agreement) If P = P, then {p}= P and p = P = P.

A peer disagreement therefore occurs just when there is at least one event for which the
upper and lower probabilities are not equal.

(Peer disagreement) Let P and P be defined with respect to lower probability space
(W,A ,P,P). A peer disagreement among P occurs if and only if there is some
E 2 A such that P(E) 6= P(E).

Lower and upper probabilities are an old idea, dating back at least to (Bernoulli
1713) and (Boole 1854), and developed further by (Koopman 1940) and (Halmos
1950). After World War II, it was observed that the language of events and lower
probabilities is more limited in expressive capacity than the language of random vari-
ables and (lower) expectations or lower previsions (Smith 1961; Williams 1975; Walley
1991), an observation that has several far-ranging consequences. Nevertheless, we set
those developments to one side in this paper and restrict ourselves to a very simple
lower probability model.

Lower probability spaces provide a general framework within which to represent
and evaluate a variety of responses to peer disagreements. Every probabilistic account
for peer disagreement that we are aware of that satisfies the Reasonable Range Principle
can be represented and compared within this setting. As we indicated above, a lower
probability space whose basis is a singleton set of one probability function is equivalent
to a standard, numerically determinate probability model. In our setting this model is
the model of full agreement, and the Bayesian view of reconciling peer disagreement
is simply one of specifying the method whereby a new model of full agreement is
selected.

Although we are not the first to advocate using imprecise probability to model opin-
ion pooling in general (Walley 1981) and group disagreement in particular (Levi 1990),
our approach pays particular attention to the structural properties of the underlying set
of probabilities that form the basis for lower and upper probability assessments. As we
will argue, this basis for upper and lower probability judgments plays a crucial role in
modeling group opinions. Unlike a classical Bayesian model, where all of the epistem-
ically relevant information about an agent’s cognitive commitments is allegedly cap-
tured by a single, numerically precise probability function, lower and upper probability
functions alone do not capture all epistemically relevant information about an agent’s
cognitive commitments. Unlike the approaches of Levi (1980) or Walley (1991), who
are committed to closed convex sets of probabilities either as a consequence of ratio-
nality principles (Levi) or for mathematical expediency (Walley), our position is that
convex bases ought to be permitted but not mandated.
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Intuitively, a set-based credal judgment toward a proposition E induces a lower
and upper probability of E. To see why the reasonable range determined by lower and
upper probabilities fails to capture all the information relevant to a peer disagreement,
consider again the heads and rain example.

The judgments of Meteorologist One and Meteorologist Two are displayed in the
top two rows of Table 3 labeled (a). The bottom two rows, labeled (b), describe a dif-
ferent pair of Meteorologists, Three and Four. The last column of Table 3 gives the
reasonable range of One and Two’s judgments on the joint event of heads and rain,
Pa(R^H) = [0.08,0.33], followed by Three and Four’s reasonable range of the same
joint event, Pb(R^H) = [0.11,0.24]. One and Three hold identical views on heads
today and on rain tomorrow, which are different than the shared view of Two and Four
on those same two events. However, group (a) differs from group (b) in the conditional
judgments they endorse. For group (a), the observation of heads today is irrelevant
information to forecasting rain tomorrow. For group (b), the outcome of heads today
does provide relevant information to forecasting rain in Riga tomorrow but Three and
Four disagree with one another over how: Three believes that heads and rain are pos-
itively correlated, whereas Four believes they are negatively correlated. Despite this
difference between group (a) and group (b), all four have the same reasonable range for
the conditional judgment of rain given heads: Pa[b(R | H) = [0.4,0.55].13

H R R | H R^H R^H

(a) p1 0.2 0.4 0.4 .08 Pa[0.08,0.33]
p2 0.6 0.55 0.55 .33

(b) p3 0.2 0.4 0.55 .11 Pb[0.11,0.24]
p4 0.6 0.55 0.4 .24

Table 3: Reasonable Ranges and Lost Independence.

