
PropFuzz - An IT-Security Fuzzing
Framework for Proprietary ICS Protocols

Matthias Niedermaier, Florian Fischer, Alexander von Bodisco
University of Applied Sciences - Hochschule Augsburg

Augsburg, Germany
{Matthias.Niedermaier, Florian.Fischer, Alexander.vonBodisco}@hs-augsburg.de

Abstract—Programmable Logic Controllers are used
for smart homes, in production processes or to control
critical infrastructures. Modern industrial devices in the
control level are often communicating over proprietary
protocols on top of TCP/IP with each other and SCADA
systems. The networks in which the controllers operate
are usually considered as trustworthy and thereby they
are not properly secured. Due to the growing connectivity
caused by the Internet of Things (IoT) and Industry 4.0
the security risks are rising. Therefore, the demand of
security assessment tools for industrial networks is high.
In this paper, we introduce a new fuzzing framework
called PropFuzz, which is capable to fuzz proprietary
industrial control system protocols and monitor the
behavior of the controller. Furthermore, we present first
results of a security assessment with our framework.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are the
basic components used in a wide variety of Industrial
Control Systems (ICSs) for example to regulate pro-
duction processes or to control critical infrastructures.
Historically, these devices operated in a separated
network, with no connection to the Internet or office
areas. In the past decade, this separation changed due
to the demand of highly connected systems in the
IoT and the fourth industrial revolution. A typical
company network with control systems consists of
several hierarchical layers as illustrated in Figure 1.
Nowadays, the communication on the higher levels
(ERP, MES, SCADA and PLC) is mostly based on
the Internet Protocol (IP) protocol.

Sensors, Actuators, etc.

PLC

SCADA

MES

ERP

Field Level

Control Level
Programmable Logic
Controller

Supervision Level
Supervisory Control and
Data Acquisition

Management Level
Manufacturing Execution System

Enterprise Level
Enterprise Resource Planning

Fig. 1: Common Topology for Industrial Networks

Most PLCs offer the possibility to configure and
program them via a proprietary TCP/IP connection.
This simplification allows remote access to these de-
vices, if there is no additional hardware restricting the
communication. Thus, it is often possible for attackers

to interact directly with the PLC. Therefore, it is neces-
sary to analyze the communication between the control
system and the Integrated Development Environment
(IDE) with the aim of fuzzing proprietary industrial
protocols to find security issues. The main problem
concerning fuzzing these protocols is defining the data
structure to be fuzzed.

In our fuzzing framework, the inputs are identified
by using statistical computation to analyze the structure
of proprietary industrial protocols. Popular fuzzing
frameworks are introduced in Section II. Section III
describes the methodology of fuzzing a proprietary
PLC communication. Section IV explains our frame-
work architecture. In Section V and VI first result, with
possible attacks and recommendations are presented.
Finally, an outlook and conclusion in Section VII is
given.

II. RELATED WORK AND MOTIVATION

Barton Miller, discovered a program crash caused
by noise as a result of a lightning strike on his
network connection during a thunderstorm [1]. This
bug was triggered by a random input which is called
fuzz-testing or fuzzing in the literature. Fuzzing could
only trigger bugs, if the input is not rejected by a
validation function of the Device under Test (DuT).
A full automated fuzzing framework for ICSs include
the process steps illustrated in Figure 2 [2].

Identify
Target

Identifiy
Inputs

Generate
Test Case

Execute
Fuzzing

Generate
Results

Monitoring

Fig. 2: Fuzzing Test Process

There are two elementary categories of fuzzers,
based on how they create input for fuzzing. Generation-
based fuzzers create input from scratch and thus re-
quire some knowledge of the protocol with correspond-
ing data fields. With mutation fuzzers, samples of valid
input are used to produce malformed input. A simple
mutation fuzzer can modify a valid input sample and
send it to the DuT.

• Generation-Based Fuzzing applies with genera-
tion rules to fuzz input. BooFuzz [3], a fork and
successor of the Sulley [4] fuzzing framework,
and Peach [5] are block-based fuzzers. These

ISBN 978-80-261-0642-5, c© University of West Bohemia, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at University of West Bohemia

https://core.ac.uk/display/295596825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

kinds of fuzzers require a deep knowledge of
the protocol structure and test case definition to
generate inputs. Recent generation-based fuzzer
like VUzzer [6] are able to automatically generate
input test cases for basic communications.

