
IFAC PapersOnLine 52-27 (2019) 317–322

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2019.12.680

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2019.12.680 2405-8963

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

General methodology for building
of OPC UA gateways

Tomáš Ausberger ∗ Milan Štětina ∗∗

∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: tomasa@ntis.zcu.cz.)
∗∗ NTIS – New Technologies for the Information Society, Faculty of
Applied Sciences, University of West Bohemia, Technická 8, 306 14

Pilsen, CZ (e-mail: mstetin2@ntis.zcu.cz.)

Abstract:
This article describes an original generalized methodology for building OPC UA bridges for
different industrial communications and internal command protocols. This methodology is aimed
for fast development of OPC UA gateways for less popular data transferring communications
which are not available on the market. A final gateway can be added to existing solutions without
modification of data source control devices. This gateway needs only a minimal configuration and
obtains information about data source automatically. This design has been already implemented
in three different solutions with various communication (REXYGEN, PerNet, a Keysight
middleware protocol). The solutions has been deployed in various projects and proved to be
efficient and reliable.

Keywords: OPC UA, industrial communication, OPC UA gateway, OPC UA bridge

1. INTRODUCTION

This article describes an original methodology for building
OPC UA bridges for general industrial communications. It
identifies and map together crucial methods of OPC UA
and mandatory methods of data transferring communica-
tion. It also defines a processes that have to be imple-
mented in OPC UA gateway in order to provide efficient
and reliable interface between original data source device
and OPC UA clients.

This methodology provides general, easily implementable
instructions for designing an effective OPC UA gateway.
It’s suitable for most data transferring protocols and there-
fore it is ideal for internal or less popular data transferring
protocols that don’t provide any usable OPC UA gate-
way yet. The concept itself has been repeatedly imple-
mented with different data transferring communications
and tested in long-term monitored projects. It has been
proven as efficient, reliable and customizable for different
behaviours of various communications.

The gateway is designed as a standalone application that
can be easily configured and installed without modifying
the target control device (see Figure 1). It consists of
an original communication client and an OPC UA server.
It communicates with a data source device which serves
as an original communication server. The gateway browses
the data structure, reads and writes data of the device and
stores the data in the OPC UA Address Space. OPC UA
clients can then access the data via standard OPC UA
services. For the device, the gateway acts like any other
original client; therefore an OPC UA server interface can
be added to the device on the fly.

Fig. 1. The gateway provides an OPC UA interface with-
out any modifications of target device

The used approach is derived from a common concept of
gateway between two data transfer communications. This
concept has been examined in the context of OPC UA
and its crucial processes have been identified. A derived
methodology has been designed as general and easy to
implement as possible, while preserving reliability and op-
timizing network overhead. Therefore the gateway doesn’t
only resend all OPC UA clients’ requests to data source
device but it tries to lower the network overhead as much
as possible.

The gateway is not fully dependable on its data sources
but it itself contains information about connected devices
and their last acquired data. Therefore it can provide last
known data to OPC UA clients even when a data source is
disconnected. Clients themselves decide how old data are
still acceptable for their purposes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295598096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

318	 Tomáš Ausberger et al. / IFAC PapersOnLine 52-27 (2019) 317–322

On the market are actually available many OPC UA
gateways, which are bridging mostly common industrial
communications, namely OPC DA (e.g. OPC UA –
OPC DA gateways from Unified Automation GmbH 1 ,
Prosys OPC Ltd 2 , Software Toolbox Inc. 3 , OPC UA –
MODBUS gateway from Advantech Co., Ltd. 4). However
those OPC UA gateways are always dedicated to com-
mon industrial communications, leaving behind other data
transferring communications.

The main result of this article is a general methodology
for designing OPC UA gateways, which can be used with
any applicable data transfer communication. This method-
ology is easy to use and provides stable, efficient and
reliable solutions. The methodology is flexible enough to
fit behaviour of most data transferring communications.
Optimal requirements for used data transferring commu-
nications are browse, read and write methods. However,
a limited gateway can be designed even for communica-
tions that does not fully support these methods. The only
requirement is the ability to implement a client for original
communication. This article can be availed mainly by
small and medium companies. It can help with implement-
ing and deploying of OPC UA servers and therefore with
spreading of OPC UA in industry.

2. OVERVIEW

2.1 OPC UA

OPC UA (OPC Unified Architecture) is a new industrial
communication standard developed by the OPC Founda-
tion, see OPC Foundation (2018). It’s designed as a plat-
form independent, scalable and modular service-oriented
communication with strong security mechanisms. This
makes it an ideal solution for the IoT (Internet of Things)
and Industry 4.0, for more details see Zezulka et al. (2018).
The OPC UA can be used for connecting two PLCs (Pro-
grammable Logic Controller) on the same floor or for data
aggregation and transfer between devices on the control
floor and other floors (operations, management and enter-
prise) with scalable security.