Although the reasonable
ranges for the separate
events of heads and rain
and the reasonable range
of the conditional judgment
of rain given heads cannot
distinguish group (a) from
group (b), the reasonable
ranges for the joint event
of both rain and heads do
reveal a difference between
the two groups: that is,

Pa(R^H) 6= Pb(R^H). So far, so good. However, if we were to pool (a) and (b)
into a single group, the reasonable range for Three and Four on heads would be
properly included in the reasonable range of One and Two’s judgment. We then
would be unable to distinguish between the merged group and the original pair by the
reasonable range of opinions alone. This point generalizes. Say that R is irrelevant to
H just in case both P(R | H) = P(R | ¬H) = P(R) and P(R | H) = P(R | ¬H) = P(R),
where R and H are each non-zero probability events. Say H and R are epistemically
independent when both H is irrelevant to R and R is irrelevant to H. In general, if
H is epistemically independent to R under P, it does not follow that H and R are
stochastically independent under every p in P.14

13Thanks to Jennifer Carr for raising this objection to us.
14Although irrelevance, epistemic independence, and stochastic independence (factorization) are log-

ically equivalent for a single probability measure, modulo some regularization condition to avoid condi-
tioning on zero probability events, these three concepts are logically distinct for lower and upper proba-
bilities. See (Pedersen and Wheeler 2014) for examples and discussion.
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Fortunately, the converse holds. That is, if R and H are stochastically independent
under every p in P, then R and H are epistemically independent under P. In the par-
lance of imprecise probability theory, P defined in this manner is an independent lower
envelope (Walley 1991, p. 446). Notice that in our original example, where P consists
of just p1 and p2, P is an independent lower envelope, but adding either p3 or p4 to Pa
destroys this property. While the reasonable ranges for P on Pa[b are the same as the
reasonable ranges for P on Pa, not every p in Pa[b judges the two events independent.

So far we have merely introduced some notation to make precise a bit of common
sense. If One and Two agree that heads today and rain tomorrow are irrelevant to one
another, adding someone else to the group who believes otherwise would break that
consensus. But this notation allows us to specify a variety of commitments that a group
of peers may have, and to work out the sometimes subtle consequences that follow from
them.15

For instance, return to the original heads and rain example. One and Two each judge
heads and rain to be independent and their shared judgment of irrelevance becomes
common knowledge to them upon learning of their disagreement. That is to say, since
every p in Pa—hereafter we return to writing P instead of Pa—renders R independent
of H, the basis set P satisfies the conditions of an independent lower envelope. So,
the peers’ individual ex ante judgments of epistemic irrelevance between H and R in
P ensure that their (shared) ex post credal judgments determined by P and P render H
epistemically irrelevant to R and R epistemically irrelevant to H.

By contrast, if we replaced the two-element set P by its convex hull, coP,16 then
P based on coP would not be an independent lower envelope, even though the distri-
butions in coP which realize P and P satisfy epistemic independence. Here too we
are merely redescribing a familiar point in different terms, for the difference between
the original set P and its convex hull coP is precisely the open set of all possible non-
extreme weighted averages of p1 and p2. Further, as a terminological aside, but one
that may help connect together some of the disparate communities working on impre-
cise probability, the convex hull of P corresponds to Walley’s natural extension of P
(1991), Levi’s credal set (1980), and Joyce’s credal committee (2010). From one point
of view, the natural extension is the most generic technique for constructing credal
judgments and conditional credal judgments because it ignores various structural judg-
ments that may be present in the original set P. Walley discusses different extensions
that incorporate different structural judgments, yielding what Haenni et al. call different
parameterizations of a set of probabilities (2011). The independent lower envelope is
one of them. There are others (Augustin, Coolen, de Cooman, and Troffaes 2014).

Returning to our discussion of set-based credal judgments, we are now in a position
to say what it means for a credal judgment determined by P and P to be based on a set
P.

