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Micro-Optoelectromechanical Tilt Sensor
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This paper presents a novel hybrid CMOS/MEMS tilt sensor with a 5◦ resolution over a 300◦ range. The device uses a MEMS-
based semicircular mass suspended from a rigid body, projecting a shadow onto the CMOS-based optical sensor surface. A one-
dimensional photodiode array arranged as a uniformly segmented ring is then used to determine the tilt angle by detecting the
position of the semicircular mass. The complete sensor occupies an area of under 2.5 mm × 2.5 mm.
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1. INTRODUCTION

An increasing number of medical devices including
implantable prosthetics and body worn instrumentation are
incorporating sense systems within and around the body.
Physical constraints demand such devices to be compact and
lightweight, and the need for autonomy imposes stringent
power budgets on such systems. One such sensor is the
inclinometer (or tilt sensor), which senses its orientation
with respect to gravity.

Sensing tilt, in personalised medicine is becoming
increasingly important, especially when combined with
other sensor modalities. For example, a tilt sensor incor-
porated within a heart monitor can provide a metric
on the patients’ activity, providing additional insights for
interpreting the electrocardiogram data. In other biomedical
applications, real-time, accurate tilt data can be used in ther-
apy, for example, in correcting vestibular balance disorders.

The vast majority of tilt sensors developed to date are
capacitive (or conductive) in nature, often with electrolytic
fluid-filled cavities. Such systems have been developed by
Bretterklieber et al. [1] and more recently using MEMS
technology [2, 3]. Zhao and Yeatman [4] have developed
a digital MEMS-based tilt sensor offering the possibility
of simplifying the interface electronics. It has also been
reported possible to implement inclinometers using mod-
ified accelerometers [5, 6] but such systems are typically
limited in range and/or sensitivity. Other approaches include
a MEMS convection-based [7] and optical microfilter-based
[8] tilt sensors.

In this paper, we present a novel ultra-low-power tilt
sensor generating a digital output. This has been imple-
mented as part of a hybrid two-chip solution (MEMS
microstructure/CMOS vision chip) and has been fabricated.

2. SYSTEM ARCHITECTURE AND CIRCUIT
IMPLEMENTATION

This tilt sensor uses a micromechanical semicircular mass
to express the gravitational field optically and then custom
CMOS vision chip to detect and resolve the vector. This
concept is illustrated in Figure 1.

The design splits the 330◦ field of view into two 165◦

half-planes, which we have chosen to refer to as left- and
right-hand-side (LHS, RHS) horizons. This is illustrated
in the top-level system architecture, shown in Figure 2. As
the micromechanical semicircular mass moves, it forms a
shadow that is projected onto the surface of the CMOS
chip, the edge of which crosses both the LHS and RHS
horizons. Therefore, each horizon detector is required to sense
the position (or tilt angle) of these edges. By taking the
difference, the output can encode the tilt angle using a signed,
digital representation.

3. HORIZON DETECTOR CIRCUIT

The circuit implementation of the half-plane horizon detec-
tors is shown in Figure 3. This consists of 33 photodiode
elements positioned equidistantly around an arc to detect the
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Figure 1: The micro-optoelectromechanical tilt sensor concept,
based on a two-tier stack comprising of MEMS structure on top
of CMOS die. The optical detector has 66 photodetector elements
arranged in 5◦ segments to cover a 330◦ field-of-view (FOV).

position of the semicircular mass. Between each two adjacent
photodiodes, we use a discrete edge detector element (that
is in total, 32 edge detectors per horizon) to compare
photocurrent magnitudes and if sufficiently different flag an
edge-detect signal. The output is captured using a sequence
of operations. Firstly, the address bus is initialised using pull-
up devices to precharge the parasitic capacitance. Next, a
DRIVE signal is propagated through the one-dimensional
array, that is, 1 × 32 elements, until an edge signal is
encountered. On detecting an edge condition, the current
position is asserted onto the address bus via the address
encoder, constituting (for each element) the relevant pull-
down switches. Subsequently, the DRIVE signal is terminated
and the address bus is sampled onto a 5-bit register.

4. EDGE DETECTOR CIRCUIT

Figure 4 shows the circuit schematic of the edge detector
element. This has been adapted from Constandinou et al.
[9, 10] to the expected contrast ratio and photocurrent levels.
A global tuning mechanism is maintained by driving the Ibias

and Itune references off-chip and internally duplicating and
distributing to the individual edge detector elements. The
DRIVEIN and DRIVEOUT are used to test an individual
edge detectors state before propagating to test the next ele-
ment. Additionally, an artificial propagation delay is imple-
mented within the output buffer to guarantee robustness.

