
Deep Learning for Text Data on Mobile
Devices

1st Jakub Sido
Dept. of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

sidoj@kiv.zcu.cz

2nd Miloslav Konopı́k
Dept. of Computer Science and Engineering

University of West Bohemia
Pilsen, Czech Republic

konopik@kiv.zcu.cz

Abstract—With the rise of Artificial Intelligence (AI),
it is becoming a significant phenomenon in our lives.
As with many other powerful tools, AI brings many
advantages but many risks as well. Predictions and
automation can significantly help in our everyday lives.
However, sending our data to servers for processing can
severely hurt our privacy. In this paper, we describe
experiments designed to find out whether we can enjoy
the benefits of AI in the privacy of our mobile devices.
We focus on text data since such data are easy to
store in large quantities for mining by third parties. We
measure the performance of deep learning methods in
terms of accuracy (when compared to fully-fledged server
models) and speed (number of text documents processed
in a second). We conclude our paper with findings that
with few relatively small modifications, mobile devices
can process hundreds to thousands of documents while
leveraging deep learning models.

Index Terms—Deep learning, neural networks, mobile
computing, CNN, LSTM.

I. INTRODUCTION

This paper deals with topics of machine learning

(part of AI) and privacy. We attempt to investigate

whether the current technical means enable users to

process their data within the privacy of their mobile

devices. Current mobile devices are usually well pro-

tected with various biometric security authentication

methods. If the mobile devices are sufficiently power-

ful and the software framework mature enough, there

might be the possibility to execute machine learning

algorithms directly on the devices. This way, users are

not forced to transfer their data out of the security of

their mobile devices.

We decided to focus on text data. There are already

quite a few benchmarks for image processing 1 [1].

Text data are, however, entirely different. The sen-

tences have variable lengths (images can be re-scaled).

The models for text also require large matrices of word

embeddings 2.

We design our experiments in the Tensorflow Lite,

which is a mobile version of Tensorflow [2]. Tensor-

flow is an open-source machine learning tool focused

mainly on artificial neural networks released by Google

in 2015. Tensorflow supports conversion of models

computed on powerful computers to mobile devices.

1See e.g. http://ai-benchmark.com/.
2Word embeddings are in principle large dictionaries of words

and their vector representations. The models require vocabularies of
more than 10,000 words.

However, Tensorflow Lite supports only a subset of op-

erations and the models have to be simplified in some

cases. A quantization process can further optimize the

Tensorflow models (see section IV-C). It significantly

reduces the computation time of the models at the costs

of small accuracy degradation.

To summarize, in this paper, we attempt to reach the

following goals:

• Benchmark the computational performance of the

deep learning models on mobile devices.

• Measure the accuracy drop of quantization.

• Examine the support of complex models in the

Tensorflow Lite tool on mobile devices. Discover

the accuracy penalty of simpler models.

II. SELECTED TASK

For our experiments, we opted for the task of Senti-

ment Analysis. The goal of the task is to determine the

overall sentiment of a given document. For example,

a sentence “A good film all round.” bears a positive

sentiment and “The film, to put it even more bluntly, is
a total bore and would appeal to no one but perhaps
those who made the film.” expresses clearly a negative

sentiment.

The task requires some degree of text understanding

and the algorithm needs to deal with several NLP3

challenges such as figurative language (irony, sarcasm,

and metaphor), negation, ambiguity (some positive

words can be used in a negative context) and others.

III. TRAINING AND EVALUATION DATASETS

A. CSFD Sentiment Dataset

The CSFD dataset consists of 91,381 movie reviews

written in Czech from the Czech Movie Database 4.

The reviews are split into three categories according

to their star rating (0-1 stars as negative, 2-3 stars

as neutral, 4-5 stars as positive). The dataset contains

30,897 positive, 30,768 neutral, and 29,716 negative

reviews. 82,244 reviews are used for training and 9,137

for testing. More details about the dataset can be found

in [3].

3Natural Language Processing
4https://www.csfd.cz/

ISBN 978-80-261-0812-2, © University of West Bohemia, 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295596927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


B. IMDb Sentiment Dataset

The IMDb dataset [4] contains 25,000 training and

25,000 evaluation movie reviews written in English

from IMDb 5. Because some movies receive substan-

tially more reviews than others, only at most 30 reviews

from any movie are included in the collection. Ratings

on IMDb are given as star values (1, 2, ..., 10), which

are mapped to 0 and 1 (0: stars ≤ 5, 1 : stars > 6)

to label sentiment categories.

IV. DEEP LEARNING MODELS

For our experiments, we employ two popular

deep learning architectures: Long Short-Term Memory

(LSTM) – see section IV-A and Convolutional Neural

Network (CNN) – see section IV-B.

