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ABSTRACT

3D fish animations become more and more popular in fish behavioral research. It empowers the experimenter to
design fish stimuli and their specific behavior to the experiment’s needs. The fish animation can be done manually
or derived from video footage. Especially automatic fish model parameter recovery for 3D animations is not well
studied yet. Here we present a novel, flexible method for this purpose. It can be used to recover position, pose,
bone rotation and size from single or multiple view and for single or multiple fish. Additionally we implement a
novel method to compensate the fish tank’s refraction effect and show that this method can decrease the error up
to 80 %. We successfully applied the proposed method to two different data sets and recovered fish parameters out
of single- and double-view video stream. A video attached to this paper demonstrates the results.
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1 INTRODUCTION

The use of virtual 3D fish stimuli is the current trend
in fish behavior research and partly replace the use of
fish video or live stimulus fish partly [WGCT17]. In
such kind of experiments screens with different 3D fish
animations are placed next to a fish tank. Each anima-
tion shows different fish (one or several) with different
appearance (e.g. skin texture or coloration), size, and
morphology or behavior pattern. Inside the real fish
tank are one or several test fish, which show their in-
terest to a stimulus by physical presence in front of the
corresponding screen. In order to create stimulus an-
imations some open source software tools e.g. Fish-
Sim Animation Toolchain' or AnyFish* came into the
market and help inexperienced users to create photo-
realistic 3D fish models and animations. The animation
part of the stimulus is mostly done manually (or in case
of [MSH"17] semi-automatic) since these tools do not
provide methods to derive actions and behavioral pat-
terns automatically from video footage.

In this paper we present a novel method which auto-
matically recovers 3D fish model parameters like po-
sition, orientation and joint configuration out of single

https://bitbucket.org/EZLS/fish_
animation_toolchain for more information
[MSH*17] and [GMS 17] for its validation
https://github.com/anyFish-Editor/
anyFish-2.0 for more information
[VICT13, IAW+15]

see

see
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or multiple view video footage by using a model-based
analysis-by-synthesis approach [Pop07]. This method
was originally applied for pose recovery and tracking
of humans [PMBH™'10] or for human pose recovery
out of a single image [KKTM15]. Especially for the
task presented here this method is very promising for
two main reasons: first, the time-consuming process of
model-creation, which is needed for such a method, can
be omitted, since the 3D fish model is already available.
Second, fish have a very simple kinematic bone struc-
ture, which minimize the risk of misconvergence, what
in general can happen by using this method. Here we
extended this method by refraction synthesizing, which
appears at the air-water border of the fish tank. Ad-
ditionally we add an occlusion handling for fish. The
method is based on single or multiple view silhouettes
of live fish, which are approximated by view-depended
artificial silhouettes, extracted out of the provided 3D
fish model. For approximation we employed a least-
squares method. We finally validated the presented
method with video footage of single camera and dual
camera, showing a single fish or a pair of fish. We an-
notated a video sequence of 1000 frames manually and
compare this dataset to the result of the proposed algo-
rithm (with and without refraction compensation, single
and multiple view). It could be shown that the method
recovered fish position and pose very precisely. Espe-
cially the refraction compensation improved the posi-
tion recovery significantly. A video showing the results
of the method is attached to this paper. In summary, the
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work presented in this paper solves common problems
in research on fish behavior and contributes the follow-
ing features:

e precise transfer of fish movement patterns from
video footage to a photo-realistic 3D fish model (as

used in skeletal animations) precisely

high position precision based on refraction compen-
sation by synthesis during optimization

very flexible: single or multiple view camera setup,
single or multiple fish, fast (without refraction com-
pensation) or precise

The paper is divided into six chapters. In chapter 2 we
present related work. This is followed by chapter 3 giv-
ing information regarding preliminaries. In Chapter 4
the method is described in detail. We present in chap-
ter 5 the results of the method which are finally dis-
cussed in chapter 6.