• Mutation Fuzzing uses valid inputs and modi-
fies them to create fuzzing input. Most of the
frameworks analyze previously captured traffic,
although there are fuzzers which allow live cap-
turing. Radasma [7] is an input generation tool
for basic protocols to identify field boundaries.
LZFuzz framework [8] is an online fuzzer, which
intercepts traffic directly, analyzes it with the
LempelZiv compression algorithm and sends the
manipulated packages to the device.

For fuzz-testing ICSs, these fuzzers and frameworks
do not fulfill our requirements in automated input
generation for proprietary protocols and electrical mon-
itoring [8]. The documentation between the IDE and
the PLC is mostly not public available and reverse
engineering is highly time-consuming. Thus, it is nec-
essary to have an automatic fuzzing framework for this
kind of communication. More over in case of ICS it
is necessary to monitor any behavior change of the
device, where network monitoring is not enough.

III. METHODOLOGY

Most of the modern PLCs are programmed with an
IDE over TCP/IP. This communication is often open
and not filtered. Figure 3 illustrates the minimal setup
to interact with the ICS and the IDE.

IDE
PLC

TCP/IP
proprietary

Fig. 3: Communication between IDE and PLC

The majority of these protocols are proprietary and
have no public available documentation. Our frame-
work allows a direct investigation of this communica-
tion. To start the data transfer between an IDE and a
PLC a TCP/IP handshake is done. After that, there is
often an additional proprietary handshake with a kind
of challenge. Followed by this, the command and data
transfer could be started. For a permanent connection,
it could be essential to send keep-alive messages be-
tween the IDE and the PLC. This is not required for
single command interaction. To make fuzzing feasible,
it is necessary to perform the proprietary handshake
and determine the protocol field, which should be
fuzzed.

IV. FRAMEWORK ARCHITECTURE

At a high-level view, illustrated in Figure 4, Prop-
Fuzz is separated in three parts to fulfill the require-
ments of a full integrated fuzzing framework [9].
The analyze part splits the protocol and filtrates the
information necessary to fuzz the DuT. In addition

to the network response monitoring the monitor part
observes the PLC electrically.

Pcap-ng IDE

Pcapy (LibPcap)

PropFuzz

Scapy Pico-python

Device under Test

Analyze Fuzz Monitor

Fig. 4: Data-flow within PropFuzz Framework

A detailed view of the PropFuzz structure is shown
in Figure 5, which illustrates the python modules,
classes and configuration files within PropFuzz.

Classes Config

PropFuzz

Unpack

Analyze

SendFuzz

Monitor

Fig. 5: PropFuzz Modularity

The implemented python modules are modular and
could be extended or used within other frameworks.

A. Unpack

The PropFuzz implementation provides two possi-
bilities for package analysis. First a live capturing of
the communication between DuT and IDE is possible.
The second option is to read in existing pcap files.
For live capturing Address Resolution Protocol (ARP)
spoofing is needful, which could be prevented by
some network devices. Once data acquisition is done
the Unpack module splits up the information of the
captured packages and stores them in objects. The
module uses pcapy [10], a python implementation for
LibPcap [11], for further examination of the collected
packages.

B. Analyze

Inside the Analyze process the messages of the
proprietary protocol are interpreted. At the beginning
a statistical analysis with the Ratcliff/Obershelp [12]
pattern recognition algorithm of the created package
objects is done. With these similarities, the proprietary
handshake between the IDE and the PLC can be
determined. After the detection of a handshake in the
captured communication commands between the IDE
and the PLC must be identified. Commands can be
identified by comparing different captures containing
a full match of the same command.

C. SendFuzz

The SendFuzz module is responsible for sending and
receiving packages inside the PropFuzz implementa-
tion. The gained information from the Analysis module
is used to mimic the protocol handshake by sending

sniffed messages to the DuT. For constructing these
messages the python module scapy [13] is used. After
a successful established protocol handshake, further
packages containing protocol-specific commands are
sent to the DuT.

D. Monitor

Most fuzzing frameworks only observe the network
connection during the test. Special about fuzzing ICSs
is the monitoring of the process control [14]. To detect
the effect of fuzz-testing with our framework, an output
channel is monitored by an oscilloscope. Therefore, a
square wave signal is generated on a certain output
of the DuT, created with an alternating write to the
output within the execution cycle of the PLC. Control
commands sent to the PLC which e.g. stop or restart
the device make an impact on the periodic signal of
the output. This variation can then be monitored with
the oscilloscope.