5. PHOTODIODE DESIGN

The photodiodes are implemented using an n-well/p-
substrate junction as illustrated in Figure 5. The different

photodiode elements (66 devices) have been individually
custom designed (to comply with design rule geometry) to
fit within a 550 μm to 600 μm radius arc in 5◦ segments. The
active sensor surface for each photodiode element comes to:
4245 μm2. The photodiode is reverse-biased by stacking two
diode-connected PMOS devices to Vdd. The photocurrent
range for the given device under the expected light levels is
from 1 pA (dark current) to 100 nA. The photodiode achieves
a spectral responsivity of 0.15 A/W, 0.25 A/W, and 0.3 A/W
for wavengths λ = 475 nm (blue), λ = 510 nm (green),
and λ = 630 nm (red), respectively, when being uniformly
illuminated at 5 μW/mm2.

6. 4-PHASE CLOCK GENERATION CIRCUIT

The operation of the tilt sensor is centrally regulated via a
4-phase clock sequence, generated using the circuit shown in
Figure 6. This implements a looping 4-element state machine
to generate the required control signals. Phase actions are:
ϕ1 to precharge the bus, ϕ2 to interrogate the LHS and RHS
horizons and drive the bus, ϕ3 to sample the bus result
on horizon register, and ϕ4 to sample the difference (i.e.,
subtraction) on the output register.

7. CMOS/MEMS INTEGRATED CIRCUITS

Figures 7 and 8 show the CMOS and MEMS micropho-
tographs, respectively.

The MEMS component has been designed such that the
pivot/axel used to suspend the mass is smooth and has little
friction. In addition, we patterned the release holes in the
semicircular mass with a specific pattern recommended by
the Tronics foundry, which forms bumps which ensure that
there is enough space between the main surface area and
the sidewall to avoid stiction [11]. Furthermore, the mass
includes antisticking holes to ensure release, based on techni-
cal data provided from Tronics foundry. During fabrication,
the design incorporates a number of struts to secure the
mass during processing and release. After manufacture, these
struts have been intentionally designed to be breakable, thus
releasing the semicircular mass into operation.

8. SIMULATION RESULTS

The circuit was simulated using the Cadence Spectre
(5.1.41isr1) simulator with foundry supplied BSIM3v3
models. Parametric operating point simulations have been
performed to determine the onset of edge detection for
various bias conditions. These results are illustrated in
Figure 9. The family of curves (for different values of
Ibias) illustrates the minimum contrast ratio (Iphoto/δIphoto)
required to flag an edge detection condition. The tunability
(for different values of Itune) is represented in the y-axis
variation. These results show main trends of operation: (i)
for Ibias < Iphoto the tunable range is not significantly effected
by bias current level, and (ii) for Ibias > Iphoto, increasing
the bias current level significantly increases the tunable range
(in particular extending the contrast ratio). It therefore
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Figure 2: The top-level system architecture comprising of two half-plane horizon detectors, clock phase generator, and 2’s compliment
subtraction circuit.
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Figure 3: Circuit schematic for the half-plane horizon detector. Each side of the tilt detector uses this horizon detector—comprising of 33
photodetector elements, and 32 edge detector cells—sequentially interrogated until the horizon (i.e., edge) is detected. The address is then
asserted onto a precharged bus to encode a digital position output. The shaded region is repeated so as to form a 32-element array.

envisaged that if the nonuniformity of incident light in
addition to any component mismatch due to technology
variation is maintained to be within the tunable limits, then
relatively low bias current levels can be used (i.e., Ibias = 5 to
10 nA).

A top-level transient simulation illustrates the system-
level operation of the tilt sensor, presented in Figure 10. This
simulation assumes an average photocurrent Iphoto of 25 nA,
an ambient off-current of 1 nA, and uses a system clock of
500 kHz. The total power consumption is 33 μW.
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Figure 4: Circuit schematic for the edge detector element. The shaded regions (photodiodes D1-D2 and load devices Q1-Q4) are external
to the edge detector block.
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Figure 5: Structure of n-well/p-substrate photodiode showing (a)
side, and (b) plan view (not shown to scale or profile).
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Figure 6: Circuit schematic for the 4-phase clock generation used
to sequence actions required to sense the tilt angle.