2 RELATED WORK

Most motion capture research has been done and is still
going on in the field of human motion capture. There
are several different methods available: on the one hand
wearable motion trackers are used, which track the po-
sition and rotation of single joints (head, arms, legs etc.)
(see e.g. [RLS09]). On the other hand there are opti-
cal motion capture methods. These are divided in sys-
tem which use markers mounted to the human body and
markerless systems, which use single or multiple RGB-
cameras (e.g. [ST02, PMBH"10]) or RGB-depth cam-
eras (see e.g. [SSK™13]). Nowadays there are also deep
learning methods used for pose recovery like presented
in [CSWS17] or in [WRKS16]. In contrast to human
motion capture, fish pose recovery leads to special chal-
lenges: firstly, the use of motion trackers or markers
for visual pose recovery is very difficult, since wearable
motion trackers are not available for small fish or mark-
ers can only be fixed under great difficulties to fish. Sec-
ondly, RGB-D cameras (e.g. Microsoft Kinect), which
pushed the human pose recovery research forward mas-
sively, can only be used very limited: such cameras
mostly use active light, which brings difficulties regard-
ing reflection and refraction while light travels through
different media (e.g. water and air). Due to these facts
multiple view camera setups are the most used configu-
ration for 3D tracking and pose recovering of fish. Be-
sides some research in field of fish position tracking in
2D and 3D (for a review see [DDYP13]), there is little
research in fish pose-recovery. Takahashi et al. intro-
duce a method to extract fish position and posture from
orthogonal video footage. They used a simple 3D fish
model, which was projected to the real images. With
the help of a brute force, box constrained search al-
gorithm they estimated the model-parameters in a way,
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that the projection fits best to the recorded fish images.
They finally used the gathered motion data to estimate
a locomotion model of the fish [THHNOO]. Butail and
Paley estimated 3D position and shape to analyse fish
schooling kinematics [BP10]. They modelled the fish
shape as bendable ellipsoid. Based on this model fish
pose, position and bending is estimated out of 2D sil-
houettes with the help of a particle filter. Later on they
improved this method and extended the used 3D-model
[BP12]. In contrast to the former model, the newer
model consisted of estimated cross-sectional ellipses,
which were ordered along a three-dimensional midline,
describing the bending of the fish body more precisely.
They used simulated annealing to match 2D silhouettes
to the model and to find the best model parameter set.
The cost function is based on the sum of distances be-
tween occluding contour points and the model surface.
Voesenek et al. used a similar but more precise model
with more degrees of freedom regarding fish bending
and rotation [VPvL16]. They also approximated 2D
silhouettes to a 3D-model, which consists of merged
ellipsoids along the longitudinal axis. For finding the
optimal model-parameters they re-projected the model
to the virtual cameras and calculated a scalar value de-
scribing the overlap and used a downhill simplex algo-
rithm for optimization. Besides extraction of fish mo-
tion they used the system to derive resultant forces and
torques of fish during swimming.

In contrast to the former work, the proposed method
differs in the following:

motion capture for 3D fish animation: this method
uses a 3D fish animation model with bones to re-
cover position, pose and bending. The resulting
parameter set can directly be used to animate 3D-
models

the proposed method synthesizes the refraction
caused by the air-water border

we use a non-linear least-squares method to approxi-
mate the fish position, pose and bending, which uses
all silhouette pixels separately for optimization

the method is very flexible and can be used for single
or multiple fish, for single- or multiple camera se-
tups, precise (with refraction compensation) or fast
(without refraction compensation)

3 PRELIMINARIES
3.1 Calibration

Since our method is specialized for fish in aquaria, we
use an easy and precise calibration method, which was
especially developed for this purpose (see [MSKK14]).
The method assumes, that camera position and align-
ment are static in relation to the aquarium. Based on
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Figure 1: Setup with two cameras. The red corners at
the tank are used for automatic-calibration of extrinsic
camera-parameters and position and normal calculation
of the fish-tank sides.

markers mounted to the corners of the fish-tank, an
optimization algorithm estimates the camera parame-
ters with respect to the aquarium. Besides the extrinsic
camera-parameter estimation the method also estimates
the normals and positions of the tank windows automat-
ically and the normal and the position of the water sur-
face semi-automatically. This information is used for
the refraction calculations afterwards.

