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I. Introduction 

The Particle swarm Optimization (PSO) [1] is a population-based, self adaptive search 
optimization method motivated by the observation of simplified animal social behavior. It is 
becoming very popular due to its simplicity of implementation and ability to quickly converge to 
reasonably good solution [2]–[4]. Especially, global search capability of the method is very 
powerful. The particle swam optimization utilizes common knowledge of the group and individual 
experience effectively. That is, direction for the best estimator that a particle has ever reached, 
direction for the best one that all particle have ever found and momentum are successfully combined 
to determine the next iteration. Unfortunately, PSO show some weakness in term of balance between 
exploitation and exploration during the search [5]. For example in multi-objective problems, the 
search is not concentrated on the visited areas effectively, and often it shows a premature 
convergence and lack of diversification during moving from position to another. In order to solve 
this problem, various techniques have been proposed can be found in the literature [6], [7]. In most 
of the introduced techniques, extensive and intensive search are controlled by using the parameters 
setting. However this has an influence on the search for new solutions in case of multi-objective 
problems [7]. There is a popular technique which is used for evolutionary approaches, it is based on 
starting the search by an intensive search and then gradually explore other locations until all the 
search space is covered [8], [9]. However, such techniques make solving of multi-objective 
problems complicated especially in some situations where the search space contains many local 
optima. 

 The particle swam optimization itself does not have a capability searching the neighbor of the 
position and it may miss the optimal point near the present position because the method does not use 
local information of the function. Even if a particle is close to a global optimal, the particle moves 
based on the three factors described above. As a result, efficiency of the particle swam optimization 
may be limited in some cases. It seems better to search neighbor area carefully. To do so, local 
information such as gradient is necessary. On other hand, The descent direction search local area 
[10][11], [12] based on the gradient of the function. If the local search capability of the descent 
direction can be added to global search one of the particle swam optimization, we have a useful 
optimization method with global search capability and efficient local search ability at the same time. 
Therefore, combination of the particle swam optimization and the descent direction method is 

ARTICLE INFO A BST RAC T   

Article history: 

Received July 2, 2015 

Revised July 25, 2015 

Accepted July 30, 2015 

Particle swam optimization (PSO) is one of the most effective 
optimization methods to find the global optimum point. In other 
hand, the descent direction (DD) is the gradient based method that 
has the local search capability. The combination of both methods is 
promising and interesting to get the method with effective global 
search capability and efficient local search capability. However, In 
many application, it is difficult or impossible to obtain the gradient 
exactly of an objective function. In this paper, we propose Automatic 
differentiation (AD) based for PSODD. We compare our methods on 
benchmark function. The results shown that the combination 
methods give us a powerful tool to find the solution. 

Copyright © 2015 International Journal of Advances in Intelligent Informatics. 

All rights reserved. 

Keywords: 

Particle swam optimization 

 Descent direction, 

Automatic Differentiation. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Advances in Intelligent Informatics

https://core.ac.uk/display/295626644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ISSN: 2442-6571 International Journal of Advances in Intelligent Informatics 91 
 Vol. 1, No. 2, July 2015, pp. 90-97 

 Aris Thobirin and Iwan Tri Riyadi Yanto (Automatic differentiation based for particle swarm optimization …) 

promising and interesting approach. However, The descent direction method  requires the gradient 
that is the first derivative of the function. In many application, it is difficult or impossible to obtain 
the gradient exactly of an objective function. In order to overcome the drawback, the Automatic 
Differentiation [13] is introduced. It is upcoming technology which provides software for automatic 
computation of derivatives of a general function provided by the user. Automatic Differentiation is 
also called computation differentiation or algorithmic differentiation [13], [14]. The idea is that basic 
derivative rules from calculus, such as the chain rule, can be implemented in a numerical 
environment. 

II. Related Works 

A. Descent Direction 

The optimization problem is to find a optimum point of an objective function ���� ∈ �� with 

an adjustable � dimension parameter vector � ∈ ��. The steepest descent method (also called 
Cauchy’s method or gradient method) is one of the oldest and simplest procedures for minimization 

of a real function defined on �� [10][11], [12], [15]. It is also the departure point for many other 
more sophisticated optimization procedures. The iteration is given as in (1). 

