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1. Introduction  

The Aquaponics system is composed of aquaculture and hydroponics subsystems. It is a soilless form 

of agriculture which recirculates water from fishpond to crop growth chambers and drains back to the 
fishpond. Each subsystem cultivates certain ideal dry mass, fishes for the prior subsystem, and plants for 

the latter one. Due to limited land space, aquaponics enables humans to grow crops in water.  

Challenges in aquaponics include eutrophication of water. It is a great concern that even the creation 

of legislation relating to the regulation of the aquaculture industry, particularly in fish diet composition 
and husbandry, was implemented in some countries to mitigate this phenomenon [1]. Natural and 

anthropological processes can cause the changing of trophic state. Naturally, when a certain pond, lake, 

or body of water experiences an abrupt change in temperature and pH, and contamination of excessive 

dissolved nitrogen, nitrogen, and depletion of oxygen [2][3]. The biotic actions performed by bacteria 
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 The trophic state is one of the significant environmental impacts that must 
be monitored and controlled in any aquatic environment. This 
phenomenon due to nutrient imbalance in water strengthened with global 
warming, inhibits the natural system to progress. With eutrophication, the 
mass of algae in the water surface increases and results to lower dissolved 
oxygen in the water that is essential for fishes. Numerous limnological and 
physical features affect the trophic state and thus require extensive analysis 
to asses it. This paper proposed a model of hybrid classification tree-
artificial neural network (CT-ANN) to assess the trophic state based on the 
selected significant features. The classification tree was used as a 
multidimensional reduction technique for feature selection, which 
eliminates eight original features. The remaining predictors having high 
impacts are chlorophyll-a, phosphorus and Secchi depth. The two-layer 
ANN with 20 artificial neurons was constructed to assess the trophic state 
of input features. The neural network was modeled based on the key 
parameters of learning time, cross-entropy, and regression coefficient. The 
ANN model used to assess trophic state based on 11 predictors resulted in 
81.3% accuracy. The modeled hybrid classification tree-ANN based on 3 
predictors resulted to 88.8% accuracy with a cross-entropy performance of 
0.096495. Based on the obtained result, the modeled hybrid classification 
tree-ANN provides higher accuracy in assessing the trophic state of the 
aquaponic system.   
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result in different nutrient loading distributed on the body of water. Anthropologically, industrial wastes, 

and household wastes result in water contamination leading to higher concentrations of some specific 

nutrients. Due to these contributions, the biogeochemistry is altered and occurs to differing trophic 

state.  

In the study conducted by Wang et al. [4] in the year 2019, water quality status and eutrophication 

levels were assessed based on the water quality index (WQI) and trophic level index (TLI). The 

parametrical basis of TLI measurements are the features of Chlorophyll-a (Chl-a), total phosphorus 
(TP), total nitrogen (TN), Secchi depth (SD), and permanganate index (COD Mn).  The comprehensive 

trophic state index (TSI) method was used as the basis for a trophic state assessment. Orthophosphate 

was resolved by limiting the nitrogen level [5]. The modified Carlson’s trophic state index (TSIM) was 

based on water transparency, TP, and Chl-a. The physical and chemical parameters have been concluded 
as evaluating parameters for the trophic state [6]. Another study conducted by Wang and Qi [7] shows 

that unwanted natural devastations such as hurricanes and droughts are some of the most contributing 

factors for eutrophication. The improvement of the crop is met by controlling the fertilizer efficiency, 

erosion, and runoff in water. These are factors to strengthen the trophic state [8]. The consequences of 
increasing trophic state, particularly of eutrophication and hypertrophication, are aquatic toxification 

based on nutrients and harmful algal blooms (HAB). Ammonia is toxic, especially to fishes in high 

concentrations. Phytoplankton, periphyton, macroalgae, and macrophytes are collectively called 

autotrophs, which has a direct influence on increasing trophic state. Mutually, eutrophication accelerates 
the production of these autotrophs [9]. The relationship between climate change and trophic state was 

studied [10]. Harmful algal bloom productions were considered based on scaling TP, TN, and Chl-a 

[11]. Life cycle assessment was instrumentalized to analyze and asses the environmental impacts of the 

aquatic body [12]–[28]. However, the application of modeling using computational intelligence with 

numbers of input features is relevant to compensate for the increase of error in classification.  