3.2 Contour retrieving from video

Since the proposed method is specialized for aquaria,
we consider scene and cameras as static. This provides
the opportunity to use classical background subtrac-
tion methods to divide the camera image in background
(tank) and foreground (fish). Based on this binary im-
age we extract the silhouette S of all foreground objects.
In case of using multiple cameras fish silhouettes orig-
inated by mirroring in the tank’s glass walls can be de-
tected and eliminated by using epipolar geometry con-
straint. We also use this constraint to assign silhouettes
of fish in multiple views (see also [MSKK14]).

3.3 3D-model

The pose recovery result strongly depends on the 3D
fish-model quality: the higher the shape similarity be-
tween the 3D-model and the live fish is, the better the
model can be approximated. Depending on the fish
species, it can be enough to use two different models
for male and female, like done in the validation pre-
sented here with sailfin mollies (Poecilia latipinna). In
case of fish species varying strongly within sex it could
be necessary to use several different models for female
and male, mapping its variation. In general, the fish
model has to be implemented a as 3D-mesh. Even thin
parts of the fish like fins have to be designed as 3D ob-
ject in order to retrieve the contour by the proposed al-
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gorithm presented in section 4.1. Since the proposed
method is based on fish silhouettes, texture and reflec-
tion properties of the model can be ignored. In order
to deform the fish model, all parts of the mesh whose
position and rotation should be recovered by the algo-
rithm have to be connected to the skeleton bones. In the
field of computer animation, this type of model presen-
tation and animation is called skeletal animation. For
the validation presented in this paper we developed fish
models with the help of the free available fish designer
included in FishSim Animation Toolchain 3. At the mo-
ment the toolchain includes five different fish species
(the sailfin molly Poecilia latipinna, the Atlantic molly
Poecilia mexicana, the guppy Poecilia reticulata, the
three-spined stickleback Gasterosteus aculeatus, and a
chichlid Haplochromis spp.). In general it is possible
to add new fish species to the toolchain. More infor-
mation on the toolchain can be found in [MSH*17] and
see also [GMS™17] for a validation of the generated fish
stimuli in research.

4 POSITION, POSE AND SKELETON
RECOVERY

The proposed method aims to approximate the former
described 3D-model to the live fish in tank. The ap-
proximation is based on silhouettes of live fish, cap-
tured from single or multiple cameras. The silhou-
ette of live fish is extracted as described in section 3.2
and is compared to the artificial contour of the 3D-
model. In order to create as similar artificial silhou-
ettes as possible it is necessary to adjust and position
the virtual cameras exactly like the live ones. In or-
der to do so, we use the estimated calibration informa-
tion as described in section 3.1. Besides the camera
parameters the dimensions of the fish are necessary to
approximate the model parameters. Therefore we also
implement a method which estimates fish size in a pre-
processing step from single- or multiple view video se-
quences (see section 4.6). With the help of the in 4.1
described method the silhouettes are extracted from the
3D-model and are compared to real silhouettes by an
error function. An optimization algorithm, described in
section 4.4, optimizes the model parameters in order to
minimize the error function (see section 4.3). To lower
the risk of converging to a local minimum of the error
function, we apply an initialization method described in
section 4.5 at the beginning of a video sequence. Since
the air-water boarder of the fish tank causes refraction
effects, we implement a compensation method in order
to increase the accuracy (see section 4.2). The whole
workflow is shown figure 2.

https://bitbucket.org/EZLS/fish_
animation_toolchain
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Figure 2: Schematic of the fish recovering system.