An OPC UA gateway created with presented methodology
can be designed either as a simple gateway or as an aggre-
gation server for several connected control devices. A new
OPC UA PubSub communication can be also implemented
in the OPC UA Gateway; however, the preferred use of
Publisher interface is to implement it directly in control
devices and sensors and omit the Gateway entirely.

Detailed information about customizable OPC UA func-
tions and settings like discovery services, endpoints or
security are described in the specification OPC Foundation
(2018). Security and endpoint settings may affect the per-
formance of OPC UA communication. It is recommended
to consider requirements of the target environment. For

1 https://www.unified-automation.com/products/wrapper-and-

proxy/uagateway.html
2 https://www.prosysopc.com/products/opc-ua-gateway/
3 https://www.softwaretoolbox.com/datahubopcgatewaypack.

html
4 https://advdownload.blob.core.windows.net/productfile/

PIS/EKI-1242IOUMS/Product%20-%20Datasheet/EKI-1242OUMS-A_

1242IOUMS-A_DS(09.26.18)20181007183020.pdf

a detailed analysis see Cavalieri and Chiacchio (2013) and
Post et al. (2009). A gateway’s performance and cost can
be also affected by chosen platform, see (Cho and Jeong,
2018).

2.2 Address Space

All shared content of OPC UA server is stored in its
Address Space. OPC UA clients can access this content via
OPC UA services (see OPC Foundation (2018)). OPC UA
Address Space consists of nodes, references and events.
Address Space can be built by managing nodes, binding
them together with references and setting their attributes.
Even at the start of an OPC UA server, the Address
Space isn’t empty. The OPC Foundation pre-defines all
fundamental nodes in the OPC Foundation namespace,
and every OPC UA server has to implement them.

Nodes can be classified as VariableType, Variable, Ob-
jecType, Object, ReferenceType, EventType, DataType,
Method or View. Each node has its attributes like NodeId,
BrowseName, DisplayName or NodeClass. Some of these
NodeClasses also contain other attributes, e.g. Variables
also contain following attributes: Value, ValueRank, Ar-
rayDimensions, AccessLevel, UserAccessLevel, etc. These
attributes are defined for each NodeClass and cannot be
further extended.

2.3 Namespaces and NodeIds

The principle of Namespaces is to uniquely identify and
group data of one logical part. Two nodes with the same
NodeId (Namespace and Identifier) represent one virtual
(or physical) object in the OPC UA universe.

Namespace is uniquely identified by its URI. However,
NodeIds are composed of Identifier and NamespaceId.
NamespaceId is only an index to the local Namespace
Table. A common mistake is to compare only NamespaceId
and Identifier of NodeId instead of comparing Namespace
URI and Identifier.

Every OPC UA server provides at least two namespaces:
the first one is the OPC Foundation namespace with build-
in nodes, the second one is a namespace of the OPC UA
server which is used for its internal needs. A gateway built
with presented approach will typically also have one type
namespace for declaring new NodeTypes and one device
namespace for each connected data source device.

The type namespace is present in all gateway instances,
and its nodes shall be consistent. This means that new
NodeTypes are virtually declared only once in the whole
OPC UA universe and all application instances are only
making references to them. Any modification of nodes in
the type namespace should be backward compatible.

A device namespace should be created for each connected
device. A device namespace’s URI can be generated au-
tomatically using the gateway’s configuration and infor-
mation about connected control devices. A device names-
pace’s URI shall be composed of static identifier of the
gateway (Gateway-Company), given identifier of the en-
vironment (Project) and given identifier of target control
device (Device). The form of a device namespace’s URI
can be something like this:

	 Tomáš Ausberger et al. / IFAC PapersOnLine 52-27 (2019) 317–322	 319

On the market are actually available many OPC UA
gateways, which are bridging mostly common industrial
communications, namely OPC DA (e.g. OPC UA –
OPC DA gateways from Unified Automation GmbH 1 ,
Prosys OPC Ltd 2 , Software Toolbox Inc. 3 , OPC UA –
MODBUS gateway from Advantech Co., Ltd. 4). However
those OPC UA gateways are always dedicated to com-
mon industrial communications, leaving behind other data
transferring communications.

The main result of this article is a general methodology
for designing OPC UA gateways, which can be used with
any applicable data transfer communication. This method-
ology is easy to use and provides stable, efficient and
reliable solutions. The methodology is flexible enough to
fit behaviour of most data transferring communications.
Optimal requirements for used data transferring commu-
nications are browse, read and write methods. However,
a limited gateway can be designed even for communica-
tions that does not fully support these methods. The only
requirement is the ability to implement a client for original
communication. This article can be availed mainly by
small and medium companies. It can help with implement-
ing and deploying of OPC UA servers and therefore with
spreading of OPC UA in industry.

2. OVERVIEW

2.1 OPC UA

OPC UA (OPC Unified Architecture) is a new industrial
communication standard developed by the OPC Founda-
tion, see OPC Foundation (2018). It’s designed as a plat-
form independent, scalable and modular service-oriented
communication with strong security mechanisms. This
makes it an ideal solution for the IoT (Internet of Things)
and Industry 4.0, for more details see Zezulka et al. (2018).
The OPC UA can be used for connecting two PLCs (Pro-
grammable Logic Controller) on the same floor or for data
aggregation and transfer between devices on the control
floor and other floors (operations, management and enter-
prise) with scalable security.

