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Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland
s.jablonski@ii.pw.edu.pl

Tomasz Martyn
Institute of Computer Science

Warsaw University of Technology
ul. Nowowiejska 15/19
00-665 Warsaw, Poland

martyn@ii.pw.edu.pl

ABSTRACT
In this paper, we propose a novel approach to an efficient rendering of an unlimited number of dynamic and unique
3D objects in real-time. We present an extension to the Holistic Unlimited Object Instancing (UOI) rendering
pipeline and the holistic computer graphics paradigm. We called this extension Dynamic Unlimited Object In-
stancing rendering pipeline. Using Signed Distance Functions (SDF) for the virtual scene representation and the
Holistic Scene Dynamics Function, we can control and render an unlimited number of dynamic 3D objects in
real-time. In order to solve some issues of the original UOI rendering pipeline, we developed two extensions:
first, a collection of holistic Dynamic operators, and, second, the Multipass Depth-Based Ray Marching rendering
pipeline. The operators are used to apply affine transformations to an unlimited number of 3D objects and also to
animate their materials and other attributes. In order to solve the problem of the uniform object distribution within
the scene, we redefined the original definition of the scene SDF component. The virtual scene equation is divided
into independent SDF components, which are rendered separately using the Multipass Depth-Based Ray March-
ing pipeline. Thanks to both extensions, the new version of the Holistic UOI rendering pipeline can handle 3D
objects intersections what significantly enhances the realism of SDF scenes. The presented extensions to the UOI
rendering pipeline are fully compatible with the Holistic UOI rendering pipeline, SDF and Sparse Voxel Octree
(SVO) based algorithms. The only hardware requirement for our approach is the support for multipass rendering
with compute shaders or any GPGPU API.

Keywords
Computer graphics, signed distance function, holistic programming paradigm, voxel rendering, sparse voxel octree,
instancing, data-based amplification, procedural generation, fractal noises, level of detail

1 INTRODUCTION

Virtual scene geometrical complexity is one of the most
common indicators used to evaluate the quality of real-
time realistic image synthesis. In order to achieve the
desired depth and realism of virtual worlds, the scenes
should be composed of high-resolution 3D objects with
detailed geometries and materials. Moreover, to pro-
vide an appropriate level of immersion of the user in the
virtual environment, we have to use suitable efficient
rendering techniques and algorithms to process and vi-
sualize the scenes in real time.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Over the years, many algorithms for virtual scenes man-
agement [Greene95], level of detail control [Lueb02],
objects culling [Bittner04], and geometry instanc-
ing [Carucci05] have been developed. However,
despite the constantly increasing computational power
and memory capacity of today’s GPUs, still, the main
limitation of video game engines is the object space
computation complexity [Jab17]. Also, one of the often
overlooked factors influencing the quality of synthe-
sized scenes, when regarded from the standpoint of the
user’s immersive perception of the virtual environment,
is the "evolving" complexity of the virtual world that
undergoes structural changes over time. We decided to
focus mainly on this issue in this paper.

On the other hand, much effort has been devoted
to studying alternative representations of geometry
for real-time graphics. Signed Distance Functions
(SDF), which derive from fractal theory and ray-
tracing of quaternion Julia sets [Hart89], have found
application in modern video game engines, among
others for shadow map generation [Wright15] and font
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rendering [Green07]. Voxel-based representations,
which had been used mainly in offline computer
graphics, thanks to developed Sparse Voxel Octree
algorithms [Crassin11, Jab16, Domaradzki16] can
now be used successfully in real-time graphics. The
research we conducted on these two approaches to
representing geometry for computer graphics has
resulted in the development of the Holistic Unlimited
Object Instancing (UOI) rendering pipeline.

The SDF-based representation has been successfully
integrated with Sparse Voxel Octree algorithms in the
Holistic UOI rendering pipeline [Jab17]. Thanks to the
screen-space computation complexity of the SDF and
SVO processing algorithms along with the newly pro-
posed Holistic Graphics Programming paradigm, this
allowed for a significant increase in the complexity of
virtual scenes that can be rendered in real-time. By us-
ing SDFs for the scene representation integrated with
SVOs as a 3D geometry representation, the idea behind
object instancing was extended in that it was possible
to render in real time actually an unlimited number of
3D objects created by artists.