��
 + 1� = ��
� + ��
���
�,    
 = 0,1, …  (1) 

where ��
� is a descent direction  ��
� is a scalar of step length. The gradient vector of a 
function points towards the direction in which locally the function is increasing the most rapidly. A 
natural choice for the descent direction is to use the negative gradient direction. The function is 
changing most rapidly in this direction, it is known as the steepest descent direction [10], the 
direction is defined as in (2). 

��
� = −∇����
��  (2) 

B. Particle Swam Optimization 

Particle Swarm Optimization (PSO) [1] is a population-based, self adaptation search optimization 
method motivated by the observation of simplified animal behaviors. PSO searches for optimal 
solution via collaborating with individuals within a swarm of population. Each individual, called 

Particle or Agent is made of two parts, the position and velocity. For an �_dimensional problem and 

a swarm of � particles, the ��� particle's position and velocity, in general, are denoted as 

������, ���, … , ����� and  � = � ��,  ��, … ,  ���� for � = 1,2, … , �, respectively. Consider on the 
inertia weight PSO, the algorithm of the particle swarm optimization is described as in (3). 

���
 + 1� = ���
� +  ��
 + 1�  (3) 

where 

 ��
 + 1� = " #$ ��
� + %�&'�
� − ���
�( + %�&)�
� − ���
�(*  (4) 

 The parameter vector  ���
� denote an estimator of the optimum point at the 
��  iteration. 

 ��
� is called a velocity vector, that is, a modifying vector for the parameter vector (momentum for 

the next iteration). '�
� is the best estimator that this particle has ever reached. )�
� is the best one 

that all the particles have ever found until the 
�� iteration. '�
� and )�
� are called personal best 

and global best, respectively. The coefficient %� and %� are two positive random number in a 
certain range using uniform distribution with upper limitation to decide a balance between the 

individual best estimator and the swarm best one. $  denotes a coefficient to adjust the effect of the 

inertia and  is a gain coefficient for the update. 
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III. Basic of Automatic differentiation 

Automatic differentiation (AD) [13] is a set of techniques for transforming a program that 
calculates numerical values of a function, into a program which calculates numerical values for 
derivatives of that function with about the same accuracy and efficiency as the function values 
themselves [14]. The basic process of AD is to take the text of a program (called the underlying 
program) which calculates a numerical value, and to transform it into the text of program (called the 
transformed program) which calculates the desired derivative values. The transformed program 
carries out these derivative calculations by repeated use of the chain rule from elementary calculus, 
but applied to floating point numerical values rather than to symbolic expressions [14]. AD is a 
chain-rule-based technique for evaluating the derivatives with respect to the input variables of 
functions defined by a high-level language computer program. AD has two basic modes of 

operations, the forward mode and the reverse mode. Suppose that � as in [14] is an underlying 

program which takes � independent variables ��  as inputs, and produce � dependent variables +� as 

outputs, and the Jacobean , = � ′ = -+�/-�/  given particular values for ��, want to be obtained. 

The forward mode associates with each floating point program variable 0 a vector 01  of floating 

point derivatives value. Conceptually, the case is when each dot vector 01  contains one component 

for each independent variable ��  and component � contains the corresponding derivatives -0/-�� , 
so that 01 = ∇20. The reverse mode associates with each floating point program variable 0 a vector 

0̅ of floating point derivatives values. Conceptually, the case is when each of these bar vector 

contains one component for each dependent variable, and component � contains the corresponding 

derivative  -+�/-0, so that 0̅ = 56+[14]. 

IV. Proposed approach 

Global optimal can be obtained using the particle swarm optimization. However, since the 
particle swarm optimization itself does not have a capability searching the neighbor of the position 
and it may miss the optimal point near the present position. Thus, efficiency of the particle swarm 
optimization may be limited in some cases. The Steepest descent direction method search only local 
area rapidly. If the local method of steepest descent direction can be added to the global search of 
the particle swarm optimization, a useful optimization method with good global search capability 
and efficient local search ability at the same time will be gotten. In this paper, we propose some 
schemes of combinations the particle swarm optimization with the steepest descent direction by 
automatic differentiation consider to the minimization problem. 

