
Experiences with HPX on Embedded
Real-Time Systems

Remko van Wagensveld
Technische Hochschule Ingolstadt
Esplanade 10, 85049 Ingolstadt

Germany
Email: remko.vanwagensveld@thi.de

Ulrich Margull
Technische Hochschule Ingolstadt
Esplanade 10, 85049 Ingolstadt

Germany
Email: ulrich.margull@thi.de

Abstract—Recently more and more embedded devices
use multi-core processors. For example, the current
generation of high-end engine-control units exhibit triple-
core processors. To reliably exploit the parallelism of
these cores, an advanced programming environment is
needed, such as the current C++17 Standard, as well
as the upcoming C++20 Standard. Using C++ to co-
operatively parallelize software is comprehensively in-
vestigated, but not in the context of embedded multi-
core devices with real-time requirements. For this paper
we used two algorithms from Continental AG’s power-
train which are characteristic for real-time embedded
devices and examined the effect of parallelizing them with
C++17/20, represented by HPX as a C++17/20 runtime
implementation. Different data sizes were used to increase
the execution times of the parallel sections. According
to Gustafson’s Law, with these increased data sizes, the
benefit of parallelization increases and greater speed-ups
are possible. When keeping Continental AG’s original
data sizes, HPX is not able to reduce the execution time
of the algorithms.

I. INTRODUCTION

In 2022 “multi-core will be everywhere” [1, p. 45].
The automotive industry is already using multi-core
processors for the power-train control systems, which
have real-time requirements. This evolution calls for
programming environments which are optimized for
exploiting multi-core processors for embedded devices
with real-time requirements. C++17 [2] has additions
to the parallel execution of algorithms in form of the
Parallelism Technical Specification (TS) [3]. Addition-
ally, the Concurrency TS [4] adds ways to manage
the concurrent execution of tasks. However, is is not
yet merged into the C++ Standard. Both changes are
implemented by HPX [5], a general purpose C++
runtime system based on ParalleX [6].

In this paper we will investigate if HPX is suitable
to be used in the automotive industry for embedded
systems. These real-time systems usually execute algo-
rithms which are not arithmetical intense and use only
small data sets; also the hardware used has very little
resources. These circumstances make a parallelization
more difficult [7]. This is a completely different set
of problems, compared to the common circumstances
in High Performance Computing for which HPX is
optimized.

Additionally, the current generation of power-train
engine-control systems conform to the AUTOSAR [8]

standard and are therefore programmed in C. The
standard’s upcoming extension Adaptive AUTOSAR
[9], allows using C++ as a programming language for
these kinds of systems. Therefore, it is necessary to
know if the use of C++ language features would be
beneficial for the current generation of engine-control
systems.

This paper is structured as follows. First, the cur-
rent state of research is shown, and afterwards we
summarize some new concepts in C++17 and C++20,
as well as HPX. After that we present the algorithms
of our case studies and our parallelization approach
respectively. Subsequently, we present and discuss our
measurement results. Finally, we will address our ex-
amined overhead with HPX.

II. RELATED WORK

This chapter describes the current research in the
field of parallel programming environments and the
usage of C++ for embedded real-time systems.

There is a multitude of ways to exploit parallelism
and concurrency in C++. OpenMP [10] is a library
for parallel shared-memory systems that lets the user
expose parallelism via pragmas in the source code.
OpenMP is widely used, but is not suitable for em-
bedded systems and needs additional extensions to be
usable as parallel programming model for such systems
[11].