This study aims to create a model that provides an accurate assessment of trophic state in the 

aquaponic environment. Specifically, this study aims to differentiate the performance of two models, 

namely, artificial neural network (ANN) and the hybrid classification tree-ANN.  

Trophic state scientifically expresses the nutrient productivity of the ecosystem, particularly of an 

aquaculture system. The visible by-products are algae and plankton development. The invisible by-

products are the emission of gasses. There are four major categories for the trophic state, namely, 

oligotrophic, mesotrophic, eutrophic, and hypertrophic. Trophic means foods that resemble nutrients 
production. Oligo means few, Meso means mild, eutrophic means many foods, and hypertrophic means 

abundance of foods. In the view of aquaculture, food may be beneficial or harmful in extreme scales for 

the living species. These categories are one way to characterize ecosystem productivity scientifically.  

Robert Carlson introduced a trophic state index to define the total weight of biomass for a definite 
time during the actual measurement. He emphasized the Carlson trophic state index (TSIC) as an object 

classifier for algal biomass production in any body of water. The TSIC is recommended to use for the 

body of water with few rooted plants.  

Secchi depth represents the transparency of water based on the scale of log base 2. It specifies the 
concentration of particulate and dissolves materials in water. Secchi depth is mathematically defined by 

Eq. 1 where z is the physical depth at which the disk disappears due to shallow water and irradiation of 

the natural light source, Io is the light intensity prominent on the water surface, Iz is a constant resulting 

to 10% of Io, kw is the light attenuation coefficient, α is a constant in terms of square meters per 

milligram and C is the particulate matter concentration in water. The relationship among TSIC, Chl-a, 

TP and SD is attributed in Table 1 with the trophic state as classification. 
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1

𝑧
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Table 1.  Relationship of TSIC parameters and trophic state 

TSIC Chl-a TP SD Trophic State 

<30 – 40 0 – 2.6 0 – 12 4 – 8 Oligotrophic 

40 – 50 2.6 – 20 12 – 24 2 – 4 Mesotrophic 

50 – 70 20 – 56 24 -96 0.5 – 2 Eutrophic 

> 70 > 56 > 96 < 0.5 Hypertrophic 
 

For oligotrophic state, no aquatic vegetation and very minimal nutrient production are expected. The 
mesotrophic state constitutes minimal production of algae but still on the allowable scale. Eutrophication 

clearly defines contamination of the body of water due to natural and anthropological contribution that 

makes nutrient imbalances. Hypertrophication is visible due to algae formation and died fishes that is 

primarily due to the low level of dissolved oxygen in the water. There are still various limnological and 
physical factors to be considered in assessing an aquatic system for its trophic state. It includes water 

temperature, pheophytin, total nitrogen, nitrite, ammonia, orthophosphate, total water alkalinity, and 

light intensity. 

2. Method 

The system employs two major computational intelligences, namely, decision tree and artificial neural 

network, to develop a hybrid technique for assessing aquaponic tropic state. 

2.1. Decision Tree 

The decision tree is a computer-based tool (CBT) used to provide decision support that is referred 

to as a regression tree and classification tree. A regression tree is different from the classification tree as 
the target variable takes continuous values in numerical figures. The other provides discrete target values. 

In this study, a classification tree is employed to verify the possible trophic state of certain aquaculture 

systems. The classification tree predicts discrete responses to data that can be true or false. Its structure 

was mimicked from the biological structure of plants that are composed of the root node, branches, and 
leaf nodes. The tree elements are considered nodes. The root node contains the predictor with the 

highest significance or contribution to the classification. Branches represent the conjunction of two 

features. The junction of two branches results in a node that signifies another predictor. A subtree is 

composed of branches and leaf nodes. As the tree grows, many predictors will be constituted to its 
structure until it ends to its leaf nodes that give the responses based on the combination of predictor 

data. The leaf node is also called the end node because this is the elemental node that has no children. 

In the graph theory of the classification tree, the graph is like the upside-down structure of a biological 

tree. It commences with the root node at the uppermost layer of the graph and terminates with leaf 
nodes at the bottommost layer. There are six ways to visually represent trees, namely, classical node-link 

diagram, nested set, layered icicle diagram, outline and tree views, nested parenthesis, and radial trees. 

