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1. Introduction 

Indenting is a mechanical stress test where a very hard indentor is pressed into the material 

under investigation. It takes use of a hard tip whose geometrical and mechanical properties are 

known. In a measurement, load placed on the indenter tip is progressively increased, until it 

reaches a user defined value Fmax. This load may be held constant for a period and is then 

gradually removed again. The periods of loading, holding and unloading the sample are user 

defined and recorded along with measured data. The course of the load curve for the 

viscoelastic material is shown in Fig. 1. 
 

 
Fig. 1. A typical course of the load curve when indenting a viscoelastic material by a cylindrical indentor 

 

The method is used especially for the testing of mechanical properties of materials at micro 

and nano scale. According to available sources, mathematical models are based on the theory 

of small deformations and developed especially to determine the hardness of the material. The 

question is whether it is possible to extend this reflection to a macroscopic scale and examine 

the viscoelasticity of materials? Such a concept could be used in medicine to objectify 

palpation examination of soft tissues, especially muscles. Instruments based on this principle 

already exist. They are called myotonometers. 

2. Aim 

The aim of the thesis was to create a mathematical model for the determination of viscoelastic 

properties of soft tissues using indentation stress tests. 
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3. Methods 

Problem is formulated for indentation of a solid cylinder penetrating into an infinite half-

space of viscoelastic material. The task is solved first, provided that the material is only 

elastic and with small deformations. The found shape of the deformation is used in the next 

step to formulate the tensor of deformation for the Neo-Hooke's hyperelastic material. The 

geometry of the task is shown in Fig. 2. 

 

 

 
Fig. 2. Penetration of the solid cylinder into half-space by the action of point surface forces F = (0; 0; Fz) 

4. Solution and results 

During each deformation the weight is retained. Deformation gradient Fi
I is used to determine 

deformation tensor. The change in density  is related to the change in volume (1-j). The 

volume change is proportional to the pressure p, K is the compressibility modulus (1) 
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The constitutive equation for the homogeneous elastic material (2a) can be generalized to 

the viscoelastic material (2b), [3]. In loading tests is typically measured elastic modulus E and 

Poisson's ratio σ 
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Another generalization is the hyperelastic material (Neo-Hook's). It is especially suitable for 

low compressible materials [4] and is also useful for describing biological tissues [1]. For the 

geometry of Fig. 2, it can be shown that the main components of Green's stress tensor are 

11



2

5/3

ˆ
, 0,zz xx yy

j
t t t

j

  
     

 
     (3) 

where is the elongation in the main direction of deformation. For small deformations          

(d ~ 2a / 3) can be used equation 

 1 2 graddiv 0   u u ,        (4) 

where u = (ux; uy; uz) is the displacement vector. Assuming the force under the cylindrical 

surface generates pressure 
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Analytical solution can be found using the Green function method [2]. It can be shown that 

the only non-zero displacement is in the z-direction (for  0,R a ) and is equal to 
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The indentation size is the same under the entire indentor area and corresponds to the depth of 

indentation d (Fig. 1 and Fig. 2). 
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Equation (7) is essential for determining the elastic material constants from the indentation 

test. 

For large deformations, it is necessary to find Green's tensor of deformation C (10) and its 

own numbers (in cylindrical coordinates) 
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Variable z represents compression of material in the z direction and is the surface 

curvature parameter. Next can be used (3). 

To determine the viscosity of the material can use the (2b) and the Oldquist equation (4). 

For unidirectional load can be written 
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where 0 [Pa.s] is the coefficient of viscosity. The velocity deformation tensor dij can be 

obtained from the tensor of large deformations  

12 ,T T

ijd   F CF C F F       (10) 

for small deformations, then 

 
2

8 8

3
zz zz

d d
d e d

a a 

 
     

 
        (11) 

5. Discussion 

From the experimental point of view, it is difficult to determine the coefficients j, z, n and . 

The coefficient 0 can be determined from the velocity of indentation d  at the corresponding 

stress. 

6. Conclusion 

The present study offers a theoretical analysis of indentation tests to determine the 

viscoelastic properties of soft tissues. The results can be used to objectify palpation 

examinations of the locomotor system by myotonometry. 

The proposed concept can be further developed for FEM and layered composite materials. 

Can be used to study the mechanical properties of 3D structures (nonwovens, fibrous, 

nanofibrous and composite structures, or foam materials). 
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