An OPC UA gateway created with presented methodology
can be designed either as a simple gateway or as an aggre-
gation server for several connected control devices. A new
OPC UA PubSub communication can be also implemented
in the OPC UA Gateway; however, the preferred use of
Publisher interface is to implement it directly in control
devices and sensors and omit the Gateway entirely.

Detailed information about customizable OPC UA func-
tions and settings like discovery services, endpoints or
security are described in the specification OPC Foundation
(2018). Security and endpoint settings may affect the per-
formance of OPC UA communication. It is recommended
to consider requirements of the target environment. For

1 https://www.unified-automation.com/products/wrapper-and-

proxy/uagateway.html
2 https://www.prosysopc.com/products/opc-ua-gateway/
3 https://www.softwaretoolbox.com/datahubopcgatewaypack.

html
4 https://advdownload.blob.core.windows.net/productfile/

PIS/EKI-1242IOUMS/Product%20-%20Datasheet/EKI-1242OUMS-A_

1242IOUMS-A_DS(09.26.18)20181007183020.pdf

a detailed analysis see Cavalieri and Chiacchio (2013) and
Post et al. (2009). A gateway’s performance and cost can
be also affected by chosen platform, see (Cho and Jeong,
2018).

2.2 Address Space

All shared content of OPC UA server is stored in its
Address Space. OPC UA clients can access this content via
OPC UA services (see OPC Foundation (2018)). OPC UA
Address Space consists of nodes, references and events.
Address Space can be built by managing nodes, binding
them together with references and setting their attributes.
Even at the start of an OPC UA server, the Address
Space isn’t empty. The OPC Foundation pre-defines all
fundamental nodes in the OPC Foundation namespace,
and every OPC UA server has to implement them.

Nodes can be classified as VariableType, Variable, Ob-
jecType, Object, ReferenceType, EventType, DataType,
Method or View. Each node has its attributes like NodeId,
BrowseName, DisplayName or NodeClass. Some of these
NodeClasses also contain other attributes, e.g. Variables
also contain following attributes: Value, ValueRank, Ar-
rayDimensions, AccessLevel, UserAccessLevel, etc. These
attributes are defined for each NodeClass and cannot be
further extended.

2.3 Namespaces and NodeIds

The principle of Namespaces is to uniquely identify and
group data of one logical part. Two nodes with the same
NodeId (Namespace and Identifier) represent one virtual
(or physical) object in the OPC UA universe.

Namespace is uniquely identified by its URI. However,
NodeIds are composed of Identifier and NamespaceId.
NamespaceId is only an index to the local Namespace
Table. A common mistake is to compare only NamespaceId
and Identifier of NodeId instead of comparing Namespace
URI and Identifier.

Every OPC UA server provides at least two namespaces:
the first one is the OPC Foundation namespace with build-
in nodes, the second one is a namespace of the OPC UA
server which is used for its internal needs. A gateway built
with presented approach will typically also have one type
namespace for declaring new NodeTypes and one device
namespace for each connected data source device.

The type namespace is present in all gateway instances,
and its nodes shall be consistent. This means that new
NodeTypes are virtually declared only once in the whole
OPC UA universe and all application instances are only
making references to them. Any modification of nodes in
the type namespace should be backward compatible.

A device namespace should be created for each connected
device. A device namespace’s URI can be generated au-
tomatically using the gateway’s configuration and infor-
mation about connected control devices. A device names-
pace’s URI shall be composed of static identifier of the
gateway (Gateway-Company), given identifier of the en-
vironment (Project) and given identifier of target control
device (Device). The form of a device namespace’s URI
can be something like this:

urn:Gateway-Company:<Project>:<Device>

An Identifier can be defined statically or dynamically.
Static Identifiers (usually numeric or string) are suitable
for namespaces with nodes that don’t change over time
(e.g. type namespace) or nodes that can be determined
from their Identifier (e.g. device namespace of devices
with distinguishable variables). Dynamic Identifiers (usu-
ally numeric or GUID) are generated automatically by
OPC UA server and don’t contain any information about
their virtual objects. The gateway should use static Identi-
fiers for its device namespaces’ nodes if possible, otherwise
the use of the gateway shall be restricted (e.g. no redun-
dancy).

3. GATEWAY

The OPC UA gateway is a standalone application which
implements two interfaces, an OPC UA server and an orig-
inal communication client. The gateway has to imple-
ment methods of original communication for managing
a connection with a control device (connect, reconnect,
disconnect, handle errors, etc.), browsing a data structure
of the device, checking a data structure’s consistence,
reading and writing values of device’s variables. All of
these functions has to be implemented to develop a fully
functional gateway, however, a limited gateway can still be
built without some of these functions.