Nevertheless, the original concept of the Holistic UOI
rendering pipeline is limited in several aspects and in
this paper we propose solutions to these issues. First
of all, we present a novel approach to an efficient ren-
dering of a potentially unlimited number of dynamic
and unique 3D objects in real-time. By extending the
original Holistic UOI rendering pipeline with Dynamic
operators and Holistic Scene Dynamics Functions, we
are able to add movement and animation of objects’ at-
tributes to originally static scenes. Moreover, thanks
to redefining the scene SDF component, we can ef-
fectively limit the uniform object distribution artifact,
which was inherent to the original definition of the com-
ponent. To express with the name the functionality of-
fered by our extension to the original UOI pipeline, we
call it the Dynamic Unlimited Object Instancing render-
ing pipeline.

2 RELATED WORK
In the paper "Unlimited Object Instancing in real-
time" [Jab17] the holistic computer graphics program-
ming paradigm was introduced and embodied therein
in a novel Holistic UOI rendering pipeline. Thanks
to this new holistic approach to expressing scenes
for computer graphics and the dedicated rendering
pipeline, it was possible to process and render a
potentially unlimited number of unique 3D objects in
real-time. The main foundation of the presented ap-
proach was the integration of SDF and SVO algorithms
in a single-pass rendering pipeline.

The original Holistic UOI rendering pipeline was based
on four main components. In the context of the topic

we tackle in this paper, the most important is the com-
ponent of Global operators. It was used to control the
content and complexity of the virtual scenes.

Using a collection of Global operators, it is possible to
instantiate an unlimited number of 3D objects, generate
and apply object variations, and control the existence of
objects in the virtual scene.

Thanks to the SDF-based representation and a holistic
approach to control, the memory requirements for the
scene description were significantly reduced, making
processing an unlimited number of the 3D object for
each SDF component possible. However, the original
implementation suffers from two problems, which are
essential from the standpoint of realistic and immersive
rendering of a virtual world.

The first issue is that the rendered worlds were static
and the original architecture of the holistic pipeline
makes it difficult to introduce any kind of movement
to these unlimited but indeed "frozen-in-time" virtual
worlds.

The second issue is related to the inherent to SDF in-
stancing, easily noticeable artifact of the uniform dis-
tribution of objects populating the scene. In this paper,
we provide the solutions to both these problems.

There is a wide selection of literature related to each
component used in our Dynamic UOI rendering
pipeline. The SDF-based graphics representation
derives from a method introduced in the paper [Hart89]
for the visualization of quaternion Julia sets. The
idea of unbouding volumes presented there was then
extended by Hart et al. [Hart94, Hart97] into sphere
tracing. Given an object represented by an SDF, sphere
tracing relies on iteratively traversing a ray from the
eye through the projection plane towards the object. If
the eye-to-object distance estimation is smaller than a
predefined precision value, the ray is considered to hit
the object. SDF functions can be used to create highly
detailed procedural objects using SDF primitives with
boolean operators. Reiner et al. [Reiner11] presented
an introduction to an interactive SDF ray marching
pipeline with a procedural object generation based on
domain operations.

In turn, thanks to the development of SVO algorithms,
the high-resolution voxel-based representation can now
be used in real-time graphics applications. Due to
the screen-space character of the computation com-
plexity of the SVO rendering pipeline, numerous high-
resolution 3D objects can be processed in real-time us-
ing instancing approach. Cyril Crassin was able to per-
form visualization of the global illumination using SVO
and voxel cone tracing [Crassin11]. There are also a
few promising SVO methods for object animation, de-
formation, and fracturing in real-time [Bau11, Wil13,
Domaradzki16]. The SVO-based object representation
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has also found application in continuous LOD manage-
ment [Jab16].