Intel developed the Threading Building Blocks
(TBB) [12], a C++ template library providing access to
parallel algorithms, data containers, locks and atomic
operations, a task scheduler, and a memory allocator
[13]. Microsoft developed the Parallel Patterns Library
(PPL) [14] which provides parallel algorithms. PPL is
built on top of the Microsoft Concurrency Runtime
which provides a Task Scheduler and a Resource
Manager [15]. The PPL only works on Microsoft
Windows as an Operating System (OS) and is thus
not suitable for embedded systems where GNU/Linux
is common. Both Intel TBB and Microsoft PPL have
an Application Programming Interface (API) that is
not standardized, which makes the code reliant on the
library implementation. The use of C++17 does not
have such a constraint since every runtime implement-
ing C++17 will be able to execute a C++17 conform
program.ISBN 978-80-261-0642-5, © University of West Bohemia, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295596848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Another research field that should be addressed is
the use of C++ on embedded devices. Most of the
advanced C++ features introduce either no or a fixed
overhead [16, p. 78ff.]. This makes the execution time
for these features predictable and therefore suitable for
use in real-time systems. However, dynamic memory
allocation, dynamic data-type casting, and exceptions
introduce a low, but undetermined overhead. This pre-
vents a timing prediction [16], and thus they are not
recommended for use in real-time systems [17, p. 6].
These concepts are not used in the automotive industry
and therefore C++ does not have a disadvantage in
comparison to C for real-time systems.

When comparing C++ with the Real-Time Speci-
fication for Java (RTSJ), it is shown that the “C++
programming model is simpler and safer” than RTSJ.
[18, p. 1]. The reason for this is the missing Garbage
Collection when using RTSJ with hard real-time, where
on the other hand, C++ implicitly deconstructs the
objects when leaving scope [18]. This helps to prevent
memory leaks and access of data after its release. C++
also prevents illegal memory mutation by the usage of
constant references [18] which increases the integrity
of the data.

Research has been done in the field of C++ on
embedded devices with real-time requirements. But, to
the best of our knowledge, there are no studies covering
parallelism with C++ on embedded devices with real-
time requirements.

III. HPX AND C++17/20

“HPX is a general purpose C++ runtime system for
parallel and distributed applications of any scale” [19].
It implements the ParalleX execution model [6]. HPX
uses lightweight userspace threads to minimize the
overhead needed for thread creation and scheduling. At
startup HPX allocates a predefined number of system
cores and executes the HPX task scheduler on each of
those cores. The task schedulers are able to schedule
and execute HPX lightweight threads on the allocated
core.

When executing a parallel algorithm, the lightweight
threads needed are created and put into the queues
used by the task schedulers. The task schedulers then
execute the next lightweight thread in their queue.

HPX implements C++17 and C++20 language fea-
tures, especially those introduced in the Parallelism TS
and the Concurrency TS.

The Parallelism TS adds execution policies to the
language and is merged into C++17 [2]. An execution
policy defines how an algorithm can be executed, for
example, if it is able to be executed in parallel or has
to be executed sequentially. These policies are added
to the method signature of algorithms in the standard
library in order to enable parallel versions. This enables
a very elegant way to parallelize legacy software.

Before discussing the Concurrency TS, which is not
yet merged into the C++ Standard, a short overview
of the future class, which has been extended by the
Concurrency TS, is given. A future object saves the
state of an asynchronous operation and is ready when

the operation has been finished. The operation can
return values which are then saved in the enclosing
future object. Through this concept it is possible to
declare a value that is required in the “future” but not
now. Therefore, when the value, represented by the
future object, is needed, the future.get() method
is called, which blocks until the value is ready. This is
equivalent to a synchronization of the current calling
thread and the asynchronous operation.

In the Concurrency TS the concept of contin-
uations is added into C++. When using a future
to save the state of an asynchronous operation,
it is now possible to continue the asynchronous
operation with another operation by the use of
future.then(chained_operation).

Additional to the continuations, in C++20 it is
possible to create a future that gets ready when
all futures of a set are ready. To accomplish this,
future.when_all() is used.

In combination with the continuations there exists
an elegant way to describe complex task graphs.

IV. CASE STUDIES

For our work we identified two key algorithms used
by the automotive industry with parallel executable
sections. These algorithms also have been examined
by Hartmann et al. [20] for the use in a GPGPU
environment.