The main purpose of the gateway is to browse a data
structure of control device (namely its objects and vari-
ables), replicate it to the OPC UA Address Space and
let OPC UA clients read and write values of its vari-
ables. The data structure of control device is stored in
the Address Space in a form of nodes and references.
OPC UA clients can then access them with OPC UA
services. Whenever a data structure in the control device
changes, the gateway removes all its nodes and re-browses
its data structure.

After establishing a connection and browsing a control
device’s data structure, the gateway starts synchronizing
data with the target control device. Data are generally
synchronized in bulk and on-demand. When the gateway
receives a request from an OPC UA client for reading
or writing a value of a synchronized variable, it stores
the request to a synchronization stack and triggers a syn-
chronization process. A result of the process is sent back
to the OPC UA client as a status code of the response.

Monitoring of synchronized variables is handled differently.
The gateway has to fetch and store values of monitored
synchronized variables from the target device periodically.
Classic OPC UA notifications on data change are then
generated automatically. The gateway adds a variable to
the synchronization stack when it starts being monitored
by first OPC UA client and remove it when it stops
being monitored. Thus, the Gateway’s performance is
more affected by the count of monitoring items and less
by connected clients. A synchronizing interval represents
a maximum period between two synchronization calls.
The minimal sampling interval should be higher or equal
to the synchronizing interval to make data fetching faster
than data sampling and to limit useless notifications.

To utilize the gateway as an aggregation server, a list
of connected devices and their connection details has
to be defined in the configuration. The gateway creates
a synchronization thread and a synchronization stack for
each device. Browsed variables of one device have to be
added to its dedicated namespace. When an OPC UA
client requests to read, write or monitor a device’s variable,
the gateway have to select the right synchronization stack
and add the requested variable into it.

A modification of the gateway may be necessary while
implementing different original protocols. When an orig-
inal protocol doesn’t provide a browsing method then
all devices’ variables have to be specified explicitly in
the configuration. If an original communication uses values
with quality then these quality codes shall be mapped to
OPC UA status codes. Finally, if it doesn’t support a data
consistence check then the gateway shall either compare
browsed data structure with device’s data structure, use
constant data structures or re-browse a data structure
after each connection error.

3.1 Data structure

A structure of nodes which represents a data structure of
the connected device depends on a behaviour of used orig-
inal communication and connected control devices. A hi-
erarchy of the structure can be static or dynamic. A static
hierarchy uses predefined nodes (and their types) for cer-
tain levels. A dynamic hierarchy is browsed recursively.
Used objects and variables can be generic or specialized.
Some attributes of variables and objects can be determined
from browsed information: BrowseName, DisplayName,
numeric or string part of NodeId, user permissions to read
and write, value rank and array dimensions of variables.
Even a value of additional properties like Min and Max
can be used for preserving information about variables.

The recommended way to store devices’ data structures
is to create a separate namespace for each device, cre-
ate a folder in this namespace and organize the folder
from the well-known node Objects. This folder should be
created when a data structure is browsed. All nodes of
browsed data structure should be placed in this folder.
It is recommended to create these nodes first and then
add the whole tree of nodes in the Address Space at once.
When a device’s data structure changes then the gate-
way should remove its folder and connected tree of nodes
from the Address Space. That should apply even when
the device disconnects for an extended period or when it’s
uncertain if the device’s data structure remains consistent.
Folder nodes and the well-known node Objects should be
versioned. NodeVersions of the Objects node and partic-
ular folder shall be changed every time a device folder
is added or removed from the Address Space. OPC UA
clients shall be notified about these model changes by
standard OPC UA events. A name of each device can be
stored in a DisplayName of its folder, thus the Address
Space remains clearly organized.

The gateway can define and use its own NodeTypes.
These NodeTypes should be created in the type namespace
and should represent every type of variable or object
used in data structures. A type of node can be used
for filtration of synchronized objects and variables. When

320	 Tomáš Ausberger et al. / IFAC PapersOnLine 52-27 (2019) 317–322

the gateway processes a request for reading, writing or
monitoring a value of a node which is an instance of
new VariableType, it selects the right synchronization
stack and insert the processed node into it. However, data
structures can even be made using build-in nodes only. In
that case another method has to be used for identification
and filtration of synchronized nodes (e.g. all variables in a
specific namespace).

3.2 Gateway functions

A purpose of the gateway is to provide data of connected
devices, handle client’s requests for reading, writing and
monitoring data and synchronize requested data with
connected devices. However this synchronization is not
always instant, the gateway tries to lower the network
overhead by caching data and synchronize monitored data
periodically in bulk.

At the start an OPC UA server has to be configured and
has to build its Address Space. If the gateway uses its own
NodeTypes, it shall insert them in the Address Space. It
shall also define and initialize connections to target control
devices and create a synchronization stack and a synchro-
nization thread for each connection. After initialization,
the OPC UA server and synchronization threads have to
be started. The gateway then waits for a close signal to
close all synchronization threads, the OPC UA server and
the application itself.