15There is a fascinating literature exploring structural judgments under P, including the plurality inde-
pendence concepts (Couso, Moral, and Walley 1999; de Cooman, Miranda, and Zaffalon 2011; Cozman
2012; Pedersen and Wheeler 2014; Augustin, Coolen, de Cooman, and Troffaes 2014) and structural
judgments, and the differences between permutability and exchangeability (Walley 1991; de Cooman
and Miranda 2007).

16That is, replace our (finite) P by the set of probability measures constructed by all possible linear
weighted averages of p1 and p2, that is coP= {p0 : p0 = l p1 +(1�l )p2, for all 0  l  1}.

11



(Set-based credal judgment) Given a lower probability space (W,A ,P,P), a
set-based credal judgment for an event E in A is determined by P and the pair P(E)
and P(E). We say that P is the basis for the credal judgment E determined by P and P.
Similar remarks extend to set-based conditional credal judgments.

The point of set-based credal judgments is this. When assessing a credal judgment de-
termined by P and P in the manner we have introduced here, one must bear in mind the
underlying lower probability space (W,A ,P,P), including the structure of P.17 For-
tunately, peer disagreements as we define them in this paper supply the information
necessary to specify each component of a lower probability space, including the struc-
ture of P. And these features allow one to work out subtle differences among a variety
of judgments.

For example, suppose a group of peers disagree over judgments of evidential rele-
vance. This case arose when we added Meteorologists Three and Four to the original
pair of peers. But there are also cases where an unanimous ex ante judgment of inde-
pendence should not be preserved in the group’s ex post judgments. In other words,
there are cases where a group of peers is initially in agreement that two events are
stochastically independent but learning they are in disagreement over some probability
judgment destroys this consensus and warrants the peers to reject their initial judgments
of independence and to affirm that one event is relevant to the other. This possibility is
the reason why the PIE Principle includes the provision that no member of the group
change her mind once the disagreement becomes common knowledge.

To see how common knowledge of a disagreement can undermine a prior judgment
of irrelevance, imagine two urns that both contain the same number of red and white
balls. Specifically, suppose there are 99 balls of one color and a single ball of the
other color in both urns, and suppose this is common knowledge to two peers named
Five and Six. Peer Five believes that both urns contain 99 red balls and 1 white ball,
whereas peer Six believes that both urns contain 99 white and 1 red. Both Five and
Six believe, falsely, that they are in agreement about the composition of the two urns;
neither considers it ex ante to be a serious possibility that they may disagree. So, each
peer’s ex ante belief about the urns is that a randomly drawn ball from the first urn
is evidentially irrelevant for estimating the probability of drawing a red ball from the
second urn. Now suppose the peers discover their disagreement with one another. Then,
each peer will believe ex post that a randomly drawn ball from the first urn is highly
relevant for estimating the probability of drawing a red ball from the second urn. In this
case their ex ante judgments of independence should not be preserved in their ex post
judgments.

The difference between the original heads and rain example and the two urns ex-
ample is that in the first example no member of the group changes her mind about
any structural judgment of irrelevance upon discovering their disagreement but in the
second example everyone changes her mind about relevance upon discovering their
disagreement. Notice, however, that the bases for the heads and rain example and for
the two urns example both generate independent lower envelopes. What differentiates
the original heads and rain example from the two urns example is that One and Two

17Compare with (Joyce 2010, p. 287).
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in the original example maintain the judgment that the marginal probabilities of heads
and rain are independent, whereas this condition is not applicable to the two urns ex-
ample and thus not binding on Five and Six. In the parlance of imprecise probability
theory, these two examples illustrate the difference between strong independence and
independent lower envelopes (Miranda and de Cooman 2014): an independent lower
envelope satisfies strong independence if the marginal distributions are stochastically
independent. So, while the representations of the original heads and rain example and
the two urns example both satisfy the conditions for an independent lower envelope,
only the representation of the heads and rain example satisfies the additional condition
necessary for strong independence.