The first algorithm is a curve-sketching algorithm
and the second is a finite element simulation. In se-
quential form, the curve-sketching algorithm is already
in production and the finite element simulation is
currently in pre-production. In this section the two
examined algorithms are presented.

A. Curve-Sketching Algorithm

The first examined algorithm is a curve-sketching
problem where the challenge is to find a specific inflec-
tion point in a given characteristic. The characteristic
is a voltage curve measured by an Analog-to-digital-
Converter (ADC). After the calculation of the second
derivation, the second biggest negative area under the
curve marks the bend. The biggest negative area under
the second derivation curve results from triggering the
mechanical device which overshoots and can therefore
be ignored.

In Fig. 1 a typical characteristic is shown, as are the
corresponding first and second derivation. The data for
the characteristic is given in discrete values.

Only the second derivation is needed, therefore the
central difference approximation for f 00(x) is used, as
shown in Equation (1).

f 00 (x) =
f (x+ h)� 2f(x) + f (x� h)

h2
(1)

This calculation is done for every point in a curve. The
calculations have no dependencies on each other and
the results are written in a second array; therefore, the
calculation of the derivation can be executed in parallel
for every point. To achieve this, the parallel for-loop



Fig. 1. Curve-Sketching with bend as vertical dashed line

was used, shown in listing 1. This loop works like a
regular for-loop but iterations are executed in parallel.

However, the calculation of the second derivation
needs to be finished in order to determine the roots
of the function. This synchronization is necessary
for keeping the data consistent. Because every step
in this algorithm builds upon the preceding step, a
synchronization is inevitable between each step of the
algorithm.

int h = 3;
hpx::parallel::for_loop(policy, h,

f.size() - h, [&](int x) {,!

derivation[x] =
double(f[x+h] - 2 * f[x]
+ f[x-h])/(h*h);

,!

,!

});

Listing 1: Implementation of the derivation with HPX

The integration of the curve is not data intensive
enough to be successfully parallelized and is therefore
not executed in parallel.

B. Finite Element Simulation

The second algorithm is a simulation using the
finite element method (FEM) which calculates physical
quantities inside a mechanical subsystem of the engine.
This simulation helps to reduce the fuel consumption
of the engine, but is not in production because of its
execution time, which currently exceeds the relative
deadline, which is the simulated discreet time step. Due
to confidentiality reasons, the structure of the algorithm
will only be discussed abstractly.

The system contains a set of mechanical components
with physical quantities that are simulated by solving
associated differential equations. The simulations for
the separate mechanical components are implemented
as a set of function calls, where each function call
accesses a different data set to calculate the differen-
tial equation of that specific mechanical component.
Therefore, these function calls can be executed fully in
parallel. The used hardware, described more in detail in
Section V-A, has four cores, and therefore we decided
to bundle the method calls into four lambda functions
and execute them in parallel.

std::vector<hpx::future<void>> f(4);
f[0] = hpx::async([&] {
calc_diff_eq(component1);
// ...
calc_diff_eq(component8);

});
// ... similar for f[1] and f[2]
f[3] = hpx::async([&] {
calc_diff_eq(component24);
// ...
calc_diff_eq(component31);

});
auto res = hpx::when_all(f.begin(),

f.end());,!

res.get();

Listing 2: Calculation of the differential equations;
each function call calculates a different mechanical
component

When executing the method calls in parallel, two
problems arise. On the one hand, there is a larger
scheduling overhead because every function call will
be handled as a separate lightweight thread. On the
other hand, the execution time of one function call is
very short which further increases the impact of the
scheduling overhead.

Our solution is shown in listing 2 with the creation
and asynchronous execution of the four lambda func-
tions which bundle a quarter of the total method calls.
To synchronize the four parallel executed lambdas the
futures are combined into one using when_all.

V. MEASUREMENTS

In this section our measurement methodology is
presented and the results of our tests are shown.

