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Abstract.
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the

Euler equations for the free rotation of a rigid body, are PT symmetric. The standard
and well-known real solutions to such dynamical systems constitute an infinitessimal
subclass of the full set of complex solutions. This paper examines a subset of the
complex solutions that contains the real solutions, namely, those having PT symmetry.
The condition of PT symmetry selects out complex solutions that are periodic.
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1. Introductory Description of Classical PT Symmetry

The differential equations that describe many classical dynamical systems are PT
symmetric; that is, these equations are invariant under combined space and time

reflection. The equation for the simple pendulum [1], the Korteweg-de Vries and

generalized Korteweg-de Vries equations [2], the Camassa-Holm equation [2, 3], the Sine-

Gordon equation [2], the Boussinesq equation [4], and the classical equations [5, 6, 7, 8]

associated with some non-Hermitian quantum-mechanical systems [9, 10, 11, 12] are all

PT -symmetric.

In this paper we focus on Euler’s differential equations, which govern the free three-

dimensional rotation of a rigid body about its center of mass. In dimensionless form

these equations may be written very simply as

L̇1 = L2L3, L̇2 = −2L1L3, L̇3 = L1L2. (1)
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The three-dimensional classical dynamical system described by the Euler equations has

been studied in detail, the critical points are known, the real solutions to these equations

have been found, and the structure of the phase-space trajectories is well understood

[13]. However, until now it has not been noticed that Euler’s equations, like the classical

differential equations mentioned above, are PT symmetric. This paper examines the

complex PT -symmetric solutions to this system of equations. It also explores this wider

class of solutions for some other PT-symmetric dynamical systems.

We begin by defining what is meant by PT symmetry for classical physical

systems. We say that a real differential equation that describes classical dynamics is PT
symmetric if it remains invariant under the combined operations of parity reflection P ,

which changes the sign of all spatial coordinates x, and time reversal T , which changes

the sign of the time coordinate t. Furthermore, since the operation of time reversal

in quantum mechanics is associated with complex conjugation, we include complex

conjugation in the time-reversal operation when the differential equation is complex.

Thus, under PT reflection we replace the dependent variable f(x, t) of a differential

equation by f ∗(−x,−t), where ∗ represents complex conjugation. If f ∗(−x,−t) satisfies

the same differential equation as f(x, t), then the differential equation is PT symmetric.

For the special case of Hamiltonian systems of ordinary differential equations, the

solutions x(t) = [x1(t), x2(t), x3(t), . . .] and p(t) = [p1(t), p2(t), p3(t), . . .] represent the

dynamical coordinate and momentum variables. Under PT reflection x(t) is replaced

by −x∗(−t) and p(t) is replaced by p∗(−t). For the Euler equations (1), the dependent

variables [L1(t), L2(t), L3(t)] represent the angular momentum n the rotating frame of

a rigid body and therefore these variables transform under PT reflection like spatial

coordinate variables: [L1(t), L2(t), L3(t)] → [−L∗1(−t),−L∗2(−t),−L∗3(−t)]. It is clear

from this definition that the Euler equations (1) are PT symmetric. (We treat time t

as a real parameter; the case of complex time is not considered in this paper.)

A solution x(t) to a system of dynamical differential equations is a trajectory in

coordinate space parameterized by time t. The PT reflection of this curve, represented

by −x∗(−t), is the mirror image of the original curve x(t) reflected through the

imaginary-x axis. A solution to a differential equation may or may not exhibit the

symmetries of the differential equation. An easy way to determine if the solution to a

PT -symmetric differential equation is itself PT symmetric is to draw the solution curve

and to see if the curve is symmetric with respect to the imaginary axis.