many times per frame

4.1 2D silhouette extraction from 3D-
model

There are several different ways to extract 2D silhou-
ettes from a 3D-model: one obvious possibility is the
use of a render system as included in FishSim Anima-
tion Toolchain. The silhouette is rendered to a homo-
geneous surface and can easily be extracted by thresh-
olding. In practice, it turned out that the rasterization
which is used by the render system to draw primitives
to a pixel-based device or image, is too imprecise since
its resolution is limited to the pixel resolution of the
underlying device. Especially during the optimization
process this fact causes that the algorithm does not con-
verge correctly. For that reason we apply the classical
method leaned on [BS00] to retrieve silhouettes from
polygonal mesh structures. This method is based on the
principle that a silhouette edge will appear if one front-
face (front side of mesh-triangle) of two neighboring
mesh triangles is visible and the other one is invisible
for the camera. In order to find silhouette edges we
traverse all k polygon mesh triangles and check if the
normal 7, of triangle AABC}, is pointing in the same di-
rection as the viewing vector ¥ of the camera and store
the result in a new vector f :

1 ifvor; >0 i€k
fi= R . 6]
0 ifvon; <0 i€k

In case that f; and f; of neighboring triangles AABC;
and AABC; are different the shared edge of both trian-
gles is part of the silhouette. The gathered 3D silhou-
ette points are converted with the help of the camera
projection matrix to a 2D pixel coordinates S. Depend-
ing on the 3D-mesh resolution and the camera distance
to the object, it can happen that the distance between
two neighboring silhouette pixels is several pixel units.
Especially for the comparator algorithm (see 4.3) that
searches nearest neighbor pixels between real and vir-
tual silhouette this could cause bigger errors. For that
reason, we interpolate silhouette pixels in case that the
distance is bigger than one pixel unit between neigh-
boring silhouette pixels. Finally, this method extracts a
vector of silhouette pixels Sy out of the 3D-mesh model
M(X) which is based on the model parameters X.
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4.2 Refraction compensation

Since the proposed method is specialized for pose re-
covery of fish in aquaria we also address the problem of
refraction. Especially for stereo or multiple view cam-
era setups refraction can cause errors of several cen-
timeters [MSKK14] and hinder the mapping of silhou-
ettes from different views. In general, we calculate the
pixel ray refraction with the help of Snell’s law, which
calculates the refraction angle of the ray with the help
of media’s refractive indexes (n;,n,) and the incident
angle (angle between surface and ray).

n o sin(B)

ny  sin(a)

2)

In contrast to a ray-tracing approach, in which the op-
tical path of each pixel ray can be calculated step-by-
step, we have to go the way around: we start at the 3D
coordinate of the silhouette edge and have to find the
intersection point with the refraction plane (fish tank
plane) in order to calculate the refraction angle and fi-
nally the 2D pixel coordinate. At first an additional
plane P is calculated, which is defined by the normal
vector 7 of the intersection plane / (aquarium window
or water surface defined during calibration), the camera
position vector ¢ and the position vector of a silhouette
point §; (i € all 3D silhouette points). Next, the line of
intersection g(x) : X = 0 +x7 between intersection plane
I and plane P is calculated. There are several algorithms
available to calculate the line of intersection between
two planes and therefore it is here not discussed fur-
ther. The intersection point of the pixel ray lays on this
line. With the help of the law of sines we can calculate
o and B (see figure 3):

. |(®—2) x 7|
) 3
sin(@) = 1 E= Tl v
gy — IG5 x|
smw)—nﬁ—ﬁHWWH ¥

In order to find the final intersection point on the line g,
we combine the equations (2), (3) and (4) and minimize
it:

[(8(x) —&) x| [I(g(x) =SIl- [lAl
(&) =EI- 17l [I(g(x) =50) <7l na

In order to initialize the minimization well, the ini-
tial value x; is defined by calculating the intersection
point D (position vector J) between S;C and intersec-
tion plane /. D also lays on g and the factor x; is calcu-
lated as follows:

min
xeR

(&)

o—ds if £ () else

Iy [d,o,r]x
X = ()-"r:d-" if ry # 0 else with [_.7 o,7l=| [d,o,r],
0z—d; [d,o,r],
rz
(6)
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Figure 3: Refraction. A, B and [ lie on the intersection
plane, which is also the separation plane between air
and water. A ray starts at the fish’s surface S, intersects
in I and gets refracted. Finally it hits the camera center
C.