4 Why Set-based Credal Judgments?

A set-based credal judgment is one where an agent’s credal commitment toward a
proposition induces a lower and upper probability representation of that commitment
to the proposition. In the last section we cautioned against the mistake of simply identi-
fying an agent’s credal commitments with the interval induced by P and P for an event.
One must also attend to the parameterization of P, which will be reflected both in the
original topological structure of P and by judgments made about properties of an ex-
tension that should or should not be preserved in light of a disagreement. Although the
choice of extension for P is foreign to a traditional Bayesian, this degree of freedom is
merely a byproduct of the increased expressive capacity of imprecise probability.

That said, set-based credal judgments typically do yield something resembling an
interval of credal opinion. The lower probability and upper probability for rain tomor-
row in Riga, R, induced by p1 and p2 from our original example, yields an interval
constraint (of some kind) pictured like so:

.4

.55

0 1
R

We are calling the interval between 0.4 and 0.55 the reasonable range of opinion on R,
but others have appealed to the idea of a credal committee (Joyce 2010; Bradley 2014)
or mental committee (Moss 2015), which are simply alternative names for a credal
set (Levi 1980). The very rough idea is that the span between 0.4 and 0.55 captures
some important features of indeterminacy in opinion, or imprecision in elicitation, that
cannot be expressed by a determinate probability. In the peer disagreement problem, an
indeterminate judgment for some proposition is imposed on each peer after she receives
news of equally credible estimates that nevertheless are at variance with her own initial
judgment. For us, unlike Levi and his followers, we do not mandate convexity.

Since the peer disagreement problem is traditionally assumed to involve a group of
Bayes agents, each peer’s original credal judgment is a precise partial belief.18 What

18This assumption can be relaxed, allowing us to start with some or all agents having credal commit-
ments that are indeterminate or to consider iterative peer disagreements that start with a group of standard
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this means, in the traditional Ramsey-de Finetti conception of degrees of belief, is
that each peer has a fair price for the proposition in question. In other words, what it
means for Forecaster One to have a degree of belief of 0.4 in the proposition expressing
that it will rain tomorrow in Riga is that he is indifferent to engaging in two types of
transactions. The first hypothetical transaction calls on him to buy a contract for e0.40
that pays him e1 if it rains in Riga and nothing otherwise; the second hypothetical
transaction calls on him to sell a contract for the same price. To unpack this further,
when an agent agrees to buy such a contract, what he agrees to do is surrender a sure
reward of 40 cents to acquire the uncertain reward of 1 Euro on the condition that it
rains in Riga tomorrow. Similarly, when an agent agrees to sell such a contract, what
he agrees to do is surrender a contract that gives him the uncertain reward of 1 Euro
on the condition that it rains to acquire the sure reward of 40 cents. According to
this tradition, an agent’s credal judgment can be identified with his commitment to a
system of fair prices for buying and selling any finite number of contracts. The agent’s
commitment is rational if and only if the resolution of the bets behind such contracts
does not incur a sure loss for him if and only if the prices he commits to satisfy the
axioms of finitely additive probability.

We rehearse this canonical account in order to point out something that parties to
a peer disagreement learn. By announcing a fair price of 0.4 that R, Forecaster One
announces that he is unwilling to pay more than 40 cents for a contract that returns
to him 1 Euro in the event of R, and Forecaster Two learns from this signal that she,
Forecaster Two, may have overpriced R. Think about how One and Two would respond
to unit gambles on R offered to them for less than 40 cents: both would snap them up as
bargains. So, the span from 0 to 0.4 may be viewed as the range of agreement on buying
prices for unit bets on R: each peer would respond to offers within this range in exactly
the same way, since each judges the expected value of (R�a) to be greater than 0 for
buying prices a of 40 cents or less. The two peers differ, however, in how they respond
to offers for unit gambles on R that are priced between 40 and 55 cents. Forecaster One
would not buy a unit gamble on R in this price range, whereas Forecaster Two would.
Because they are epistemic peers, Two receives this news from One as a signal that she
may be disposed to pay too high a price for this bet on R. Therefore, Two’s buying
price for a unit gamble on R should change to agree with One’s. This is simply what it
means for Forecaster Two to change her original buying price expressed by her initial
probability of 0.55 for R to the lower probability of 0.4 for R.