A. Methodology

The examined algorithms were executed on a Wand-
board Quad [21] with four Cortex A9 Cores clocked at
1.2 GHz and 2GB DDR3-RAM. To get a distribution
of the execution times, the algorithms were executed
10,000 times for each data size. To measure the timing
behavior of an algorithm when more data would be
available, the used data sizes are scaled from the
original data set used in the automotive industry to
a considerably larger data set. This increase in data
size also increases the execution time for the sections
which are executed in parallel, thus reaping a greater
benefit for the parallel execution.

Besides measuring the execution time as a Linux
userspace program we also executed the algorithms as
a Xenomai [22] real-time enabled program. This did
not yield a significant difference in execution time and
is therefore not further mentioned.

When not otherwise noted, the algorithms were
executed with four cores.

B. Curve-Sketching Algorithm

In Continental’s original configuration, the measured
curve includes 75 sample points. To examine the



dependency between the amount of sample points and
execution time, the measured curve with 75 sample
points was increased in sample points by linear inter-
polation with factors ranging from one to the factor
10,000, a data set with 750,000 sample points.

Fig. 2 depicts the execution time depending on the
amount of sample points ranging from 75 sample
points up to 750,000 sample points. Fig. 3 is a detail of
Fig. 2 to better illustrate the intercept of the sequential
with the parallel execution curve. With low amounts

0 100000 200000 300000 400000 500000 600000 700000

Sample Points

0

20000

40000

60000

80000

100000

120000

T
im

e
in
µ

s

Sequential

HPX 4 Core

Fig. 2. Measurement results of the curve-sketching algorithm

of sample points, the sequential execution time is the
lowest. In this case the parallel execution slowed down
the original execution time. This is due to the overhead,
that parallel execution introduces, while in an optimal
scenario without overhead, everything executed in par-
allel would give a positive speed-up.

0 1000 2000 3000 4000 5000 6000 7000

Sample Points

0

200

400

600

800

1000

1200

T
im

e
in
µ

s

Sequential

HPX 4 Core

Fig. 3. Detail of the measurement results in Fig. 2

C. Finite Element Simulation

The measurement results for the finite element sim-
ulation is depicted in Fig. 4. In this algorithm the
number of units inside a component can be increased –
and thus the problem size – by making the FEM more
fine-granular. The original number of units is 5, which
was increased up to 150 units. The measurement results
are similar to the results for the curve-sketching algo-
rithm. With small data sizes the sequential execution
time is lower than the parallel execution time and only
with larger data sizes the parallel execution results in a
significant benefit. Again, the original configured data

Fig. 4. Measurement results of the finite element simulation

size Continental uses is too small and, due to overhead,
parallel execution is slower than the sequential one.

VI. OVERHEAD EXAMINATION

To examine the overhead of HPX we measured a
fully parallel program in sequential form without any
HPX additions and in parallel form with HPX. HPX
can be configured at startup with a total usable core
count of one, up to all available cores.

The two algorithms from the case study were not
suitable for analyzing the overhead because the in-
evitable synchronizations needed in the processing
of the algorithms distort the amount of overhead. A
program with synchronization has overhead caused by
executing code in parallel and also overhead that is
spent waiting on threads when synchronizing. To avoid
the synchronization overhead, the chosen algorithm is
fully parallel and only synchronizes when the grid is
finished. It iterates over a two-dimensional grid and
applies stencil operations to each element. The used
stencil operation updates an element according to its
north, east, south, and west neighbors.

The overhead results from the distribution of
lightweight tasks to different cores. If only one core
is allocated to HPX, the execution time consists both
of the sequential execution time and the execution time
spent on scheduling overhead. Fig. 5 depicts the results
of the execution times measured once as sequential
program and four times as a HPX-enabled program
with different allocated core counts. The error-bars in
Fig. 5 range from the 5% up to the 95% percentile.
Note that, for a better overview, only every fifth data
point is plotted with a marker and an error-bar.