In classification tree, data is analyzed as the function (x,Y)=(x1,x2,x3,…xn,Y) in which x is the column 

vector of predictors or features, x1 to xn where n  is the total number of columns, and Y is the response 
variable. Fig. 1 shows the process exhibited by the classification tree. It starts with classifying the input 

and output parameters as predictors and response variables, respectively. Then, it trains the selected 

classifiers and the validation scheme. There are three standard validation schemes for classification tree, 

which are cross-validation, holdout validation, and no validation. Cross-validation partitions the data 
space into number of folds or divisions, which gives good predictive accuracy. It is recommended to use 

a cross-validation scheme for small data space as it may suffer the computational cost of the system. It 

protects the data from overfitting. Then, the classification tree is structured out, and pruning happens. 

Pruning is a machine learning technique employed in search algorithms for reducing the size of decision 
trees. It provides improved accuracy by reducing overfitting through the removal of sections with low 
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significance to classify a combination of predictors. Overfitting is a statistical error that emphasizes almost 

complete reliance on training data. The horizon effect is one of the major problems of decision tree that 

happens when deciding up to what a certain number of levels a decision tree must grow. A small tree 
may result to unsure accuracy due to few captured sample space while a large tree may tend to overfit 

and poorly generalize new sample space. Thus, pruning yields a reduced size of a learning tree through 

two major techniques, namely, reduced error pruning and cost complexity pruning. The reduced error 

pruning (REP) is classified as bottom-up pruning as it is simple, speedy, and starts the reduction of 
sections from the leaves. The cost complexity pruning (CCP) is defined by the function prune(T,t) where 

T is the original tree, and t is the subtree being pruned. The removed subtree in CCP is measured by 

error rate function err(T, S), where S is the overall data space. The subtree that minimizes the pruning 

parameter P as defined by Eq. 2 is chosen for pruning. After pruning is the training of the whole 
classification learner and is followed by performance measurement. In this phase, the validation 

predictions and accuracy are computed. Lastly, the observations from raw data space are classified. 

 

Fig. 1.  Process diagram of classification tree 

𝑃 =
𝑒𝑟𝑟(𝑝𝑟𝑢𝑛𝑒(𝑇,𝑡),𝑆)−𝑒𝑟𝑟(𝑇,𝑆)

|𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)|− |𝑙𝑒𝑎𝑣𝑒𝑠(𝑝𝑟𝑢𝑛𝑒(𝑇,𝑡))|
 

In performing a classification tree, there are three available general metrics to be considered, namely, 

Gini impurity, information gain, and variance reduction. These are the metric used to determine the 

best model of the system. Gini impurity determines how often the data from the global data space is 

labeled incorrectly. It is mathematically defined in Eq. 3 as IG(p), J as the number of classes of the set of 

items where i ϵ {1, 2,…, J} and pi is the fraction of labeled items. It multiplies the sum of all the 

probability of labeled items with the probability of mistakenly categorizing those labeled items. 

𝐼𝐺(𝑝) = 1 −  ∑ 𝑝𝑖
2𝐽

𝑖=1  

In this study, the classification model tree was preset to fine tree with the maximum number of splits 

of 100. The split criterion used is Gini’s impurity, and the surrogate decision split is off. 

2.2. Artificial Neural Network 

Artificial neural network (ANN) is otherwise called a connectionist system as it partially mimics the 
biological transmittal of information and the learning paradigm of the brain. Neural networks have been 

trained to perform complex functions in various fields, including pattern recognition, identification, 

classification, speech, vision, and control systems. The ANN is basically made up of artificial neurons 

operating in parallel. As in nature, the connections between elements largely determine the network 
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function. One can train a neural network to perform a function by adjusting the values of the connection 

weights between elements. It is characterized by its network architecture considering the number of 

layers and number of neurons involved, the node characteristics considering the weights and biases, and 
the learning rules. The operation of a neural network is divided into two stages, namely, learning or 

training, and generalization, or recalling. A supervised neural network can learn by the offline or online 

manner of network training. Technically, training is an algorithmic procedure that repeats several times 

called epoch. The two categories of algorithmic training are supervised training and unsupervised 
training. The supervised training exhibits intervention of teaching by the user. The user provides the 

system with examples as inputs with corresponding outputs. The training process stops when the desired 

performance is accomplished. The trained system is now deployable for such applications it has been 

trained. The structure of ANN depicts an input, middle, and output layers that all consists of artificial 
neurons. Hidden neurons set in the middle layer of the neural network performs intermediate 

computations or processes. The output neurons are neurons that handle the network outputs. 