4.3 Contour comparator

To approximate pose and position of fish, we compare
the view depending silhouettes of live and virtual fish.
This is done by searching the nearest virtual silhouette
pixel v; € S, for each real silhouette pixel 7; € S, in 2D
pixel space. We employ a brute force matching algo-
rithm which searches the nearest neighbor on base of
the Euclidean distance. We finally store all distances in
order of real pixel silhouettes. In case of a single cam-
era setup the error vector has always the same size as
the real silhouette and depends on the model parame-
ters X.

eo(X) [[ro —vill

e1(X) l[r1 =, s
e(X)= . = ve€Sx (7)

en(X) 70 — vl

In case of a multiple camera setup with more than one
silhouettes of a single live fish (one silhouette for each
camera view), the error vectors for each silhouette are
stacked in a new error vector. ef(X) describes the error
vector e(X) of camera k. The final error vector of a
multiple view setup has the same size as the sum of all
real silhouettes pixels.

e(X) @®)

4.4 Optimization

In order to approximate the pose and position
parameters of the virtual fish we employ a least-
squares optimization method (combination of
Levenberg-Marquardt method and quasi-newton
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method [DJGWS81]) which optimizes the model pa-
rameters by reducing the error-vector described in
equation 7. The optimization method uses the deriva-
tive of the error function with respect to the parameter
vector X. We numerically approximate a derivative
vector for each real silhouette pixel r; as follows:

ei(Xore)—ei(Xo—e)
e;(X1+s)f€i(les)

Di(X) = *
ei(Xjre)—ei(Xj—¢)
2¢ (9)
X0+ €
X1
Xj

In case of a multiple camera setup, the derivative has to
be calculated for all silhouette pixels of all views. In
case of using a single camera setup it is recommended
to use a Kalman filter to stabilize the fish position, pose
and bending.

4.5 Initialization

The better the optimization initialization the higher the
probability of convergence and the faster the optimiza-
tion can be finished. Especially for real-time applica-
tions fast initialization is very important. For this task,
we employ a method which searches an initial model
parameter set out of a database based on simple silhou-
ette features like, position of snout, centroids of silhou-
ette quarters or angle of major segment axis. In order
to find the fitting model parameter set for the incom-
ing silhouettes, the features are extracted and a brute
force matcher searches the nearest neighbor. To speed
up the process of pose initialization we use the method
described in [MSK16] which defines a feature subset
regarding the pose-space location. In order to initial-
ize the position of fish, we calculate the centroid of the
live fish silhouette and define the pixel-ray of this cen-
troid pixel with the help of the camera projection ma-
trix. In case of an multiple camera setup, we calcu-
late the rough intersection point of these pixel-rays and
use it as initial position. If a single view setup is used,
the approximated position is calculated by shifting the
model along the centroid pixel ray to the middle of the
fish tank. In case of a post processing application, it is
also possible to find the initial pose and position manu-
ally.

4.6 Estimation of fish-size from single and
multiple view imagery

Besides a fish’s shape, its correct size is very important
for a precise recovery of position and pose of the live
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fish. One option is to measure the size of the fish man-
ually. This can be quite difficult since the fish has to
be caught and its body has to be aligned along the mea-
surement tool. An easier option is to use the computer
vision system to measure the size of the fish. In the
proposed method we also apply the in subsection 4.4
described optimization method in a preprocessing step.
To do so we record a short video sequence of the swim-
ming fish and besides the pose and position parameters
we also optimize the size in x-, y- and z-direction. De-
pending on the used model, it is also possible to opti-
mize the scale of the bones in order to adjust the shape
of the fish automatically. We average the size parame-
ters over the whole test sequence and use these parame-
ters for the actual recovery process. For a multiple view
setup, the size can be approximated fast and precisely.
In contrast, in a single-view setup the model-size can
not be recovered exactly: the projected size of the sil-
houette depends on the size of the model as well as on
the distance between camera and object. For that rea-
son we use a constrained size optimization, in which
the fish position is bounded to the size of the fish tank.
In order to get a good result, the recorded fish move-
ment should cover the area in front of the tank’s front
and back wall.