For these reasons, the SVO-based representation has
been becoming an increasingly serious alternative to
polygon-mesh representations and, as such, is a promis-
ing candidate to be utilized in the holistic rendering
pipeline.

There are also a few interesting papers about procedural
generation of infinite cities which are worth mention-
ing [Greu03, Stein14, Steninb14].

The last group of papers is related to the topic of the
procedural generation of geometry by means of the data
amplification approach. Since there is a vast literature
on fractals and procedural graphics, below we will fo-
cus only on the papers most relevant to our work.

Ken Perlin introduced a relatively simple and efficient
method for generating a space continuous, pseudo-
random noise for computer graphics [Perlin02]. It has
been used across the computer graphics applications
from terrain generation, objects randomization to
special effects. There are also many improvements
to Perlin’s original idea that can be relatively easily
implemented in today’s GPUs [Li15].

Deussen et al. [Deussen98] presented a great exam-
ple of how to exploit the data based amplification ap-
proach with geometry instancing in order to create re-
alistic plant ecosystems in non-real-time graphics en-
gines. Due to the limited capacity of GPU memory,
real-time procedural content generation is required for
creating complex and unique virtual scenes.

3 HOLISTIC UNLIMITED OBJECT IN-
STANCING

In this section, we present a short summary of the
Holistic UOI rendering pipeline which was introduced
in [Jab17]. We describe the main idea behind the holis-
tic virtual scene definition, the available features, and
the architecture of the Holistic UOI rendering pipeline.
In particular, we focus on the issues of the UOI render-
ing pipeline which we deal with in this paper.

3.1 Holistic UOI rendering pipeline
The main foundation of the Holistic UOI rendering
pipeline is the integration of the SDF and SVO al-
gorithms in a single-pass ray marching visualization
pipeline [Jab17]. The holistic approach is applied to
the virtual scene definition. Rather than representing a
virtual scene as a collection of individual objects, the
whole scene is perceived and processed in its entirety
as a complex object whose geometry is described by a
single and (usually) relatively simple equation.

By using this new approach to the scene representa-
tion and visualization, which was termed as the Holis-
tic Graphics Programming, it is possible to process in

real-time as many unique instances of 3D objects as we
want. The usage of SDFs allows memory requirements
for the scene description to be significantly reduced,
making it possible to deal with complex and even un-
limited scenes with a low memory capacity. Moreover,
thanks to incorporating the SVO representation into the
SDF scene description, it is possible to render high-
resolution 3D objects created by artists with the usage
of e.g. Physically Based Rendering materials [Pharr17].

The features of the UOI rendering pipeline are as fol-
lows:

• Real-time processing and rendering of an unlimited
number of unique 3D objects in the virtual scene.

• The possibility of visualizing 3D objects created by
artists.

• Compatibility with other SDF and SVO based algo-
rithms.

• Holistic content and complexity control with a data
amplification method.

• A continuous LOD management of the virtual scene.

3.2 Holistic UOI architecture
Fig. 1 presents the four components the Holistic UOI
rendering pipeline.

Figure 1: The components of the Holistic UOI render-
ing pipeline.

In this paper, we mainly focus on developing an ex-
tension to the Global operators component. The orig-
inal paper [Jab17] introduced Transition operators to
apply affine transformations to 3D objects. However,
the capabilities of the operators were limited and they
didn’t take into account the passage of time in the vir-
tual world. In the next section, we discuss two ma-
jor issues of the original concept of the UOI rendering
pipeline.

3.3 Holistic UOI issues
The holistic UOI rendering pipeline offers the possibil-
ity to handle an unlimited number of unique 3D objects
in the virtual scene in real-time.

The original Global operators component gathers var-
ious instancing, geometry and material operators. Al-
though there was a class of object transformation op-
erators available, they did not offer satisfactory results.
The two main issues were the uniform distribution of
objects within the scene and no support for possible ob-
jects’ intersections.
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3.3.1 Uniform object distribution problem
The first problem pertains to the construction of the In-
stancing operator—the principal operator of the holis-
tic UOI approach. In order to generate an unlimited
number of 3D objects, a modulo function is applied to
the scene distance function. The result is that a single
scene SDF component, which represents an object, is
repeated with a defined interval and, thus, a uniform
grid of the object’s copies is generated, populating the
virtual world.