A synchronization stack is composed of lists of read
requests and write requests and lists of nodes requested
to be read, written or monitored. These nodes represent
variables of the connected device and should be instances
of the gateway’s new NodeTypes. All synchronization lists
have to be unique (without duplicate items) but a node
can be present in all three lists of nodes at once (it can be
queued to read, write and monitor).

When the gateway receives a read or write request about
a synchronized node, it has to insert the synchronized node
into the corresponding node list of synchronization stack;
the request itself has to be inserted into the corresponding
request list. Read and write nodes and requests are pre-
sented in the synchronization lists until synchronized and
responded. The list of monitored nodes, on the other hand,
remains unchanged after synchronization. A synchronized
node is inserted into the monitored node list when the first
client starts its monitoring and remains there until the last
client stops its monitoring.

A synchronization thread consists of an infinite loop which
can be interrupted by a close signal. The thread has to
manage a connection with the device (connect, recon-
nect, handle errors), check a consistence of its data struc-
ture, browse and re-browse its data structure if required
and synchronize requested data from the synchronization
stack. A semaphore may be present in this loop, pausing
a thread when no synchronization is required. The server
shall send a signal to this semaphore when a client re-
quests data synchronization with the device. However,
this semaphore cannot wait indefinitely, but it has to use
a synchronizing interval as its timeout. The synchronizing
interval represents a minimal interval in which the syn-
chronization thread has to synchronize data for monitored

nodes. This interval can be set in the gateway’s configu-
ration, or it can be determined from sampling interval of
monitored items. The synchronization interval has to be
lower (or at least equal) than minimal sampling interval
of synchronized monitored nodes.

A thread’s synchronization method synchronizes values
of nodes and process stored clients’ requests. Initially,
the method has to safely copy all lists of synchronized
nodes and requests from the synchronization stack to local
copies. The list of monitored nodes has to be merged
to the local list of read nodes; duplicities shall be re-
moved. Subsequently, the method has to clear lists of the
synchronized stack except the monitored nodes list and
release the synchronization stack to be filled again by new
requests and nodes. The method shall further use only
local copies of synchronization lists. Next, the method
has to write values from written nodes to the device’s
variables and send a result of the operation in a write
response to OPC UA clients. Finally, the method has
to read values of requested read nodes from the device’s
variables, save them to corresponding nodes and deliver
a result of the operation in a read response to clients.

It is necessary to modify methods for reading and writing
values of synchronized variables. Every time the gate-
way processes a client’s request for reading or writing
a value attribute of a synchronized variable, it shall check
the request and insert requested nodes from valid requests
to the synchronization stack. If the gateway processes
a write request, it should first set a written value from
the request to the target node and then insert the node to
the synchronization stack; thus, only the last written value
is synchronized with the device. Synchronized variables
can be determined by their namespace or NodeType. All
synchronized nodes may contain a reference to the desired
synchronization stack to facilitate its selection.

4. IMPLEMENTATION

In the next chapters are described three OPC UA gateways
that has been implemented using described methodology.
These gateways are used as a proof of concept and as
an implementation guide. Each of these gateways uses
a data transfer communication with different behaviour.
In each chapter are described a behaviour and a data
structure of used communication, implemented methods,
chosen OPC UA representation of data structure, deployed
solutions and obtained results.

The complexity of OPC UAmakes it difficult to implement
from scratch. That’s why some organisations and groups
makes its own toolkit (a set of libraries) which imple-
ments some core functions of the OPC UA specification
and provides an interface for development of OPC UA
applications. Some of these toolkits are free to use (e.g.
open6241 5) but some have to be purchased from their
authors (e.g. ANSI C 6 and C++ 7 toolkits of Unified
Automation GmbH). An efficiency and provided functions
may vary from toolkit to toolkit.
5 https://open62541.org/
6 https://www.unified-automation.com/products/client-sdk/

ansi-c-ua-client-sdk.html
7 https://www.unified-automation.com/products/server-sdk/

c-ua-server-sdk.html

	 Tomáš Ausberger et al. / IFAC PapersOnLine 52-27 (2019) 317–322	 321

the gateway processes a request for reading, writing or
monitoring a value of a node which is an instance of
new VariableType, it selects the right synchronization
stack and insert the processed node into it. However, data
structures can even be made using build-in nodes only. In
that case another method has to be used for identification
and filtration of synchronized nodes (e.g. all variables in a
specific namespace).

3.2 Gateway functions

A purpose of the gateway is to provide data of connected
devices, handle client’s requests for reading, writing and
monitoring data and synchronize requested data with
connected devices. However this synchronization is not
always instant, the gateway tries to lower the network
overhead by caching data and synchronize monitored data
periodically in bulk.

At the start an OPC UA server has to be configured and
has to build its Address Space. If the gateway uses its own
NodeTypes, it shall insert them in the Address Space. It
shall also define and initialize connections to target control
devices and create a synchronization stack and a synchro-
nization thread for each connection. After initialization,
the OPC UA server and synchronization threads have to
be started. The gateway then waits for a close signal to
close all synchronization threads, the OPC UA server and
the application itself.