4.7 Multiple fish and occlusion handling

The method presented in this paper is capable of mul-
tiple fish tracking. It is recommended to use a multi-
ple camera setup in order to increase the stability of the
system in case of occlusion. As long as no occlusion
occurs, every fish can be handled separately according
the previous described method. In case of occlusion,
we modify the method as follows:

Silhouette mapping

Since the mapping of silhouette and fish is straightfor-
ward in case of a single fish (single silhouette to single
fish), the problem of silhouette mapping occurs if sev-
eral fish have to be tracked. In order to find the right
silhouette for each fish, we compare the extracted con-
tours of the current image regarding equation 7 with the
silhouette of each fish model of the last frame. We as-
sign the extracted contour to the model with the small-
est error. This is done for each frame and for each cam-
era view.

2D silhouette retrieving for occluding fish

If two or more fish cover each other in a camera view,
the background subtraction method will just provide a
single silhouette for these fish. For approximation of
the virtual contour to the real silhouette it is necessary
to reconstruct the silhouette as good as possible. We
do so by creating the silhouette of each involved fish
separately and merge these silhouettes together. This
results in a single silhouette which consists of all outer
silhouette edges.
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Optimization in case of occlusion

Due to the fact that more fish are involved in the opti-
mization process we combine all parameter vectors X of
the involved fish to a new parameter vector. The con-
tour comparator works the same way as described in
section 4.3 except that the silhouette pixels of the com-
bined silhouette are used for the camera view where the
occlusion takes place. For the optimization all silhou-
ette pixels of all fish in all camera views were used to
approximate the virtual models to the live ones. Tests
showed that the combined silhouette of multiple fish
brings a higher risk of wrong convergence. For that
reason we will check if the involved fish has a separate
silhouette in another camera view and push this silhou-
ette twice to the optimization process. By doing so this
fish silhouette has a higher impact to the optimization
process and the risk of wrong convergence decreases.

4.8 Handling of transparent fish parts

Another difficulty of fish pose recovery is the handling
of transparent parts like fins. In our experiments we fig-
ured out that especially semi-transparent fins can cause
trouble: depending on the fish position and alignment, it
could happen that, for the background subtraction sys-
tem, a fin is visible in some regions of the fish tank and
invisible in other regions. This can cause problems for
the method presented here since we extract (see chap-
ter 4.1) the outer silhouette of the fish. If for example
the caudal fin is not always visible, it will influence the
optimization algorithm negatively. In order to handle
this problem, we recommend to organize fish parts (e.g.
fins) in mesh-groups. If a part is not detected by the
background subtraction, it can be easily removed from
the model. In case a fin is detected from time to time we
extract the silhouette of this fin separately and add it to
the total contour. By doing so both contours (with and
without fin) are available and the contour comparator
searches for the best matching one. This is also shown
in figure 4.

5 RESULTS

We compared the results of the here introduced method
regarding runtime and precision with a manually anno-
tated dataset. This included the results of single-camera
setup, multiple camera setup, with and without refrac-
tion compensation. Additionally, we also applied the
method to a dataset of two fish including occlusion in
one and both camera views.