A. Case 1  

The particle swarm optimization with the the steepest descent direction is combined directly that 
is the velocity (momentum) of PSO use the steepest descent direction term. The steepest descent 
direction is used to change the direction of modification. The equation is defined as in (5). 

  ��
 + 1 � = " #−7 ∇ �&��
�( + %�&'�
� − �����( + %�&)�
� − �����(* (5) 

In this scheme, all individuals have the same characteristics since  the gradient is applied for all 
particles. 

B. Case 2 

If the best particle is close to the global minimum, and this is likely, the best particle had better 
search neighbor of the present point carefully. Then, modification based on the original particle 
swarm optimization is not suitable for this particle. The gradient type of method is suitable. 
Therefore, The steepest descent direction are applied only to the best particle. All the other 
individuals are updated by the ordinary particle swarm optimization. 

C. Case 3 

The particle swarm optimization and the steepest descent direction are mixed. That is, in every 
iteration, half of individuals in the population are updated by the particle swarm optimization, left 
half particles are modified only by the steepest descent direction. All the individuals select the  
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particle swarm optimization or the steepest descent direction randomly with probability of 0.5 in 
every iteration. 

D. Case 4 

Basically, we use the scheme 3. However, the best individual is updated only by the steepest 
descent direction since the best particle has a good chance to be a neighbor of a global minimum. 

V. Comparison 

In order to evaluate performance of these algorithms, The benchmark functions are used. These 
functions have their inherent characteristics about local minimum or slope. The algorithm are 
implemented in MATLAB version 7.6.0.324 (R2008a). They are executed sequentially on a 
processor Intel Core 2 Duo CPUs. The total main memory is 1G and the operating system is 

Windows XP Professional SP3.Comparisons are carried out for ten-dimensional case, that is, � =
10 for all test functions. 30 particles are included in the population. Change of average means that 
an average of the best particle in 30 particles at the iteration for 20 trials are shown. 

Table 1.  The parameter setting for experimental of bencmarks function 

89 8: ; < = off all case 
2 1 1 0.9 0.00003 

A. Rastrigin function 

The Rastrigin function is described as in (6). 

���� = 10� + ∑ ��
� − 10 cos 2B ��

�
�C�   (6) 

Fig. 1 is the shape of this function for 2 demission case.  As shown in the figure 1, this function 
contains many local minimum points. It is generally difficult to find a global minimum using the 
gradient type of the method. It is difficult also for the particle swarm optimization to cope with the 
function. The value of the global minimum of the function is 0. Using the setting are given in the 
Table 1. we compare these four methods and the ordinary particle swarm optimization. The results 
of the change of the best particle for Rastrigin function are given in  Fig. 2. Fig. 2 shows that the 
scheme 1 and 3 have better performance. 

 

Fig. 1.  Rastrigin function 
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Fig. 2.  Change of the best particle for rastrigin function 

B. Rosenbrock's valley function 

The Rosenbrock's valley is a classic optimization problem,also known as banana function. The 
function is defined in (7). 

���� = ∑ 100���D� − ��
��� + �1 − �����E�

�C�   (7) 

Fig. 3 is the shape of this function for 2 demission case. Using the setting are given in the Table 
1, we can see that scheme 2, 3 and 4 match for this function as in Fig. 4. 

 

Fig. 3.   Rosenbrock's valley function 
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Fig. 4.  Change of the best particle for Rosenbrock's valley function 

 

C. 2� minima function 

The 2� minima function is described as in (8). 

���� = ∑ ��
F�

�C� − 16��
� + 5��   (8) 

Fig. 5 is the shape of this function for 2 demission case. The function has some local minimum 
points and relatively flat bottom. The value of the global minimum of the function is -783.32. Using 

the setting are given in the Table 1, The comparison results for 2� minima function are given in Fig. 

6. It seems that scheme 3 and 4 have good performance for this function. 

 

Fig. 5.  2� minima function 
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Fig. 6.  Change of the best particle for 2� minima function function 

VI. Conclusion 

In this paper, we have proposed an combination of particle swarm optimization method and 
gradient methods to solve global optimization problem. The both methods are combined directly in 
forth's schemes. Further, we compare our methods on benchmark function. The results shown that 
the combination methods give us a powerful tool to find the solution. 
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