A synchronization stack is composed of lists of read
requests and write requests and lists of nodes requested
to be read, written or monitored. These nodes represent
variables of the connected device and should be instances
of the gateway’s new NodeTypes. All synchronization lists
have to be unique (without duplicate items) but a node
can be present in all three lists of nodes at once (it can be
queued to read, write and monitor).

When the gateway receives a read or write request about
a synchronized node, it has to insert the synchronized node
into the corresponding node list of synchronization stack;
the request itself has to be inserted into the corresponding
request list. Read and write nodes and requests are pre-
sented in the synchronization lists until synchronized and
responded. The list of monitored nodes, on the other hand,
remains unchanged after synchronization. A synchronized
node is inserted into the monitored node list when the first
client starts its monitoring and remains there until the last
client stops its monitoring.

A synchronization thread consists of an infinite loop which
can be interrupted by a close signal. The thread has to
manage a connection with the device (connect, recon-
nect, handle errors), check a consistence of its data struc-
ture, browse and re-browse its data structure if required
and synchronize requested data from the synchronization
stack. A semaphore may be present in this loop, pausing
a thread when no synchronization is required. The server
shall send a signal to this semaphore when a client re-
quests data synchronization with the device. However,
this semaphore cannot wait indefinitely, but it has to use
a synchronizing interval as its timeout. The synchronizing
interval represents a minimal interval in which the syn-
chronization thread has to synchronize data for monitored

nodes. This interval can be set in the gateway’s configu-
ration, or it can be determined from sampling interval of
monitored items. The synchronization interval has to be
lower (or at least equal) than minimal sampling interval
of synchronized monitored nodes.

A thread’s synchronization method synchronizes values
of nodes and process stored clients’ requests. Initially,
the method has to safely copy all lists of synchronized
nodes and requests from the synchronization stack to local
copies. The list of monitored nodes has to be merged
to the local list of read nodes; duplicities shall be re-
moved. Subsequently, the method has to clear lists of the
synchronized stack except the monitored nodes list and
release the synchronization stack to be filled again by new
requests and nodes. The method shall further use only
local copies of synchronization lists. Next, the method
has to write values from written nodes to the device’s
variables and send a result of the operation in a write
response to OPC UA clients. Finally, the method has
to read values of requested read nodes from the device’s
variables, save them to corresponding nodes and deliver
a result of the operation in a read response to clients.

It is necessary to modify methods for reading and writing
values of synchronized variables. Every time the gate-
way processes a client’s request for reading or writing
a value attribute of a synchronized variable, it shall check
the request and insert requested nodes from valid requests
to the synchronization stack. If the gateway processes
a write request, it should first set a written value from
the request to the target node and then insert the node to
the synchronization stack; thus, only the last written value
is synchronized with the device. Synchronized variables
can be determined by their namespace or NodeType. All
synchronized nodes may contain a reference to the desired
synchronization stack to facilitate its selection.

4. IMPLEMENTATION

In the next chapters are described three OPC UA gateways
that has been implemented using described methodology.
These gateways are used as a proof of concept and as
an implementation guide. Each of these gateways uses
a data transfer communication with different behaviour.
In each chapter are described a behaviour and a data
structure of used communication, implemented methods,
chosen OPC UA representation of data structure, deployed
solutions and obtained results.

The complexity of OPC UAmakes it difficult to implement
from scratch. That’s why some organisations and groups
makes its own toolkit (a set of libraries) which imple-
ments some core functions of the OPC UA specification
and provides an interface for development of OPC UA
applications. Some of these toolkits are free to use (e.g.
open6241 5) but some have to be purchased from their
authors (e.g. ANSI C 6 and C++ 7 toolkits of Unified
Automation GmbH). An efficiency and provided functions
may vary from toolkit to toolkit.
5 https://open62541.org/
6 https://www.unified-automation.com/products/client-sdk/

ansi-c-ua-client-sdk.html
7 https://www.unified-automation.com/products/server-sdk/

c-ua-server-sdk.html

The presented gateway implementations were developed
using the OPC UA c++ toolkit by Softing Industrial
Automation GmbH for Windows 8 and Linux 9 . This
toolkit generates a fully functional OPC UA server on
its own with minimum provided information. Developers
can make changes to this server and modify it to work
as requested. The toolkit allows developers to configure
settings of the server (e.g. Endpoints, certificates, server
information), to define and manage nodes and references
in the Address Space and even to overwrite some of its
internal handlers.

4.1 REX OPC UA

REXYGEN is a system developed by REX Controls s.r.o.
The essential part of this solution is a RexCore which
can be commanded via its own internal command protocol
based on TCP (Transmission Control Protocol). This pro-
tocol allows uploading, running and stopping an executive,
browsing its blocks, reading and writing values of blocks’
variables and diagnosing the executive. The executive is
an application code that can be compiled, uploaded to
RexCore and executed. The executive consists of multiple
periodically executed tasks. Each task is constituted of
function blocks and subsystems that are connected to-
gether and can be displayed in a form of FBD (Function
Block Diagram). Subsystems serve merely for grouping
other function blocks to logical units. Function blocks, sub-
systems and tasks can contain multiple variables. These
variables are qualified as inputs, outputs, parameters and
states. The RexCore allows users to read all values of
these variables, but to write only values of parameters
and inputs. Permissions can be further limited by RexCore
authorization.