Fig. 2 presents rendering results of a virtual scene repre-
sented by a single scene SDF component with a modulo
instancing operator applied.

Figure 2: Uniform object distibution problem visible
on single SDF component scene with Instancing Oper-
ator applied.

The original Holistic UOI rendering pipeline offers a
collection of operators that can be used to reduce the
visibility of this artifact—for example, the Existence
operator could be applied to partially overcome this is-
sue. Nevertheless, despite the application of the oper-
ator, there are always many vantage points from which
the uniform object distribution is still noticeable, as we
can see in Fig. 3.

Figure 3: Uniform object distibution problem visible
on single SDF component scene with Existence opera-
tors applied.

3.3.2 No 3D objects intersection support
The second problem is related to the integration of
SFD and SVO in a single-pass rendering pipeline. The
biggest implementation challenge for the Holistic UOI
development was dealing with potential object occlu-
sion errors [Jab17]. In the Holistic UOI rendering
pipeline occlusion errors were fixed using multiple ray
marching iterations. If an occlusion error occured, the
grid cell coordinates and the SDF component id were

stored. Then, the distance to the grid cell from the pre-
vious ray marching iteration was calculated and sub-
tracted from the scene equation in the next iteration of
ray marching algorithm. Thanks to that, the distance to
the potentially occluded 3D objects could be found.

Although the algorithm is relatively simple and effi-
cient, it also causes a serious problem, because cutting
off the previous grid hit by a ray may result in that the
3D objects associated with the cell and potentially in-
tersected by the ray are removed from the scene, too.
In order to solve this issue, it is necessary to find the
distance of the intersection between the multiple SDF
components and apply it to the virtual scene defini-
tion [Jab17]. It means that as the result the complexity
of the algorithm increases significantly.

In this paper, we propose a different solution to this
problem—rather then the original single pass render-
ing, we make use of the Multipass Depth-Based Ray
Marching (Sec. 4.3).

4 DYNAMIC UNLIMITED OBJECT IN-
STANCING

In this section, we describe the developed extension to
the Holistic UOI rendering pipeline which we called
Dynamic Unlimited Object Instancing. The Dynamic
UOI rendering pipeline is based on the following three
components:

1. Holistic Scene Dynamics Function—a continuous
function parameterized by time and used to proce-
durally generate unique, dynamic variations of 3D
objects populating the virtual scene.

2. Dynamic Operators—an extension to the original
collection of the Global operators from the original
Holistic UOI rendering pipeline. The dynamic oper-
ators are used to apply unique affine transformation
and material animation to 3D objects. They utilize
the Holistic Scene Dynamics Function to calculate
dynamic variations per 3D object.

3. Multipass Depth-Based Ray Marching—an ex-
tension to the Holistic UOI pipeline which is based
on a multipass rendering rather than—as it was in
the original implementation—a single-pass render-
ing.

4.1 Holistic Scene Dynamics Function
The first component of the Dynamic UOI rendering
pipeline is the Holistic Scene Dynamics Function (the
HSD function for short). Though the function is an in-
tegral part of the Dynamic Operators component, we
decided to define it as an independent component for
the following reasons:

First, the HSD function is a perfect example of the
implementation of the Holistic Graphics Programming
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paradigm. Instead of controlling each 3D object in
the virtual scene independently, we animate the whole
scene by means of a relatively simple equation. Sec-
ondly, the form of the function strongly depends on the
scene content. For example, a different HSD function
will be used to control an animation of flying 3D objects
and a different one to sway grass under the wind.

In general, the HSD function can be expressed as:

fHSD : D× t→V (1)

where:

V = a dynamics variation for a given 3D object
D = the object input data
t = the current simulation time

For example, a HSD function implemented using Per-
lin’s noise algorithm could generate a color and other
material attributes of a 3D object as well as its transfor-
mation matrix as an output by using the object’s world
space position or its grid cell as an input.