The difference between the execution time of the
HPX implementation with one core and the sequential
implementation is the time HPX spends on overhead
which is depicted in Fig. 6. This overhead augments
with an increasing data size because of the additionally
needed scheduling, which results from a higher amount
of computation packages. In the range from 9,000 to
13,000 sample points, the difference increases. This
is due to a caching effect that affects the execution
with HPX with 1 core at 9,000 sample points, and the
execution as a sequential program only just at 13,000
sample points. After sample point 13,000, the curve



Fig. 5. Measurement results of the stencil operation

Fig. 6. Difference between HPX with one core and sequential
execution, that is the overhead spent

goes back to the previous trend.

VII. CONCLUSION AND FUTURE WORK

In this work we presented our results from using
HPX on an embedded system. HPX and therefore C++
is a good solution to parallelize an algorithm because
of the possibility to describe parallel sections elegantly
inside C++ source code.

However, when used with the small data sets typical
for many domains in the automotive industry, HPX has
too much overhead resulting in an increased execution
time compared to the pure sequential execution. For
a useful application in these domains, the overhead
required to schedule the tasks needs to be lowered in
order to not slow down an algorithm by parallelizing
it.

In future work we will investigate ways to minimize
the overhead introduced by HPX to make it feasible for
the usage on embedded devices with small data sets.

ACKNOWLEDGMENT

This research is part of the FORMUS3IC Project
(www.formus3ic.de) and has been funded by the Bay-
erische Forschungsstiftung.

The authors would like to thank Thomas Heller for
his help with the setup and usage of HPX.

Special thanks for proofreading goes to Christoph
Hartmann and Niklas Hehenkamp.

REFERENCES

[1] H. Alkhatib, P. Faraboschi, E. Frachtenberg, et
al., “IEEE CS,” IEEE Computer, vol. 2014, Feb.
2014. [Online]. Available: http : / / citeseerx . ist .
psu . edu / viewdoc / download ? doi = 10 . 1 . 1 .
500 . 211 & rep = rep1 & type = pdf (visited on
12/16/2016).

[2] “Working Draft, Standard for Programming
Language C++,” The C++ Standards Commit-
tee, Mar. 21, 2017. [Online]. Available: http :
/ / www. open - std . org / jtc1 / sc22 / wg21 / docs /
papers/2017/n4659.pdf (visited on 06/27/2017).

[3] J. Hoberock, “Programming Languages —
Technical Specification for C++ Extensions for
Parallelism,” The C++ Standards Committee,
May 5, 2015. [Online]. Available: http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2015/
n4507 (visited on 11/21/2016).

[4] Artur Laksberg, “Technical Specification for
C++ Extensions for Concurrency, Working
Draft,” Apr. 10, 2015. [Online]. Available: http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/
2015/n4399.html (visited on 11/22/2016).

[5] H. Kaiser, B. Adelstein-Lelbach, T. Heller,
et al., HPX: A General Purpose C++ Run-
time System for Parallel and Distributed Ap-
plications of Any Scale (Commit af8e2717c3),
Dec. 8, 2016. [Online]. Available: https : / /
github . com / STEllAR - GROUP / hpx / tree /
af8e2717c38a697d0b03f90a01641656bebdef5c.

[6] H. Kaiser, M. Brodowicz, and T. Sterling,
“Parallex an advanced parallel execution model
for scaling-impaired applications,” in 2009 In-
ternational Conference on Parallel Processing
Workshops, IEEE, 2009, pp. 394–401. [Online].
Available: http : / / ieeexplore . ieee . org / xpls /
abs all . jsp ? arnumber = 5364511 (visited on
12/02/2016).

[7] N. Hehenkamp, R. v. Wagensveld, D. Schoen-
wetter, C. Facchi, U. Margull, D. Fey, and R.
Mader, “How to Speed up Embedded Multi-core
Systems Using Locality Conscious Array Distri-
bution for Loop Parallelization,” in ARCS 2016;
29th International Conference on Architecture
of Computing Systems, Apr. 2016, pp. 1–5.