The backpropagation algorithm is a way of feedbacking error back to the input to increase the 

accuracy of the system output. As shown in Eq. 4 it is the product of the weighted sum of the inputs xi 
and its respective weight wji. Sigmoidal function, as mathematically defined in Eq. 5., is the most 

common output function that estimates values close to one for large positive real numbers and values 

close to zero for large negative real numbers. With sigmoidal function, there is a smooth transition from 

high and low outputs of artificial neurons [29]. 

𝐴𝑗(𝑥, 𝑦) = ∑ 𝑥𝑖
 𝑤𝑗𝑖

 𝑛
𝑖=0  

𝑂𝑗(𝑥, ý) =
1

1+𝑒
𝐴𝑗(𝑥,ý) 

In this study, a feedforward backpropagation ANN of two artificial hidden layers were created with 

sigmoidal function as output function was employed. The mean square error (MSE) was used as the 

training algorithm in verifying the accuracy of the neural network. 

2.3. Hybrid Tree-Artificial Neural Network 

The hybrid classification tree and artificial neural network are the proposed scheme for assessing 

aquaponic trophic state as depicted by the system architecture of Fig. 2. The limnological and physical 
parameters are the input to the system. The limnological parameters are considerable of the water quality 

parameters that include chlorophyll-a, total phosphorus, water temperature, pheophytin, total nitrogen, 

nitrite, ammonia, orthophosphate, and total water alkalinity through calcium carbonate. The physical 

parameters are the Secchi depth and ultraviolet intensity. These eleven trophic state indicators are 
inputted to the hybrid classification tree and ANN network. The classification tree was used as a 

multivariable reduction technique that selects significant features that contribute to accurate 

classification. The ANN was used to intelligently classify the trophic state of an aquatic environment 

based on the erratic combinations of selected features. The ANN was trained using the pre-classified 

water quality parameters. 

 

Fig. 2.  Proposed system architecture for assessing the trophic state 
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The process diagram for hybrid classification tree-ANN is shown in Fig. 3. The classification tree 

involves variable identification, variable classification, and feature selection. The decision tree determines 

responses by following the flow of the decisions from the top down to splits dependent on the conditions 
met until finally reaching a leaf node that contains the response. The output of the classification tree is 

a diagram that shows the feature with the highest impact on the categorical output classification. Thus, 

instead of using the voluminous feature and data space, the ANN is set only to use selected features with 

the highest significance. This enhances the computational cost of the system, which includes learning 

time. 

 

Fig. 3. Process diagram for hybrid classification tree and artificial neural network  

By implementing a decision tree, specifically the classification tree, the datasets were dimensionally 

reduced. The selected features were used for the design of the ANN.  There are eleven features used as 

predictors and the trophic state as the response variables, which is divided into four classes, namely, 
oligotrophic, mesotrophic, eutrophic, and hypertrophic. Five-fold cross-validation was implemented to 

protect against overfitting.  The data were segmented the data into five equal-sized partitions. The 

subsequent decision tree diagram in classifying trophic states is shown in Fig. 4. It predicts classifications 

based on three predictors, phosphorus, chlorophyll-a, and Secchi depth. The classification starts at the 
top root node represented by a triangle (∆). The first decision is whether phosphorus is smaller than 

23.95. If so, follow the left branch of the root layer, and there is another decision whether chlorophyll-

a is smaller than 2.545. If so, track the left branch of that tree layer, and the tree classifies the data as 
oligotrophic. If, however, chlorophyll-a exceeds 2.545, follow the right branch, and there is the third 

decision whether Secchi depth is smaller than 1.9. If not, follow the right branch, and the tree classifies 

the data as eutrophic. If so, it leads to the fourth level of decision that utilizes the chlorophyll-a data 

again and deciding whether it is smaller than 20.25. If not, follow the right branch, and the tree classifies 
the data as eutrophic. If so, it leads to the fifth level of decision, which utilizes the total phosphorus data 

and deciding whether it is less than 12.05. If so, it leads to the left branch, and the tree classifies the 

data as eutrophic. If not, it leads to the sixth level of decision, which utilizes chlorophyll-a data and 

deciding whether it is less than 2.645. If so, it leads to the left branch, and the tree classifies the data as 
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eutrophic. Otherwise, it is mesotrophic. Evident from the classification tree that phosphorus, 

chlorophyll-a, and Secchi depth are the significant tree features that must be used as input to the ANN. 