Roles are reversed when we turn to the selling price for R. Here Forecaster Two will
not surrender a gamble on R that pays her 1 Euro on the event of Rain in Riga to acquire
in exchange a sure reward of any amount less than 55 cents, whereas Forecaster One
is willing to sell a unit gamble on R for as low as 40 cents. Forecaster One therefore
is committed to unloading contracts on R for a price that Forecaster Two would never
agree to match. Now the standpoints of the two peers are reversed. Whereas both One
and Two would agree to sell a gamble returning the uncertain reward of 1 Euro for a
sure reward of 55 cents or more, since both judge the expected value of (b �R) to be

Bayes agents but where indeterminacy is introduced by the resolution of a sequence of disagreements.
We may even dispense with probabilities altogether and give a general qualitative account in terms of
desirable gambles (Williams 1975; Walley 2000). Each is beyond the scope of this paper.
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greater than 0 for selling prices b of 55 cents or more, Forecaster Two’s refusal to sell
for a price below 55 cents is a signal to Forecaster One that he is disposed to accept
too high a risk of a loss by selling contracts on R for so cheap. Therefore, Forecaster
One’s selling price should change to agree with Forecaster Two’s. This is simply what
it means for Forecaster One to change his original selling price expressed by his initial
probability of 0.4 for R to the upper probability of 0.55 for R.

The assumption that the currency we are trading is linear is important for pinning
down an estimate of an agent’s strength of belief in an event occurring, and the oper-
ational details of the procedure for eliciting such credences are likewise important for
determining whether these numbers are sensible or mere speculative fantasies (Mayo-
Wilson and Wheeler 2016). When those conditions are clearly specified and met, and
strategic considerations are safe to leave aside, our talk of pricing the value of gambles
translates directly to an agent’s cognitive epistemic commitments.

Decision theorists did not invent the practice of holding fixed an estimation of an-
other’s value of goods to discern what she believes, or vice versa; that trick is as old
as humankind. The innovation of mathematical decision theory was to exploit the inti-
mate relationship between belief and value to quantify both the comparison of beliefs
and the degree of one’s preferences, along a single dimension of value, and to spell out
operational procedures for measuring these quantities through manipulations of one to
fix a numerical estimate of the other.19 Philosophers who discuss ‘credences’ without
confronting either their connection to personal preferences or how they are elicited do
so at their own peril.

What is novel about the theory of lower previsions, which our lower probability
model belongs to, is that it allows an agent to commit to different buying and selling
prices for a gamble. The theory of linear previsions, which standard precise Bayesian
probability models belong to, does not allow an agent to commit to different buying
and selling prices for a gamble but instead takes for granted there is a single number,
the agent’s fair price. There is nothing imprecise or indeterminate about the highest
price you are willing to pay for a gamble or the lowest selling price you are willing to
accept for it, regardless of whether those values are different or the same.20

In our approach, the span between lower and upper probabilities for a proposition
is determined by the range of judgments expressed by a group of peers. As we have
argued, there is no reason available to our peers to pick a maximum buying price or
a minimum selling price outside this range. But we have also an argument against
digging in one’s heels. Recall that our discussion of the PIE Principle knocked out
conciliatory Bayes responses but left open the option of remaining steadfast in one’s

19Viewing the value of goods along a single ratio scale does not come automatically. See Elizabeth
Anderson’s (1987) persuasive arguments for the heterogeneity of values. Consequences for epistemic
decision theory are discussed in (Mayo-Wilson and Wheeler 2016).