5.1 Dataset

The dataset consisted of 1000 manually annotated
frames which show a single female sailfin molly swim-
ming in a fish tank (26 cm x 18 cm x 17 cm). The fish
had a length of approximately 5 cm which corresponds
to about 180 to 200 pixels. For annotation we manually
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Figure 4: Silhouettes of two fish. Silhouettes of back-
ground subtraction is marked blue and red, the virtual
silhouettes yellow and green. The quality of the real
contour was not stable at all. Especially the transpar-
ent fins were sometimes not detected by the background
subtraction like in case of the right fish.

adjusted the model parameters of the according 3D
fish-model and rendered (raytracing with refraction
based on the method validated in [MSKK14]) it
frame-by-frame over the video footage of two cameras,
observing the fish. The second dataset showed two
female sailfin mollies (about 5 cm, approx. 120 to
140 pixels in length), swimming close to each other
through a bigger fish tank (60 cm x 30 cm x 30 cm).
Since the fins of the used fish are nearly transparent,
the background segmentation method sometimes did
not detect the whole fin. This caused an imprecise
silhouette (see figure 4) and special demands on the
proposed method regarding fin pose recovery. Both
datasets were recorded by two cameras (Allied Vision
Technologies, Prosilia GT1910c) with a resolution of
1920 x 1080 pixels and with a frame rate of 57 frames
per second mounted above and in front of the tank. The
cameras were synchronized by hardware trigger.

5.2 Model

The used 3D-model was created with the FishSim Ani-
mation Toolchain and consisted of 946 vertices and 36
bones. For the optimization we just used 17 bones:
head, four backbones and twelve bones of the tail (cau-
dal) fin. In order to decrease the model parameters we
used a function that approximates the fish bending to a
single bending value (see [SMK15]). In total the opti-
mization process comprised six parameters per fish: po-
sition (X,y,z), rotation (pitch, yaw) and bending. During
size estimation the parameter set was extended by three
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size parameters. We also tested the method with three
and eight different bending parameters.

5.3 Initialization

Before the optimization process started a rough initial
position and rotation of fish were found as described in
section 4.5. The used database consisted of 32400 pa-
rameter sets. The features were extracted in a prepro-
cessing step out of 32400 artificial fish images, showing
a single fish (rendered from the used 3D-model) rotated
in two degree steps around the main axes. Fish size was
estimated out of 100 images from two perspectives (top
and front) using the method described in section 4.6.
We estimated the size along x-, y- and z- axis of fish
separately. We also estimated the size manually. The
results of manual and automatic size estimation differed
very slightly.

5.4 Refraction compensation

We applied the proposed method to the first dataset,
showing a single fish from two perspectives (front and
top view), and recovered fish pose, position and bend-
ing with and without refraction compensation. The
recovery results especially differed in terms of posi-
tion error. The method using refraction compensation
reached a mean error of 1.13 mm (standard deviation
1.00 mm, biggest error 3.9 mm) and the version without
compensation reached a mean error of 8.24 mm (std.
dev. 4.91 mm, biggest error 19.5 mm). Regarding rota-
tion and bending error the methods differed less, but the
version with refraction compensation was always better
(see figures 5, 6, 7). This is due to the fact, that the sil-
houettes of the not refracted version do not fit precisely
to each other, especially at the outer borders of the fish
tank where the refraction is particularly high.

5.5 Single view vs. dual view

Besides the dual camera setup, we also applied the
method with refraction compensation to single camera
setup. We used the first dataset and applied the method
separately to the top and front camera. As expected, the
errors of position, rotation and bending increased. Es-
pecially the error for the dimension along the direction
of camera view increased strongly (see figures 5, 6, 7).
In general, for the here used fish species (sailfin molly)
the top view camera delivered better results. This was
mainly due to the fact, that the bending can better be
observed from top (see figure 4). For experiments with
a narrow third dimension (little water or thin tank) this
method can be a cost-effective and less computation-
intensive alternative to the multiple camera setup.