REX OPC UA has been built with browse, read and
write method. It can be connected to multiple RexCore
instances at once and can work as an aggregation server.
To its work the gateway needs administrator’s credentials
for RexCore authentication, these credentials has to be
specified in target device’s configuration. The gateway is
therefore allowed to browse all device’s blocks and read
and write their variables. An access of OPC UA clients to
write values can be restricted by used User Token Policy
(authentication mode) of endpoints.

The system can theoretically change its executive at any
moment. If that happens, the internal command proto-
col starts returning an ExecutiveChanged error until it’s
reloaded. The gateway checks error codes of command
protocol responses and re-browses the data structure of
connected RexCore (and reload the command protocol)
when an ExecutiveChanged error is returned. If an exec-
utive is changed while a connection to target RexCore is
interrupted, the command protocol doesn’t return an Ex-
ecutiveChanged error. For this situation the start time of
browsed executive is stored and verified after each recon-
nection. If the new start time doesn’t match the stored one,
an executive has been changed and the data structure has
to be re-browsed.

8 https://data-intelligence.softing.com/products/datafeed-

opc-sdks/datafeed-opc-ua-c-server-client-sdk-for-windows/
9 https://data-intelligence.softing.com/products/datafeed-

opc-sdks/datafeed-opc-ua-c-server-client-sdk-for-linux/

The gateway creates a folder organized by the well-known
node Objects for each connected RexCore. The gateway
browses recursively executive’s tasks, subsystems, blocks
and their variables and organizes them with HasCompo-
nent references to maintain the same structure as in the di-
agnostic tool REXYGEN Diagnostics using instances of
TaskType, SubystemType, BlockType and IVariableType
subtypes (Input, Output, Parameter and State). Only val-
ues of IVariableType instances are synchronized with their
corresponding target RexCore. Read and write requests
are synchronized in bulk. The gateway stores an ID of each
block or variable for synchronization, a name in node’s
DisplayName and a browsed path in its NodeId’s string
Identifier. It also creates Min and Max properties for each
variable for the storage of limits of its value.

REX OPC UA is a part of REXYGEN solution, and it’s
available on the market 10 . It has been used in various
projects by both REXYGEN developers and users for
more than five years. Reported issues have been processed
and led to updates of some core principles. An example
application with 556 objects and 2,472 variables and 50 ms
synchronizing period uses 15.3 MB of RAM. For further
information look at REX Controls s.r.o. (2019).

4.2 OPC UA PerNet Gateway

PerNet is a communication used by SandRA (Safe and
Reliable Automation) system of ZAT a.s. It is a service
oriented communication based on UDP (User Datagram
Protocol) and allows clients to browse structures and their
variable arrays, read data of structures and write data of
variables. Data of PerNet server are stored in structures.
A structure consists of arrays of different date types; each
array is dedicated to one predefined date type and contains
constant amount of variables. The size of every array is
contained in browsed structure’s description. Predefined
date types are for example Boolean, Integer-32, Float,
TimeDate, BitSafe, RealSafe and others. BitSafe and Re-
alSafe contain value with validity, other date types contain
value only. An access for reading and writing data of
structures is configured for each structure separately, this
information is also contained in structure’s description.

OPC UA PerNet Gateway has been built with browse,
read and write functions. It can be connected to mul-
tiple PerNet servers and can be utilized as an aggrega-
tion server or to maintain redundancy. A PerNet data
structure can be theoretically changed, but that requires
a change of application code in connected device (PerNet
server). The gateway stores a print of browsed structures’
description for each server and compares it periodically
with a print of re-browsed structures’ description. If these
prints do not match, affected old structures should be
removed and new ones should be created from re-browsed
structures’ description.

The gateway creates a StructureFolder for each connected
PerNet server with its name stored in the node’s Display-
Name. This StructureFolder contains a data structure of
corresponding PerNet server represented by Structures.
Each Structure contains a StructureArray component for
each data type array used in the particular structure, each

10https://www.rexygen.com/

322	 Tomáš Ausberger et al. / IFAC PapersOnLine 52-27 (2019) 317–322

StructureArray has as many StructureVariables as is the
size of selected data type array. A StructureArray and its
StructureVariables have the same data type. Structure-
Variable contains a scalar value, StructureArray contains
a one-dimensional fixed-length array with values of its
StructureVariables in it. A value can be read both from
StructureArray or StructureVariables but only a value of
StructureVariable can be written.

OPC UA PerNet Gateway has been deployed in a few
projects requiring a high reliability of the gateway. It
has been carefully verified before its deployment and it’s
continuously monitored since then. An application with
29 objects and 11,709 variables and 100 ms synchronizing
period uses 8.7 MB of RAM. At this moment it runs
continuously for two years with no serious issue.