1 2 3 4 5 6 7

12

24

Time →

Vo
lta

ge
(V

) Expected Delayed

Fig. 6: Monitor PLC Output with Oscilloscope

Figure 6 illustrates the expected square wave (solid
black) and an unexpected delayed output (dotted grey).
This behavior can occur if a command causes high
load on the controller. With our fuzzing framework,
it is possible to trigger and monitor such changes. If
the delay exceeds the allowed output jitter the process
control is not feasible. This could result in unexpected
behavior. For our framework, Pico-python [15] is used,
to interact with the PicoScope 2208, which is a script-
able Universal Serial Bus (USB) oscilloscope.

V. SECURITY ASSESSMENT EVALUATION

For testing PropFuzz two different PLCs, the ”ILC
171 ETH” and the ”ILC 150 ETH” from Phoenix
Contacts, are used. According to the datasheet the
devices support the protocols shown in Table 1. In this
assessment the IDE ”AUTOMATIONWORX Software
Suite v1.83” from Phoenix Contacts is used.

TABLE 1: Phoenix Contacts Test Equipment

DuT ILC 171 ILC 150
Man. number 2700975 2985330
Profinet 3

Modbus 3

Proprietary 3 3

FTP 3 3

HTTP 3 3

HTTPS 3

SNTP 3 3

SNMP 3 3

SMTP 3 3

SQL 3 3

MySQL 3 3

Three ports are open, if the factory default settings
are applied. Table 2 shows the results of a nmap scan
of the PLCs. A vulnerability in one of the protocols
leads to high risks, caused by the remote exploitability.

TABLE 2: Factory Default Port Scan

Port Protocol State Service
21 TCP open FTP

1962 TCP open unknown
41100 TCP open unknown

For our purpose the most interesting ports are the
undocumented ones, which are used by the IDE to
communicate with the PLC. Most commands are ex-
changed via port 1962. The connection establishment
of this protocol is illustrated in Figure 7. The IDE
sends a synchronize (SYN) request to the PLC. This
should respond with a SYN acknowledgment (ACK).
Consequentially the IDE complete the Transmission
Control Protocol (TCP) handshake with an ACK.

IDE PLC

TCP/SYN

TCP/SYNACK

TCP/ACK

PROP/initialize handshake
PROP/send ”challenge”

PROP/response to ”challenge”

PROP/send commands
PROP/response

Fig. 7: Handshake between Phoenix PLC and IDE

After the TCP handshake with the PLC, a propri-
etary initializing sequence between the IDE and the
Phoenix Contacts PLC is necessary. This starts with a
request from the IDE to the controller:

0000 01 01 00 1a 00 00 00 80

0008 64 15 00 03 00 0c 49 42 d.....IB

0010 45 54 48 30 31 4e 30 5f ETH01N0_

0018 4d 00 M.

This request is answered from the PLC, with an
identifier (in this case 0x48) in it:

0000 81 01 00 14 00 00 00 01

0008 00 00 00 00 00 02 00 00

0010 00 48 00 00 .H..

This value must be send back from the IDE to the
PLC. It could be seen as a simple session key, which
does not change on a controller:

0000 01 05 00 16 00 01 00 00

0008 e8 e9 00 48 00 00 00 1c ...H....
0010 00 04 02 95 00 00

For the proprietary protocol from Phoenix Contacts
the same handshake for a specific DuT could be send,
because it is a constant value for each device. Thus, the
handshake is a simple replay for the Phoenix PLCs and

PropFuzz is able to detect the handshake by statistically
comparing the start sequences of live captures or pcap-
ng files. After the proprietary handshake, commands
could be send to the controller. Below a reset command
is shown, where the PLC performs a complete reboot.

0000 01 05 00 16 00 10 00 00

0008 e8 c8 00 48 00 00 00 00 ...H....
0010 00 04 0a ba 00 00

At this point scapy is used to fuzz different fields
of the command. With the PropFuzz framework it
was possible to identify different vulnerabilities in
the session management and command handling of
the PLCs. The vulnerabilities found in the Phoenix
Contact products were reported to the manufacturer
and customers were informed with an advisory (ICSA-
16-313-01).

VI. POSSIBLE ATTACKS & RECOMMENDATIONS

The identified security problems within the protocol
make several remote attacks possible. Considering the
usage of these controllers in critical infrastructures, the
severity of potential attacks is classified high.

• A replay attack is a network attack in which a
valid data transmission is repeated. The attacker
needs few knowledge and can simple replay pre-
vious captures containing PLC commands.

• By manipulating variables, it is possible to
change the sequence or process of a program on
the PLC. This requires knowledge about the setup
of the control system.

• With changing the software or firmware of an
ICS the total control of it could be achieved, e.g.
to create a BotNet.

These attacks demonstrate the severity of the found
vulnerabilities with our framework. It is possible to
remotely exploit effected PLCs without physical access
to it.