[8] The AUTOSAR Foundation. (2016). AU-
TOSAR: Home, [Online]. Available: https : / /
www.autosar.org/ (visited on 03/16/2017).

[9] ——, (2016). AUTOSAR: Adaptive Platform,
[Online]. Available: https : / / www . autosar .
org / standards / adaptive - platform/ (visited on
03/14/2017).

[10] The OpenMP Architecture Review Board.
(2017). OpenMP, [Online]. Available: http : / /
www.openmp.org/ (visited on 03/02/2017).

[11] B. Chapman, L. Huang, E. Biscondi, E. Stotzer,
A. Shrivastava, and A. Gatherer, “Implement-
ing OpenMP on a high performance embedded
multicore MPSoC,” in 2009 IEEE International
Symposium on Parallel Distributed Processing,



May 2009, pp. 1–8. DOI: 10.1109/IPDPS.2009.
5161107.

[12] Intel Corporation. (2017). Threading Build-
ing Blocks, [Online]. Available: https : / /
www. threadingbuildingblocks . org/ (visited on
03/02/2017).

[13] ——, (2017). Intel TBB FAQs, [Online]. Avail-
able: https://www.threadingbuildingblocks.org/
faq (visited on 03/02/2017).

[14] Mike Blome, Colin Robertson, Gordon Hogen-
son, and Saisang Cai. (Nov. 4, 2016). Paral-
lel Patterns Library (PPL), [Online]. Available:
https://docs.microsoft.com/en-us/cpp/parallel/
concrt/parallel- patterns- library- ppl (visited on
01/28/2017).

[15] ——, (Nov. 4, 2016). Concurrency Runtime,
[Online]. Available: https://docs.microsoft.com/
en-us/cpp/parallel/concrt/concurrency- runtime
(visited on 01/28/2017).

[16] Lois Goldthwaite, “Technical Report on C++
Performance,” Jul. 15, 2004.

[17] B. Stroustrup, “Abstraction and the C++ Ma-
chine Model,” in Embedded Software and Sys-
tems, Springer, Berlin, Heidelberg, Dec. 9, 2004,
pp. 1–13. DOI: 10.1007/11535409 1. [Online].
Available: https://link.springer.com/chapter/10.
1007/11535409 1 (visited on 03/02/2017).

[18] D. L. Dvorak and W. K. Reinholtz, “Hard
Real-time: C++ Versus RTSJ,” in Companion
to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Lan-
guages, and Applications, ser. OOPSLA ’04,
New York, NY, USA: ACM, 2004, pp. 268–
274, ISBN: 978-1-58113-833-7. DOI: 10.1145/
1028664.1028770. [Online]. Available: http : / /
doi.acm.org/10.1145/1028664.1028770 (visited
on 03/02/2017).

[19] Hartmut Kaiser, Bryce Adelstein-Lelbach,
Adrian Serio, and Thomas Heller. (Dec. 2,
2016). HPX - The STEllAR Group, [Online].
Available: http://stellar.cct.lsu.edu/projects/hpx/
(visited on 12/02/2016).

[20] Christoph Hartmann, Ralph Mader, Lothar
Michel, Christos Ebert, and Ulrich Margull,
“Massive Parallelization of Real-World Auto-
motive Real-Time Software by GPGPU,” in
ARCS 2017; 30th International Conference on
Architecture of Computing Systems, Vienna,
Apr. 4, 2017.

[21] The Wandboard Community. (2016). Wand-
board - NXP i.MX6 ARM Cortex-A9 Commu-
nity Development Board - Wandboard i.MX6,
[Online]. Available: http : / / www. wandboard .
org / index . php / details / wandboard (visited on
11/16/2016).

[22] Philippe Gerum. (2017). Xenomai – Real-time
framework for Linux, [Online]. Available: https:
//xenomai.org/ (visited on 03/15/2017).