A good example of a potential application of the HSD
function is the impact of wind. Based on the passing
time, the world space position and the SDF component
unique id, we could calculate, for example, translation
matrices for 3D objects.

It can be expressed as a simple pseudorandom noise
generator or by using a more sophisticated method
based on, for example, Fractional Brownian Mo-
tions [Mandelbrot68] or Vector Fields [Chen11]. In
this paper, we use relatively simple HSD functions
based on trigonometric functions and continuous noise
generators.

4.2 Dynamic Operators
The second component of the Dynamic UOI rendering
pipeline is a collection of Dynamic Operators that are
used to apply changes to the static virtual scene, pro-
cessed using the rendering pipeline.

Thanks to the Dynamic Operators, 3D objects can
be transformed with unique affine transformations
per instance and/or have their attributes animated
in real-time. The Dynamic Operators extend the
Global operators collection with the additional time
dimension [Jab17].

4.2.1 Dynamic Operators architecture
The processing pipeline of the Dynamic Operators
slightly differs from that related to the remaining
operators. This is particularly evident in the example of
the transformation operators which were applied in the
original holistic approach using following processing
pipeline [Jab17]:

Figure 4: Global operators processing pipeline from
original Holistic UOI rendering pipeline.

In the case of the Dynamic Operators, we need to per-
form an additional processing pass at the beginning of
the holistic operator’s application pipeline. In order to
apply dynamic transformations for generated 3D ob-
jects, it is required to apply an additional transforma-
tion to a position on the ray from the camera to an SDF
component at each iteration of the ray marching algo-
rithm. It is required to preserve the correct form of the
SDF.

The Instancing operator from the Holistic UOI render-
ing pipeline returns an object instance grid cell vec-
tor [Jab17]. The remaining Global operators used this
value as an input for generating variations. For the Dy-
namic operators, we need to apply a transformation to
the ray before applying Intancing operator. It means
that we need to calculate the grid cell vector indepen-
dently from the operator.

The architecture of the pipeline for the newly proposed
operators takes the following form:

Figure 5: Global operators processing pipeline devel-
oped for Dynamic UOI rendering pipeline.

Using the SDF-based object representation, the devel-
opment of additional processing paseses is relatively
simple. The cube distance function, which represents
base scene SDF component [Jab17], can be extended
as:

gridCell = f loor((p+ interval ∗0.5)/interval)

variation = fHSD(time,gridCell)

TrasOp(p)

InstancingOp(p, interval)

RotOp(p)

ScaleOp(p)

distance = length(max(abs(p)− size),0)

(2)

where:

gridCell = an object instance grid cell
variation = an object instance dynamics variation
fHSD = the HSD function
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TransOp = Translation operator
InstancingOp = Instancing operator
RotOp = Rotation operator
ScaleOp = Scale operator
time = the elapsed simulation time
interval = the repeat interval
distance = the distance from the eye to the object
p = a point on the ray from the eye

to the object
size = the scene SDF component cube size

4.2.2 Dynamic Operators application results

In this section, we present results of rendering virtual
scenes with Dynamic Operators applied. In the follow-
ing examples, we used a simple HSD function imple-
mented with the use of the trigonometric functions sup-
ported by hardware.

Fig. 6 presents results of rendering a scene represented
by a single scene SDF component with dynamic trans-
formation operators applied.

Figure 6: Dynamic Operators applied for the virtual
scene represented by single SDF component in 2D.

The results show that the dynamic operators effectively
solve the issue of the uniform object distribution. More-
over, they exemplify the possibility of the processing
and visualization of an unlimited number of unique, dy-
namic 3D objects in real-time. They are also a good
example of an implementation of the holistic program-
ming paradigm accompanied by the data amplification
approach.

Although the Dynamic operators are designed mainly
as an extension to the Transformation operators from
the original Holistic UOI, their usage is not limited only
to 3D objects affine transformations. They could be
also used to animate other objects attributes, e.g. the
albedo color or the material’s roughness values.