The recommendations to avoid such vulnerabilities
or to defend against possible attacks can be categorized
by the responsible stake holders: manufacturer, system
integrator and operator. Integrators and end users of
ICSs should use a defense-in-depth architecture for
their networks, considering the following:

• Devices should not be accessible public without
the use of a Virtual Private Network (VPN)

• Firewalls should be used for network segmenta-
tion and controller isolation

Manufacturers of ICSs should develop products,
which are secure by design, e.g.:

• Authentication for the communication
• Well implemented session and user management
• Secure and cryptographically protected protocols

VII. OUTLOOK & CONCLUSION

The PropFuzz framework has reached a stable test-
ing state. We have already used our framework for
fuzzing PLCs from other vendors. For similar proto-
cols, PropFuzz is able to perform the handshake and
start fuzzing without any adjustment to our framework.
In the current implementation, complex protocols with

a proper session management and cryptographic mea-
sures are not fuzzable. This functionality will be
extended later, making it possible to fuzz a wider
spectrum of protocols. Furthermore, to observe a PLC
within a process it is necessary to virtually represent
and observe all used in- and outputs of the controller.
This must be done with high efforts for every simulated
process itself, which is not feasible at this time.

In this paper, we presented a stable and extensible
fuzzing framework for proprietary ICS protocols. Com-
pared with the available software, PropFuzz is able
to automatically analyze the communication between
the IDE and the PLC and fuzz the DuT. In addition,
PropFuzz is able to monitor the output and detect
suspicious behavior.

We have demonstrated the abilities of our framework
by fuzzing two PLCs and detected three critical vul-
nerabilities, which could be exploited remotely by at-
tackers (Advisory ICSA-16-313-01). We have worked
in a close cooperation with Phoenix Contacts to find
solutions and fixes.

PROJECT FUNDING

The work on proprietary ICS protocol fuzzing is part
of the RiskViz [16] research project. This is funded
by the Federal Ministry of Education and Research
(BMBF), with the aim of creating a risk map of
SCADA systems in Germany.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of unix utilities,” Commun. ACM, vol. 33,
pp. 32–44, Dec. 1990.

[2] S. Kim, W. Jo, and T. Shon, “A novel vulnerability analysis
approach to generate fuzzing test case in industrial control
systems,” in 2016 IEEE Information Technology, Networking,
Electronic and Automation Control Conference, pp. 566–570,
May 2016.

[3] J. Pereyda, “Boofuzz fuzzing framework.” https://github.com/
jtpereyda/boofuzz. Accessed: 24.02.2017.

[4] P. Amini, A. Portnoy, and R. Sears. https://github.com/
OpenRCE/sulley. Accessed: 13.03.2017.

[5] M. Eddington, “Peach fuzzing framework.” http://www.
peachfuzzer.com/. Accessed: 23.02.2017.

[6] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “Vuzzer: Application-aware evolutionary fuzzing,”
2017.

[7] A. Helin, “Radamsa fuzzing test case generator.” https://github.
com/aoh/radamsa. Accessed: 22.02.2017.

[8] R. Shapiro, S. Bratus, E. Rogers, and S. Smith, Identifying
Vulnerabilities in SCADA Systems via Fuzz-Testing, pp. 57–
72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[9] S. Plaga, S. Tatschner, and T. Newe, “Logboat - a simulation
framework enabling can security assessments,” in 2016 Inter-
national Conference on Applied Electronics (AE), pp. 215–218,
Sept 2016.

[10] CORE Security, “Pcapy.” https://github.com/CoreSecurity/
pcapy. Accessed: 04.03.2017.

[11] V. Jacobson, C. Leres, and S. McCanne, “Libpcap.” http:
//www.tcpdump.org/. Accessed: 04.03.2017.

[12] J. Ratcliff and D. Metzener, “Ratcliff-obershelp pattern recog-
nition,” 1998.

[13] P. Biondi, “Scapy packet manipulation.” http://www.secdev.
org/projects/scapy/. Accessed: 28.02.2017.

[14] H. Yoo and T. Shon, “Grammar-based adaptive fuzzing: Eval-
uation on scada modbus protocol,” in 2016 IEEE Interna-
tional Conference on Smart Grid Communications (SmartGrid-
Comm), pp. 557–563, Nov 2016.

[15] C. O’Flynn, “Pico-python.” https://github.com/colinoflynn/
pico-python. Accessed: 28.02.2017.

[16] “Riskviz.” https://www.riskviz.de. Accessed: 28.02.2017.