20The term ‘imprecise credences’ was coined relatively recently as a broad shorthand for some or
another no-fair-price attitude that calls on, or calls out, imprecise probability theory. This slogan, which
has spread like kudzu, is now a source of considerable confusion. If there is a clear interpretation of prob-
ability running in the background, then imprecise credal talk that slides between psychological states,
observable behavior, mathematical properties, or what have you, is a manageable affair: the leeway af-
forded by natural language is sometimes an ally in getting our ideas across. But such carelessness must
be earned. For without the backbone provided by a clear interpretation, the term ‘imprecise credences’
is a recipe for mushy thinking about imprecise probabilities.

15



opinion, peers be damned. Kelly, for instance, maintains that there isn’t enough ‘higher-
order’ evidence from two-person disagreements to warrant either peer to change her
view (Kelly 2010). So, a peer who found herself in the situations we are considering
should remain steadfast. However, this response confuses the absence of higher-order
evidence with the absence of any evidence at all. Put another way, the reason that
remaining steadfast is unreasonable is that doing so classifies any information that one
acquires through a disagreement as epistemically irrelevant.

To remain steadfast in a peer disagreement is to ignore evidence that one should
change her view. Suppose Forecaster One adopts a lower probability of 0.4 and an
upper probability of 0.55 for reasons we spelled out above, but peer Two sticks to her
guns and persists in viewing 0.55 as her fair price for R. Then, Forecaster Two would
discover that Forecaster One refuses to pay more than 40 cents for a unit gamble on R
but also refuses to sell gambles to Two for less than 55 cents. What Two learns from
One is that One judges the expected value of (R�a) to be negative for prices a greater
than 40 cents, whereas Two judges her expected loss to remain zero. Conversely, both
Two and One judge One’s commitments to be non-negative in expectation. So the fall-
out from this disagreement is that Two receives evidence that she may be exposed to a
loss whereas One receives no such evidence. This difference in judgment between One
and Two may be defensible if Forecaster Two thought Forecaster One a fool or lacking
information that Two had about Rain tomorrow in Riga, but these differences are ex-
plicitly ruled out by peer disagreements.21 The upshot is that by remaining steadfast,
Forecaster Two accepts an exposed risk to loss that Forecaster One does not without
having a countervailing reason to persist in doing so.

Lastly, our proposal for resolving peer disagreements prescribes a unique set-based
credal judgment that all parties to a peer disagreement ought to adopt. Thus, our pro-
posal may be viewed as embracing a central tenet of the uniqueness thesis (Feldman
2010; White 2005) while reconciling a seemingly intractable conflict over the nature of
the evidence that a peer disagreement generates. For those who embrace the tripartite
distinction between judged true, judged false, and hung-out-in-suspense—supposition
still doesn’t rate among traditionalists—the unique, conciliatory response to a peer
disagreement is to suspend judgment. But this response, given the limited options,
saddles you with treating evidence from a peer disagreement as maximally uncertain.
For conciliatory Bayesians who restrict themselves to a single determinate probability
function, evidence from a peer disagreement is purely ameliorative in character. Our
account embraces the insight from traditional suspension-of-judgment views that peer
disagreements do not generate ameliorative evidence per se—at least not without some
higher-order evidence to tip the scales in favor of some coalition of peers over oth-
ers.22 But unlike the naïve suspension of judgment approach, our proposal preserves
ranges of agreement and comparative judgments that are lost by naïvely adopting a
partial belief of 1/2 to represent maximal uncertainty. Finally, unlike both naïve thresh-
olding accounts—which satisfy the Reasonable Range Principle but little more (Foley

21And our assumptions about a shared linear scale of value rule out cases of different attitudes toward
risk.

22Scott Sturgeon (2010) and Haenni et al. (2011) each consider interpreting the span between a lower
and upper probability the degree to which an agent suspends judgment.
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1992; Kyburg 2003)—and convex Bayesian accounts, our view emphasizes the basis
for group opinion as a repository for information that is common to the group and that
may impact how can peers ought to decide to resolve their differences.
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