4.3 Multipass Depth-Based Ray March-
ing

The third component of the Dynamic UOI rendering
pipeline is Multipass Depth-Based Ray Marching
which turns a single-pass rendering pipeline into a
multipass rendering pipeline.
The Dynamic UOI rendering pipeline with Multipass
Depth-Based Ray Marching was developed in order to
fulfill the following requirements:

• Support for 3D object intersections.
• Classic triangle rasterization rendering results inte-

gration support.
• Optimization and LOD management features for

complex scenes.

4.3.1 Scene SDF component redefinition
In the original paper [Jab17], a virtual scene was rep-
resented using a single distance equation. Thanks to
that, the whole rendering was performed in a single-
pass. However, the available occlusion error-fixing al-
gorithms do not support intersections between scene
SDF components. In order to solve this issue, we de-
cided to redefine the scene SDF function.
In order to render a scene with intersecting scene SDF
components, we define each component as an indepen-
dent virtual scene equation and render using a separate
rendering pass. Then, so as to integrate the rendering
results, a custom-made depth buffer is used.
The depth buffer is created as a second floating-point
render target and utilized along with the ray-marching
pipeline to store the minimum distance values obtained
from the ray-marching passes. The depth buffer can
be treated as another scene SDF component at the next
rendering pass.
The integration of depth testing (if necessary for subse-
quent rendering passes) with the ray marching pipeline
is quite simple. We need only to apply an additional
check if the current distance traveled by the ray is
smaller than the appropriate value in the depth buffer
filled in in the previous passes.

4.3.2 Multipass rendering pipeline
A good example of the usage of the Multipass Depth-
Based Ray Marching is rendering an open-world scene
we prepared for this paper. The test scene consists of
the following elements:

• Terrain SDF component—a procedural terrain dis-
tance function based on heightmap ray marching.

• Trees SDF component—objects of 3D trees cre-
ated by artists with material and type operators ap-
plied. The component utilizes the terrain SDF func-
tion in order to snap 3D objects to terrain height
by using Translation operator and Existence oper-
ator. Moreover, Dynamic operators are used to im-
plement wind movement.
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• Grass SDF component—grass objects with user-
defined textures. Type and Material operators ap-
plied. 3D objects are snapped to the terrain with
Translation and Existence operators applied in the
same way as the previous component. Dynamic op-
erators are also used to apply wind movement.

Fig. 7 presents outcomes of the subsequent passes of
rendering the test scene. A more detailed discussion on
the performance results of Multipass Depth-Based Ray
Marching is given in the next section.

5 RENDERING AND PERFORMANCE
RESULTS

All the given timings were obtained on Intel Core i5-
8600K CPU with Nvidia GeForce GTX 1060 GPU and
the algorithms were implemented using OpenGL 4.6
API with C++17 for Windows 10 64-bit.

We utilized 3D models Stanford Repository
models [Stanford11] and other public re-
sources [CGTrader, Sinnaeve] as test objects. In
the tested scenes, we used the SDF function based
on the online articles by Inigo Quilez [Iniqo08] and
Alexander Alekseev [Aleksaeev14].

We prepared three virtual scenes: Stanford, Terrain and
Ocean. For the second and third ones, we were using
Multipass Depth-Based Ray Marching to handle 3D ob-
jects intersections and Dynamic operators to add move-
ment to our scenes. The content of the Terrain scene
was described in Sec. 4.3. The Ocean scene contains
one scene SDF component for a procedural ocean and
a second one for a herd of balloons. All the scenes are
using the vast collection of Global operators, includ-
ing instancing, type, material, and existence operators
along with the newly developed Dynamic operators de-
scribed in Sec. 4.2.

All the 3D objects are represented by SVOs with 10
levels of detail (1024 x 1024 x 1024 voxelization). Each
voxel stored a compressed normal vector and texture
coordinates.

The obtained rendering times (given in the figures)
prove that the developed rendering pipeline is efficient
and offers real-time performance. Moreover, the pre-
sented images show that the application of the Dynamic
UOI rendering pipeline makes it possible to limit the
noticeable regularity in object distribution inherent to
the original algorithm.