4.3 Keysight OPC UA Gateway

Keysight third-party proprietary middleware is a system
used for data collection from Keysight measuring units.
The system can be operated by its own internal commu-
nication protocol, similar to the OPC DA communication.
This protocol is built on COM (Component Object Model)
technology and allows clients to browse groups and points,
read and write data of points and more. Points and groups
are unique in the system. A point belongs always to one
group. Groups and points contained in the system cannot
be easily redefined without a restart of whole system.
The system can be distributed on more physical machines
but each of them can be used as an entry point and has
access to points of other machines.

Keysight OPC UA Gateway has been built with browse,
read and write functions. However, the write access has
to be allowed explicitly for each group in the gateway’s
configuration file. The gateway browses all groups and
their points only once at the start and browses only groups
which are specified in the configuration file. It creates
a GroupFolder for each group and a KeyVariable node
for each point. GroupFolders are aggregated by the well-
known node Objects in the Address Space. KeyVariables
are components of their GroupFolders.

The gateway reads data of all points of a group at once but
writes data of each point separately. Values of points are
specified by triplet VTQ (Value, Time, Quality). Time and
quality conversion functions had been specified for data
conversion between Keysight middleware and OPC UA.
Data type of Keysight values is always a float.

This OPC UA gateway has been deployed in a solution
with Keysight middleware and a set of 34980AMutifuntion
Switch/Measure Mainframes and Modules. An application
with 8 objects and 178 variables and 100 ms synchronizing
period uses 9.3 MB of RAM and runs continuously for 6
months with no acknowledged error.

5. CONCLUSION

The article presents an original generalized methodology
for designing of OPC UA gateways for various data trans-
ferring communications. The presented methodology pro-
vides a quick and easy way to implement a reliable and
efficient OPC UA gateway. The methodology is intended

to provide (in a form of gateway) an OPC UA interface to
devices that uses less popular or internal data transferring
communications. It can be availed mainly by small or
medium size companies by adding an OPC UA interface
to their products. The Gateway can provide all basic
OPC UA services; however, optimizations of the network
traffic make the Gateway incapable of some advanced
functions, like historical data access.

As a proof of concept, three gateway have been imple-
mented using this methodology. Each of them bridged
a communication with different behaviour and data struc-
ture. These implementations has been described in pre-
vious chapters. All three gateways have been successfully
deployed in long-term monitored projects and are observed
since then. No fatal problem have been acknowledged so
far. Implemented gateways seems to be reliable and effi-
cient enough to be used in industry. In conclusion, the pre-
sented methodology seems to fulfil its purpose perfectly.

ACKNOWLEDGEMENTS

Authors would like to thank ERDF project “Research
and Development of Intelligent Components of Advanced
Technologies for Pilsen Metropolitan Area (InteCom)” No.
CZ.02.1.01/0.0/0.0/17 048/0007267, Project No. LO1506
(PUNTIS) of MEYS and Grant No. FV10427 of the
Ministry of Industry and Trade.

REFERENCES

Cavalieri, S. and Chiacchio, F. (2013). Analysis of opc ua
performances. Computer Standards & Interfaces, 36(1),
165 – 177. doi:https://doi.org/10.1016/j.csi.2013.06.
004. URL http://www.sciencedirect.com/science/
article/pii/S0920548913000640.

Cho, H. and Jeong, J. (2018). Implementation and per-
formance analysis of power and cost-reduced opc ua
gateway for industrial iot platforms. In 2018 28th Inter-
national Telecommunication Networks and Applications
Conference (ITNAC), 1–3. doi:10.1109/ATNAC.2018.
8615377.

OPC Foundation (2018). OPC Unified Ar-
chitecture Specification, 1.04 edition. URL
https://opcfoundation.org/developer-tools/
specifications-unified-architecture.

Post, O., Seppälä, J., and Koivisto, H. (2009). Cer-
tificate based security at device level of automa-
tion system. IFAC Proceedings Volumes, 42(21),
120 – 124. doi:https://doi.org/10.3182/20091006-3-ES-
4010.00023. URL http://www.sciencedirect.com/
science/article/pii/S1474667016323527. 4th IFAC
Workshop on Discrete-Event System Design.

REX Controls s.r.o. (2019). OPC UA server for REXY-
GEN - User Guide. Pilsen, Czech Republic, 2.50.9
edition. URL https://www.rexygen.com/doc/PDF/
ENGLISH/RexOpcUa_ENG.pdf. Accessed: 2019-05-21.

Zezulka, F., Marcon, P., Bradac, Z., Arm, J., Benesl,
T., and Vesely, I. (2018). Communication systems for
industry 4.0 and the iiot. IFAC-PapersOnLine, 51(6),
150 – 155. doi:https://doi.org/10.1016/j.ifacol.2018.07.
145. URL http://www.sciencedirect.com/science/
article/pii/S2405896318308899. 15th IFAC Confer-
ence on Programmable Devices and Embedded Systems
PDeS 2018.