5.6 Occlusion of multiple fish

We recovered pose and position of two fish out of the
second dataset (dual camera setup). The recorded video
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Figure 5: Fish position error split by method of appli-
cation. The diagram shows box-plots, which indicates
the median (red line) the 25th and 75th percentiles(blue
box) and the biggest error values (whiskers) not con-
sidered outliers. From left to right it shows the posi-
tion error (in relation to ground truth in mm) 1. us-
ing two cameras and refraction compensation 2. two
cameras without refraction compensation 3. single top
view camera with refraction compensation and 4. sin-
gle front view camera with refraction compensation.

included several sequences with fish occlusion in one or
both views. The algorithm recovered fish position and
pose of both reliably. If an occlusion occurred in all
views, it can happen that the algorithm will converge
to the wrong fish model. This problem can be mini-
mized by applying a kalman-filter to each fish. In fig-
ure 8 an occlusion case and the recovered fish positions
and poses are shown. Additionally, a video sequence
showing occluding situations can be found inter alia in
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Figure 6: Fish pitch- and yaw-rotation error split by
method of application. The diagram shows box-plots of
pitch-rotation (blue) and yaw-rotation (red) in degrees.
Since the used test fish nearly never rotate around roll-
axis, this rotation was neglected.
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Figure 7: Fish position error split by method of appli-
cation. The diagram shows box-plots of bending-factor
errors. The factor maps fish bending to model parame-
ters.

Figure 8: Reconstruction of two fish with occlusion.
On the left the capture images with the silhouette over-
lay (blue and red contour - captured silhouettes; yellow
and green contour - silhouettes of virtual fish). On the
right, rendered images of the reconstructed fish models
captured from two different perspectives.

the supplementary file. In general, in case of occlusion,
the recovery method slightly loses accuracy.

5.7 Runtime

The software was tested on a system with Intel 17-3770
(4 x 3.4 GHz) CPU, 16 GB memory and Ubuntu 14.04
operation system. The algorithm was implemented
with the help of the following open source libraries:
OpenCV (version 2.4.12, https://opencv.org/)
for computer vision tasks, DIib (version 19.2, http:
//dlib.net/) for optimization and the game en-
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Table 1: Algorithm’s runtime under different configu-
rations

Computer Science Research Notes

configuration runtime per
frame/ 2 frames
in sec. (fps)
single fish, single camera, no 0.07 (14.2)
refraction compensation
single fish, single camera, with 0.25 4)
refraction compensation
single fish, two cameras, no 0.14 (7.1)
refraction compensation
single fish, two cameras, with 0.5 (2.0)
refraction compensation
two fish, two cameras, with 0.7 (1.4)
refraction compensation
single fish, two cameras, with 0.67 (1.49)
refraction compensation and size
estimation (three additional
parameters)
single fish, two cameras, with 0.92 (1.08)
refraction compensation and
eight bending parameters
single fish, two cameras, no 0.25 4)
refraction compensation and
eight bending parameters

gine irrlicht (version 1.8.1, http://dlib.net/) for
rendering and silhouette extraction. We measured the
mean time which was needed to process one frame (or
two frames in case of two cameras). Table 1 gives a
rough impression of the computational-intensity of dif-
ferent configurations. The refraction compensation was
relative computational-intensive since every silhouette
pixel was optimized separately. For runtime improve-
ment it could be interesting to find an analytic solu-
tion of equation 5 which substitutes the optimization.
In general it can be noted, that increasing the number
of cameras and of fish the runtime increases approxi-
mately linear. Additionally, with up-to-date hardware,
the method can be real-time capable.

6 CONCLUSION

In this work we introduce a new method to approximate
3D fish skeletal model parameters out of single- or
multiple view video stream. We propose a new method
to synthesize the refraction effect during optimization.
We successfully applied the method to two different
datasets with different configurations: we extracted
model parameters for a one and two fish with and
without refraction compensation. We showed that re-
fraction compensation increases the recover accuracy:
for position recovery the mean error was reduced by
~85 % for rotation by ~20 % and for bending by
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~11 %. We demonstrated that it is possible to recover
the 3D-model parameters out of a single view video
stream and reduce the runtime at the same time. By
doing so it is possible to use the method in real-time
application.
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