The use of Multipass Depth-Based Ray Marching
allows for handling 3D object intersections what
effectively increases the depth and realism of rendered
scenes. It also solves the limitation of the original
occlusion error-fixing algorithm. Finally, introducing
the newly developed Holistic Scene Dynamics Func-
tion component extends the holistic programming

paradigm with movement and other possible changes
to originally static objects.
As a part of the rendering performance tests, we
performed an additional comparison test between
the compute-shader-based and the pixel-shader-based
rendering pipelines. In all performed test the rendering
pipeline based on compute shaders was operating
much faster. In our opinion, the compute-shader-based
variant which offers the full control over the shader
invocations is a better choice for a Holistic UOI
implementation. Nevertheless, one should be aware
that, unlike as in the case of the traditional triangle ras-
terization pipeline, the compute-shader implementation
requires one to pay very close attention to every single
line of code and even the number of registers in use.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a novel approach to effi-
cient rendering of an unlimited number of dynamic and
unique 3D objects in real-time. Thanks to the devel-
oped extensions to the Holistic Unlimited Object In-
stancing based on the Holistic Graphics Programming
paradigm, we successfully limited issues featuring the
original approach.
Using the developed Dynamic Operators along with the
Holistic Scene Dynamics Function, we can limit the
artifact of the 3D object uniform distribution. More-
over, the introduction of changes in position and other
attributes of the 3D objects populating the scene signif-
icantly increase the depth and the level of immersion
featuring the virtual words created and rendered with
the holistic approach.
Another issue of the original method—no support for
3D object intersections we solved using Multipass
Depth-Based Ray Marching. The redefinition of the
scene SDF component allowed for authoring complex
virtual scenes by means of an efficient and relatively
simple method. What’s more, the implementation
of the multipass rendering pipeline made the inte-
gration of SDF-based objects in the virtual scene
much simpler. Moreover, thanks to incorporating
the depth buffer into the ray-marching rendering, a
depth-based integration with results obtained with the
standard triangle-rasterization pipeline is possible (e.g.,
for particle effects, skeletal animation or animated,
user-controlled 3D objects).
One should also note that Multipass Depth-Based Ray
Marching makes it possible to define additional render-
ing optimization features. For example, each render-
ing pass could use different ray marching parameters
(ray iteration number, precision, near/far planes, etc.)
or even a different render target resolution.
An obvious step forward is an implementation of a
more advanced Holistic Scene Dynamics Function.
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Figure 7: Multipass Depth-Based Ray Marching rendering pipeline application for test scene with multiple scene
SDF components.

(a)

(b)

(c)

Figure 8: Stanford virtual scene with Dynamic opera-
tors applied with collection of original UOI operators.
40-50 FPS on Nvidia GeForce GTX 1060.

(a)

(b)

(c)

Figure 9: Ocean virtual scene with Multipass Depth-
Based Ray Marching and Dynamic operators applied.
50-60 FPS on Nvidia GeForce GTX 1060.
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(a)

(b)

(c)

(d)

Figure 10: Terrain virtual scene with Multipass Depth-
Based Ray Marching and Dynamic operators applied.
50-60 FPS on Nvidia GeForce GTX 1060.

A good idea seems to be the usage of a procedurally
generated model of wind for realistic influencing 3D
objects such as balloons, grass, etc. In our opinion,
a collection of specialized movement functions should
become a next important component of the Holistic
UOI rendering pipeline. Also, a further optimization
and extension to the Dynamic Operators should be
taken into account in future work.

A further optimization is also possible for the Multi-
pass Depth-based Ray Marching. For example, the in-
tegration with the Hierarchical Z-buffer [Greene93] al-

gorithm instead of simple depth testing seems to be easy
to implement. We suspect that it could result in a sig-
nificant processing performance increase.

Finally, increasing the complexity of virtual scenes
which is now possible by using dynamic objects
in multiple rendering passes requires an additional
research concerning the level of detail management for
such a rendering pipeline.
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