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1. Introduction
In this paper the problem mathematical modelling of voice creation is addressed. The voice
production mechanism is a complex process consisting of fluid-structure-acoustic interaction
problem, where the coupling between fluid flow, viscoelastic tissue deformation and acoustics
is crucial, see [6]. The so-called phonation onset (flutter instability) for certain airflow rate and a
certain prephonatory position leads to the vocal folds to oscillation. The important aspect of the
phenomena is the glottis closure (glottis is the narrowest part between the vibrating vocal folds).
The problem is mathematically characterized as a problem of fluid-structure interaction with the
(periodical) contact problem of the vocal folds involved. In order to include the interactions of
the fluid flow with solid body deformation as well as the contact problem, a simplified model
problem is considered. This model is similar to the simplified twomass model of the vocal folds
of [4], see also the aeroelastic model in [3]. Here, the mathematical model is introduced and the
numerical approximation of the problem is described using the residual based stabilization The
simplified lumped vocal fold model with the Hertz impact forces is considered. The model is
based on a suitable modification of the inlet boundary condition and the arbitrary Lagrangian-
Eulerian method with a remeshing algorithm. Two strategies are suggested for treatment of the
gap closure. Numerical tests are presented.

2. Flow model
First, the air flow is modelled by the system of the Navier-Stokes equations (cf. [2]) written in
the ALE form (cf. [5])

ρ
DAu

Dt
+ ρ((u−wD) · ∇)u = div τ f , ∇ · u = 0, (1)

where u = (v1, v2) is the fluid velocity vector, ρ is the constant fluid density,wD is the domain
velocity, DAu

Dt
denotes the ALE derivative and τ f = (τ fij) is the fluid stress tensor given by

τ f = −pI+µ(∇u+∇Tu). Here p is the pressure and µ > 0 is the constant fluid viscosity. For
the system (1) the initial and boundary conditions are prescribed. The boundary conditions are
prescribed on the boundary ∂Ωf

t of the computational domain formed by mutually disjoint parts
∂Ωf

t = ΓI ∪ΓS ∪ΓO ∪ΓWt, where ΓI denotes the inlet, ΓO the outlet, ΓS the axis of symmetry
and ΓWt denotes either fixed or deformable wall. Except the standard boundary conditions used
at the fixed or moving walss, the following combination of boundary conditions was used at the
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inlet and outlet

a) −n · τ f +
1

2
ρ(u · n)−u = pIn+

1

ε
(u− uI) on ΓI , (2)

b) −n · τ f +
1

2
ρ(u · n)−u = 0 on ΓO,

wheren denotes the unit outward normal vector to ∂Ωf
t , uI is the inlet velocity, pI is a reference

pressure value at the inlet, ε > 0 is a penalization parameter, pref = 0 is a reference pressure
value at the outlet and α− denotes the negative part of a real number α.
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Fig. 1. The 2D computational domain Ωt and the boundary parts (on the left). Aeroelastic two degrees of
freedom model (with massesm1,m2,m3) in displaced position (displacements w1 andw2) and resulting
aerodynamic forces F1 and F2 (on the right).

3. Structure model
The motion of the vocal fold model is governed by the displacements w1(t) and w2(t) of the
two masses m1 and m2, respectively (see Fig. 1). The displacement vector w = (w1, w2)

T is
obtained by the solution of the following equations (see [3] for details)

Mẅ + Bẇ + Kw = −F , (3)

where M is the mass matrix, K is the diagonal stiffness matrix with spring constants c1, c2 on its
diagonal and B is the matrix of the proportional structural damping. The mass matrix is given
by

M =

(
m1 + m3

4
m3

4
m3

4
m2 + m3

4

)
, (4)

where m1,m2,m3 are the masses shown in Fig. 1. The components of F = (F1, F2)
T are

the aerodynamical forces (downward positive). The proportional damping matrix is chosen as
B = ε1M + ε2K.

4. Finite element and stabilized finite element methods
In order to describe the details of the application of the finite element method for solution of
(stationary) boundary value flow problem, the space X ⊂ H1(Ωf

t ) for velocity including the
Dirichlet boundary conditions is used and the pressure space Q is chosen as Q = L2(Ω

f
t ).

The finite element approximation is then sought in the finite element spaces Vh = Xh × Qh
constructed over an admissble triangulation τh of the computational domain Ωf

t : Find an ap-
proximate solution Uh = (u, p) ∈ Vh such that at time t holds

(
DAu

Dt
+w · ∇u,v

)
+ (ν∇u− pI,∇v) + (q,∇ · u) + L(U, V ) = 0
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for all test functions v and q. (w = (u −wD)). Here, the SUPG/PSPG stabilization terms together
with the div-div stabilization terms are given as

L(U, V ) =
∑

K∈τh
δK

[(
DA

Dt
u− ν4u+ (w · ∇)u+∇p, (w · ∇)v +∇q

)

K

+ τK

(
∇ · u,∇ · v

)
K

]
.