 

Fig. 4. Tree-classification diagram in classifying trophic states  

There are two different ANN systems, as can be seen in Fig. 5 and Fig. 6 that were developed using 
limnological and physical parameters as input features. One system utilized all eleven features as input 

to its network. The other system undergone feature reduction first using classification-tree before the 

application of ANN. Each ANN design was subjected to similar design parameters that included a 

number of hidden layers, data division, training, performance, and calculation parameters.  Performance 
evaluation of each ANN design was made using validation performance using cross-entropy, gradient 

and validation checks, confusion matrix, and receiver operating characteristic plot (ROC) plot.   

 

Fig. 5. ANN block diagram with eleven input features 

 

Fig. 6.  ANN block diagram with reduced inputs using tree classification 

The predictor vectors used in this study are shown in Table 2. The categorical output is the different 

trophic states: eutrophic, oligotrophic, mesotrophic, and hypertrophic. The developed ANN system is 

composed of a two-layer feedforward network, with a sigmoid transfer function in the hidden layer and 

a linear transfer function in the output layer. Two-layer feedforward neural networks can learn any input-
output relationship given enough neurons in the hidden layer. Layers that are not considered as output 

layers are called hidden layers. A two-layer feedforward network with sigmoid hidden-neurons and linear 
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output neurons can fit multi-dimensional mapping problems arbitrarily well, given consistent data and 

enough neurons in its hidden layer.  The system consisted of a single hidden layer of 20 neurons. This 

value is selected for high network training performance.  

Table 2.  Input features to ANN 

Input Value Range 

Chlor-a (µg/L) [0.72, 97.8] 

Total Phosphorus (µg/L) [7.9, 103] 

Secchi (m) [0.2, 3.3] 

Temp (°C) [4.5, 27.5] 

Pheo-a (µg/L) [0.01, 12.8] 

Total Nitrogen (µg/L) [335, 1530] 

NO2-3 (µg/L) [10, 22] 

NH3-N (µg/L) [2, 89.8] 

OPO4 (µg/L) [0.5, 4] 

UV254 (abs.units) [0.335, 254] 

Total Alk (mg/L CaCO3) [3, 13] 
 

The predictor vectors and dependent vector were randomly divided into three sets as follows: 70% 

were used for training; 15% were used to validate the generalization of the network, and it stops before 
overfitting. The last 15% was used as a completely independent test of network generalization. Training 

data are presented to the network during training, and the network is adjusted according to its error. 

Validation data are used to measure network generalization, and to halt training when generalization 

stops improving. Testing data have no effect on training and so provides an independent measure of 

network performance and after training.   

The neural network model was trained using scaled conjugate gradient backpropagation (Table 3). 

This kind of training uses gradient calculations, which are more memory efficient.  The number of 

hidden neurons is varied from 0 to 1000, as shown in Fig. 7, Fig. 8, and Fig. 9. When the generalization 
stops improving as indicated by an increase in the cross-entropy error of the validation samples, the 

network training stops automatically. The key parameters that determine the best neural network are 

the processing time, cross-entropy (CE) value, and regression coefficient (R). 

Table 3.  ANN design parameters 

Parameters Methods 
Data Division  Random 

Training Scaled Conjugate Gradient 

Performance Cross-Entropy 

Calculation MEX 
 

 By referring to Fig. 7 to Fig. 9, it is noticeable that the lowest learning time and cross-entropy 

error are obtained from the hidden node size of 20. The highest regression coefficient was obtained at 

the hidden node size of 400. Fig. 7 depicts a considerable increase in learning or processing time as the 
number of hidden nodes increases. There are significant increases for hidden nodes of 30 to 60. Fig. 8 

depicts a considerable increase of cross-entropy except from a hidden node size of 500 to 1000, which 

abruptly changed. The ideal cross-entropy is 0, and it provides a good classification of the system 

performance. 
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Fig. 7.  Learning time performance for classification tree-ANN 

 

Fig. 8.  Cross-entropy performance for classification tree-ANN 

 

Fig. 9.  The regression coefficient for classification tree-ANN 
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3. Results and Discussion 

The dual binary digit of output neuron representation was implemented for trophic state 

classification. The ‘00’ denotes oligotrophic, ‘01’ for mesotrophic, ‘10’ for eutrophic, and ‘11’ for 

hypertrophic. Table 4 sampled one neuron representation per trophic state denoting actual output and 
artificial nodes. Through sigmoid and linear functions as estimation rules, the output neurons close to 

1 are technically classified as 1. 