A. LSTM

LSTM [5] belongs in the recurrent neural network

(RNN) class of artificial neural networks. RNNs pro-

cess input data in sequences and encode them into

a hidden vector (memory). LSTMs improves vanilla

RNNs by adding an ability to control storing and

deleting information from memory. With more precise

control of the memory, it can store substantially longer

sequences.

In our architecture (see Figure 1), we first transform

words into their vector representations using an em-

bedding layer. For the CSFD dataset, we use randomly

initialized vectors with a dimension of 60. Since the

training part of IMDb dataset is almost three times

smaller, we use pre-trained vectors from the FastText

tool [6] in this case.

After the embedding layer, we attach two stacked

LSTM layers and one fully connected softmax layer.

During the implementation phase of our experi-

ments, we struggled heavily with the conversion to

Tensorflow Lite models. Currently, the RNNs imple-

mentation is highly experimental in Tensorflow Lite

and it seems that it does not support variable sequence

lengths. Support of variable sequences is, however,

crucial for text data. If we pad sequences, e.g. with

an end-of-sequence token, we get approximately 10%

drop of accuracy. To solve this issue, we have first

opened an issue on GitHub and contacted the commu-

nity. However, they have confirmed our findings that

Tesorflow Lite does not support processing sequences

with variable length. We have solved this issue by

computing LSTMs for the whole padded sequences.

Then we select appropriate end states of the LSTM

by an advanced indexing tensor operation (gather-nd).

Our solution is available on GitHub6.

We use the maximum length of sequences set to 150

words and the dimension of hidden states is set to 64.

B. CNN

Convolutional Neural Networks apply a convolution

operation to the input followed by a pooling operation

(computing maximum or average on a window of

convolution output) [7].

5https://www.IMDb.com/
6https://github.com/konopik/tflite-lstm-text

Word Embeding

Ti
m

e

LSTM 

LSTM 

LSTM 

LSTM 

LSTM LSTM 

LSTM 

LSTM 

LSTM 

LSTM 

0.08

0.79

0.13

Fully-Connected 
Softmax 

1st Layer 
 

2nd Layer

Fig. 1. LSTM architecture.

 
32 x T + 32 x T + 16 x T 

 

Convolution 

Fully-Connected 
Softmax 

Word Embeding Max-over-time 
pooling 

32�+�32�+�16 
 

Dropout
50%

Fully-Connected 

9 

T

Fig. 2. CNN architecture.

In our architecture, we use the same embedding

layer as in the LSTM architecture and add only one

convolution layer followed by max pooling. This ap-

proach is quite standard for text processing. We use

2D convolution kernels where one dimension is set to

the embedding dimension and the other one is set to

2, 3 and 4 respectively. This way the network looks

for patterns in 2, 3 and 4 consequent words. We apply

32 2-word kernels, 32 3-word kernels and 16 4-word

kernels.

In the end, we connect two fully connected layers,

one with Sigmoid activation, the other one with soft-

max (see Figure 2).

C. Post-training quantization

Tensorflow stores the weights in a 32-bit floating

point format by default. In order to increase the compu-

tation speed, Tensorflow allows converting (quantize)

the weights into 8-bit fixed point format. In the post-

training quantization approach, Tensorflow uses hybrid

operators, which compute the activations in an 8-bit

fixed point format. However, the outputs are still stored

using floating point.

The post-training quantization process increases

model computation speed, decreases inference latency

and model size. The costs of quantization consist of

reduced accuracy of the model. We measure both

computation speed difference and accuracy difference

in our experiments.

V. EXPERIMENTS AND DISCUSSION

We conduct experiments where we measure the

computation speed of the models (in terms of a number



of processed reviews per second), the CPU load of

model execution and the accuracy of the models. In

our experiments, we distinguish between original and

quantized models. We measure both proposed architec-

tures, LSTM based and convolutional neural networks.

In Figures 3 – 8, we show the computation speed in

solid lines and the CPU load in dotted lines.

For the CSFD dataset, we measure the computation

speed on two devices, Huawei p9 lite and Google Pixel

3XL. For the IMDb dataset, we show the results only

on Huawei p9 lite.

We can draw several conclusions from the obtained

results. First, the CNN networks in Tensorflow Lite are

by one order of magnitude faster then LSTMs. Second,

the quantization has signification effect of reducing

computation costs of the models. In CNNs, this shows

in CPU load where the quantized models require

roughly half of the CPU allocation when compared to

original models. However, it does not transfer to the

increased speed of computation, which is comparable

for both quantized and original models. In LSTMs,

the CPU load is almost identical, but the quantized

models are approximately twice as fast. Third, a high-

performance mobile device (such as the Google Pixel

3XML we tested) is capable of processing hundreds

to thousands of reviews per second. More than enough

for handling users’ data. Taking into account the rate

of technological progress, we can safely expect that

processor in today’s high-performance models will be

a norm soon.