5. Numerical analysis of Oseen problem

First, the Oseen problem is considered

−ν4u+ b · ∇u+∇p+ σu = f , ∇ · u = 0

in the computational domain Ω = (0, 1)2. The problem is equipped with the Dirichlet boundary condi-
tion u = b prescribed at ∂Ω. Here we set σ = 0 is used, b = (sin(πx),−πy cos(πx)) and the right hand
side f is chosen in such a way, that b is solution of the Oseen problem, i.e.,

f(x, y) = νπ2 sin(πx) + π cos(πx)(sin(πx) + cos(πy)),−νπ3y cos(πx) + π2y − π sin(πx) sin(πy)).

The computations were performed for different values of the viscosity coefficient nu. First conver-
gence of the Galerkin finite element approximations uGh to the exact solution u = b is investigated,
p(x, y) = sin(πx) cos(πy) for ν = 0.05 (here, relatively high viscosity was chosen in order to obtain
stable Galerkin approximations even on coarser meshes). For approximation of flow problem the Taylor
Hood finite elements were used. The errors in H1 norm are shown in Table 1. These results are com-
pared to the results of stabilized formulation of the same problem, which shows that the used residual
based stabilization does not polute the solution, see Table 2. The convergence orders in both cases agreee
well with the theoretical estimate. For the stabilized method such a convergence rates are well preserved
for the values ν = 10−3, . . . , 10−6 with a slow down observed only for coarse grid configuration. Let
us emphasize, that as the convection b equals the exact solution u, the Dirichlet problem for Navier-
Stokes equations can be formulated with the same analytical solution. Similar convergence analysis was
performed with analogous results.

6. Gap closure treatment, remeshing and remaping

In order to treat the gap closure, the large deformation of the mesh needs to be addressed. This can lead
to the high distortion of the mesh mainly in the region of the glottis. Here, the two possible solution are
discussed. The first one based on the restriction of the applied model at the part of the domain which
corresponds to the closed area. This is realized using the solution of an artificial problem at this part of
the mesh in combination with a modified definition of mesh deformation (ALE mapping).

The other possibility is the use of the remeshing algorithm together with conservative remapping
of the flow variables. First, the remeshing algorithm is avoided here with the consideration of several

Fig. 2. Remeshing of the mesh for the (almost) closed glottal part
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Table 1. Convergence of Galerkin FE method to the solution of the Oseen problem
hmax H1(u) H1(v) H1(p) qH1u qH1v qH1p

0.333174 0.148971 0.278814 0.824015
0.166358 0.0294769 0.0389521 0.306831 2.33 2.83 1.42
0.0881204 0.00751673 0.00970303 0.155735 2.15 2.19 1.07
0.0449673 0.00178417 0.00225841 0.0781441 2.14 2.17 1.03
0.0230627 0.000444434 0.00055994 0.038375 2.08 2.09 1.07
0.0118955 0.000107972 0.000139096 0.0192135 2.14 2.1 1.04

Table 2. Convergence of Stabilized FE method to the solution of the Oseen problem
hmax H1(u) H1(v) H1(p) qH1u qH1v qH1p

0.333174 0.148971 0.278814 0.824015
0.158053 0.0385103 0.0479786 0.332202 1.81 2.36 1.22
0.0877183 0.00912475 0.0113478 0.162359 2.45 2.45 1.22
0.0451748 0.00239609 0.00279304 0.0821471 2.02 2.11 1.03
0.0235271 0.000593443 0.000695859 0.0402822 2.14 2.13 1.09
0.0119951 0.000148245 0.000174687 0.0201917 2.06 2.05 1.03

meshes suitable for different cases of glottis closure or opening. Here, four configurations are considered
characterized by their displacement in terms of w1 and w2. In dependence on the current displacement
w1(t) and w2(t) of the vocal fold either the current underlying mesh is deformed or a remeshing step is
used. For the remeshing step the conservative remapping of the flow quantities is applied. The algorithms
with the conservative remapping of momentum(velocity) components followed by the projection on the
divergence-free space was tested. Fig. 2 shows the mesh in the deformed positions for the case of the
closed gap.

In order to treat such a gap closing several modifications of two algorithms were tested. The first
algorithm is based on artificial fluid formulation, where part of the flow in the computational domain is
modelled with the aid of the artificial porous media flow, see [1]. The second algorithm considers the
relaxad contact formulation with a combination with the well tuned inlet boundary conditions.
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