Table 4.  Artificial node values for trophic state classification using ANN 

Trophic State 
Actual Output Artificial Nodes (N) 

NI N2 N1 N2 

Oligotrophic 0 0 1.06E-06 1.65E-06 

Mesotrophic 0 1 1.37E-07 0.9896 

Eutrophic 1 0 0.9996 1.02E-05 

Hypertrophic 1 1 0.9889 0.9999 

 

MATLAB neural network fitting tool was used to simulate the expected output of the system. Fig. 

10 (a) and Fig. 10 (b) show how each network’s performance improved during training.  As shown in 

Fig. 10, each training of the developed neural network stopped for each system when the validation error 
reached its minimum and started to increase for six iterations (validation checks), which occurred at 

iteration 22 for Fig. 10 (a), and 46 for Fig. 10 (b), with the best validation performance of 0.15392, and 

0.096495 respectively. 

The gradient is used in updating the weights and biases during iterations of testing. Fig. 11 shows 
the changes in gradient value with respect to validation checks. After the sixth validation check, as seen 

on the red diamond arranged in ladder-like form, the cross-entropy value and mean square error fails to 

decrease. 

 

(a)                   (b) 

Fig. 10. Validation performance of (a) ANN (b) hybrid tree-ANN 
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Fig. 11. Training state plot 

The confusion matrix depicted in Fig. 12 describes how the developed neural network fits the feature 

data. It shows the percentages of correct classifications and misclassifications. It also shows how the data 
were distributed for each class. Correct classifications are presented as green squares on the diagonal 

section of the matrix. Incorrect classifications form the red squares. Fig. 12 depicts the overall confusion 

matrix of the developed neural network. Out of 294 attempts to classify target output, 18.7% is wrong 

for ANN, and 11.2% is wrong for hybrid tree-ANN. Hence, overall system accuracy is 81.3% and 88.8% 

for ANN and hybrid tree-ANN, respectively.  

 

(a)            (b)  

Fig. 12. Test confusion matrix of (a) ANN (b) hybrid tree-ANN 

The ROC plots the true positive rate (TPR) and the false positive rate (FPR) at different classification 
thresholds, as shown in Fig. 13. The area under the curve (AUC) is the algorithm used to measure the 

two-dimensional area under the ROC curve for each threshold. Evidently, the ROC curve of the tree-

ANN model lies closer to the value of 1 compared to the ANN model alone. It means that the tree-

ANN model classifies accurately more than the other tested model. 
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(a)                      (b) 

Fig. 13. Test ROC of (a) ANN (b) hybrid tree-ANN: Class1-Oligo, class 2-Meso, class 3-Eutro, class 4-Hyper 

Table 5 summarizing the resulting classification accuracy of two presented methods. The ANN model 

alone used eleven features, and the hybrid tree-ANN model used the top three highest impact features. 

There is a difference of 7.5% between the accuracy of the two models. 

Table 5.  Summary of comparison results 

Algorithm Number of Features Correct Classification Incorrect Classification 

ANN 11 81.3 % 18.7 % 

Hybrid Tree-ANN 3 88.8 % 11.2% 

4. Conclusion 

Assessment of trophic state is essential to maintain nutrient balance in the aquatic system, particularly 

in smart aquaponics in which nutrients from fishpond have a significant impact not only on aquatic 
species being cultivated but also on crops being grown. Two algorithms were used to model the trophic 

state assessment, namely, classification tree and artificial neural network. The classification tree was used 

as a multidimensional reduction algorithm, and ANN was used for the assessment of the trophic state. 

There are eleven predictors preliminary used in this study and were reduced to only three. Based on 
reduction, chlorophyll-a, phosphorus and Secchi depth are the significant predictors which dominantly 

signifies trophic state into oligotrophic, mesotrophic, eutrophic and hypertrophic. Two models were 

compared, ANN and hybrid classification tree-ANN, which provides higher accuracy in classification. 

Future work involves applying algorithms such as fuzzy logic and optimization techniques to model the 
ideal combinations of impacting nutrients. Consideration of newly discovered trophic state indicators is 

needed to gain higher accuracy. Adapting wireless sensor networks for effective real-time assessment 

strategy is to be considered [30]. 
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