In Table I, we compare the accuracies of predict-

ing the correct sentiment for both CSFD and IMDb

datasets and both LSTM and CNN architectures. To

compare with state of the art, we add the best results

published so far. For the CSFD, we use results from

the original dataset publication [3]. There is a newer

publication available, however, the authors use external

information (association of the reviews to particular

movies) and they obtain only a minor improvement

(+1.5%). For this dataset, we can reach the accuracy

of the state-of-the-art models.

For the IMDb dataset, the best-published results

[8] obtain astonishing accuracy of 95%. In this case,

we reach significantly lower accuracies. However, we

believe that with careful fine-tuning, we would be able

to decrease the gap slightly. Nevertheless, we think that

the obtained accuracy is sufficient enough for the end

users.

TABLE I
MODEL ACCURACIES

Dataset CSFD IMDb
Model Original Quantized Original Quantized
LSTM 80 79 86 86
CNN 77 76 83 81
SoTA 81 – 95 –

VI. CONCLUSION

Our experiments show that even an average mobile

phone can process tens to hundreds of text documents

2 4 8 16 32 64 128 512
0

200

400

600

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantizied

Original CPU CPU Quant.

Fig. 3. CNN – CSFD – Huawei p9 lite

2 4 8 16 32 64 128 512
0

200

400

600

800

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantizied

Original CPU CPU Quant.

Fig. 4. CNN – IMDB – Huawei p9 lite

2 4 8 16 32 64 128 512
0

10

20

30

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantizied

Original CPU CPU Quant.

Fig. 5. LSTM – CSFD – Huawei p9 lite

per second. To put these numbers into a context, a

desktop computer (6-core Intel CPU) with a GPU

accelerator (Nvidia GTX 1080Ti) can process up to 50

times more requests per second than a powerful mobile

device (such as Google Pixel 3XL). We estimate that

with more complex models, the difference between a

mobile device and a server may increase even more.



2 4 8 16 32 64 128 512
0

10

20

30

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantizied

Original CPU CPU Quant.

Fig. 6. LSTM – IMDb – Huawei p9 lite

2 4 8 16 32 64 128 512
0

500

1,000

1,500

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantizied

Original CPU CPU Quant.

Fig. 7. CNN – CSFD – PIXEL 3XL

2 4 8 16 32 64 128 512
0

50

100

Batch size

R
ev

ie
w

s
p

er
se

co
n

d

plot 1

plot 2

0

20

40

60

80

100

C
P

U
[%

]

Original Quantized

Original CPU CPU Quant.

Fig. 8. LSTM – CSFD – PIXEL 3XL

Our results indicate that the state-of-the-art models

deliver higher accuracy than our simplified ones. How-

ever, the accuracy of simplified models is still sufficient

according to our opinion. Therefore, we conclude that

it is technically possible to process user data directly

on mobile devices. Users can enjoy the possibilities to

predict a match of their interests, analyze post on their

social network walls, extract information from their e-

mails and more without the necessity to share their

data with third parties.

VII. ACKNOWLEDGEMENT

This work has been supported by Grant No. SGS-

2019-018 Processing of heterogeneous data and its

specialized applications, and was partly supported

from ERDF “Research and Development of Intelligent

Components of Advanced Technologies for the Pilsen

Metropolitan Area (InteCom)” and by the project

LO1506 of the Czech Ministry of Education, Youth and

Sports. Computational resources were supplied by the

Ministry of Education, Youth and Sports of the Czech

Republic under the Projects CESNET (Project No.

LM2015042) and CERIT-Scientific Cloud (Project No.

LM2015085) provided within the program “Projects of

Large Research, Development and Innovations Infras-

tructures”.

REFERENCES

[1] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max
Wu, Tim Hartley, and Luc Van Gool. AI benchmark: Run-
ning deep neural networks on android smartphones. CoRR,
abs/1810.01109, 2018.

[2] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow.org.

[3] Ivan Habernal, Tomáš Ptácek, and Josef Steinberger. Sentiment
analysis in czech social media using supervised machine learn-
ing. In Proceedings of the 4th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media Analysis,
pages 65–74, 2013.

[4] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,
Andrew Y. Ng, and Christopher Potts. Learning word vectors
for sentiment analysis. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human
Language Technologies - Volume 1, HLT ’11, pages 142–150,
Stroudsburg, PA, USA, 2011. Association for Computational
Linguistics.

[5] Sepp Hochreiter and Jürgen Schmidhuber. Lstm can solve hard
long time lag problems. In Advances in neural information
processing systems, pages 473–479, 1997.

[6] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information.
Transactions of the Association for Computational Linguistics,
5:135–146, 2017.

[7] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to hand-
written zip code recognition. Neural Computation, 1(4):541–
551, Dec 1989.

[8] Jeremy Howard and Sebastian Ruder. Universal language model
fine-tuning for text classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 328–339, Melbourne, Australia,
July 2018. Association for Computational Linguistics.