The functioning of the system can easily be traced by
following the transient simulation results shown in Figure 10

as follows: (i) on the rising edge of ϕ1, the two buses are
precharged (result = 31). (ii) On the rising edge of ϕ2, the
horizon detector results are asserted onto the buses (results
of 9 and 14 for LHS and RHS, resp.). (iii) On the rising edge
of ϕ3, the values on the buses are sampled to the horizon
output registers and finally, (iv) on the rising edge of ϕ4, the
subtracted result (from asynchronous adder) is sampled on
the output register.

9. DISCUSSION

One aspect of the sensor that has been omitted from the
scope of this p is the light source. To ensure robustness in
dark and fluctuating light conditions, the sensor is envisaged
to incorporate a dedicated light source. This can be a small
area, focused (i.e., narrow viewing area) light-emitting diode
(LED) to stimulate the photodetectors within the vision chip.
The composite emitter/sensor can then be packaged (e.g., as
in optoisolators) to seal the components from environmental
exposure.

Assuming a typically red (GaAsP) LED has a forward
bias of 2 V and the current is limited to 1 mA, the emitter
power consumption is 2 mW. For a 2 mm2 area emitter
with 1 mm emitter/sensor separation, a 15◦ beam divergence
and 5% luminous efficiency, this equates to 28 μW/mm2

incident light power on the CMOS surface. Therefore, for
a photodiode responsivity of approximately 0.3 A/W (at
λ = 630 nm), and photodiode area of 4245 μm2, the
generated photocurrent in each illuminated segment will be
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Figure 7: Microphotograph of the tilt sensor electronics imple-
mented in AMS 0.35 μm 2P4M CMOS technology. The dimensions
are: 1250 μm × 1250 μm (for core), and 2.5 mm × 2.5 mm die
dimensions, that is, including padring and bondpads (not shown).

×50 500 μm

Figure 8: SEM photograph of the micromechanical section of the
tilt sensor implemented in the Tronics SOI/HARM technology. The
dimensions are: 2.0 mm × 2.0 mm.

36 nA, well within the operating range of the edge detector
[9].

To minimise power consumption, the light source can be
biased at reduced intensity as the photodetectors cover a large
sense area and is therefore extremely efficient. Alternatively
the sensor can be chosen to operate to a duty cycle, that
is, pulsing the emitter in synchronisation with the clock,
and choosing to power the emitter only at the required
refresh rate. For example, if only a 10 Hz tilt response is
required, the sensor can be configured to operate for a single
acquisition, that is, for four clock cycles (400 microseconds
using a 10 kHz clock), every 100 milliseconds, thus reducing
power consumption by 99.6%. Fundamentally, the mini-
mum power consumption is only limited by: (i) the dark
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Figure 9: Operational range (for the onset of edge detection) for the
edge detector core for various bias conditions (assuming Iphoto, on =
25 nA).

Table 1: Target design specifications.

CMOS technology AMS 0.35 μm 2P4M CMOS

MEMS technology Tronics SOI/HARM

Supply voltage 3.3 V

Circuit size 2500 μm × 2500 μm

Device count 4312

Input light intensity (range) 10 nW/mm2 to 100 μW/mm2

Input system clock (range) 100 Hz to 1 MHz

Input current bias (range) 1 nA to 50 nA

Tilt angle range 330◦ (±165◦)

Tilt resolution 5◦

Effective dynamic range 36 dB (6 bits)

System power consumption †10–35 μW
†

Excluding light emitter consumption.

current of the photodiodes, (ii) the minimum detectable
contrast ratio (for reliable edge detection), and (iii) the
required sensory response time.

10. CONCLUSION

In this paper, we have presented a hybrid CMOS/MEMS
inclinometer that uses a photodetector array to detect the
position of a suspended microsystem. With a uniform array
of radially positioned photodiodes, the tilt sensor achieves
a 5◦ resolution over a 330◦ range. The system power
consumption depends highly on the incident light intensity
but expected to be within the range 10–35 μW. The target
system specifications are given in Table 1.
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Figure 10: Top-level transient simulation for a tilt angle of −15◦. Results shown are (a) LHS horizon bus (5-bit), (b) LHS horizon output
(5-bit), (c) RHS horizon bus (5-bit), (d) RHS horizon output (5-bit), (e) subtraction result (6-bit), (f) final output (6-bit), (g) clock, (h)–(k)
ϕ1–ϕ4, (l) current supply, and (m) integral of current supply.
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