Example 1: Complex classical trajectories for the anharmonic oscillator. The one-dimensional
classical anharmonic oscillator Hamiltonian H = 1

2p
2 + x4 gives Hamilton’s equations

ẋ = p, ṗ = −4x3. (2)

This dynamical system is PT symmetric. There is one integral of the motion (the energy is
conserved), and thus the system can be reduced to a single first-order equation:

1
2 ẋ

2 + x4 = E, (3)

where the integration constant E may be complex. Note that even though (2) is PT symmetric,
its first integral (3) need not respect PT symmetry. However, requiring that (3) be PT symmetric
translates into the physical condition that E be real and allows us to interpret E as an energy.
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Figure 1. Classical PT -symmetric trajectories in the complex-x plane representing
the possible motions of a particle of energy 1. This motion is governed by the
anharmonic-oscillator Hamiltonian H = 1

2p
2 + x4. There is one real trajectory that

oscillates between the turning points at x = ±1 and an infinite family of nested complex
trajectories that enclose the real turning points but lie inside the imaginary turning
points at ±i. (The turning points are indicated by dots.) Two other trajectories begin
at the imaginary turning points and drift off to infinity along the imaginary-x axis.
Apart from the trajectories beginning at ±i, all trajectories are closed and periodic.
All closed orbits in this figure have the same period

√
π/2 Γ

(
1
4

)
/Γ
(

3
4

)
= 3.70815 . . ..

Suppose first that E is real and positive. We rescale t and x(t) so that E = 1, and the four
turning points in the complex-x plane are located at ±1 and ±i. The conventional real periodic
motion of the system is represented by a trajectory that lies on the real axis and oscillates between
the turning points at ±1 (see Fig. 1). However, this real solution to (3) is only one of an infinite
number of possible complex trajectories having the same energy. All but two of these trajectories
lie outside the real turning points and inside the complex turning points, as shown in Fig. 1, and
they are closed and periodic. The remaining two trajectories each begin at the turning points at
±i and run off to infinity in finite time along the imaginary axis. Note that all of these trajectories
are PT symmetric; that is, symmetric under reflections about the imaginary axis.

Next, suppose that E is complex. For this case the resulting trajectories are no longer PT
symmetric and are not closed and periodic. In Fig. 2 the trajectory for a particle whose energy is
E = 1 + i is plotted. The trajectory begins at x = 1 and does not close.

This anharmonic-oscillator example shows that the conventional real solutions to

the classical equations of motion (2) form a trivial lower-dimensional subset of the class

of complex PT -symmetric solutions shown in Fig. 1. The PT -symmetric solutions in

Fig. 1 in turn constitute a subset of the much larger class of all possible complex solutions

(see Fig. 2). However, in this paper we limit our attention to the PT -symmetric classical

solutions because these solutions have real energy.

The PT -symmetric solutions of the classical anharmonic oscillator are special

because they form closed and periodic orbits. Indeed, when the classical particles exhibit

PT -symmetric motion in the complex plane, they are bound in a complex classical atom

and cannot escape to infinity. (By the term complex atom we mean a localized space-

filling collection of closed and periodic orbits.) If one quantizes this classical system

using the Bohr-Sommerfeld quantization condition
∮
dx p =

(
n+ 1

2

)
π, one obtains the
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Figure 2. A single non-PT -symmetric classical trajectory in the complex-x plane for
a particle governed by the anharmonic-oscillator Hamiltonian H = 1

2p
2 + x4. This

trajectory begins at x = 1 and represents the complex path of a particle whose energy
E = 1 + i is complex. The trajectory is not periodic because it is not closed. The four
turning points are indicated by dots.

usual WKB approximation to the discrete energy levels of the quantum anharmonic

oscillator, independently of which closed classical orbit is chosen as the integration

path. (The Bohr-Sommerfeld quantization condition cannot be applied to the non-PT -

symmetric classical orbit in Fig. 2 because this orbit is not closed and periodic.) Since

it is the PT -symmetric classical orbits that give rise to the energies of the associated

quantum system, we regard the PT -symmetric orbits as physically relevant. Thus, the

correspondence principle establishes an association between the family of PT -symmetric

classical orbits and the quantum system.

The Bohr-Sommerfeld quantization condition requires that the classical orbit be

closed. Since the trajectory of a particle in the complex-x plane cannot cross itself,

the condition of PT symmetry is often strong enough to ensure that the trajectory is

closed. However, it is possible to have PT -symmetric trajectories that are not closed [7].

In such cases, the quantum Hamiltonian has complex eigenvalues and is said to have

a broken PT symmetry. It is possible (though quite rare) to have non-PT -symmetric

trajectories that are closed and periodic, as the following example shows.

Example 2: Closed and periodic trajectories that are not PT symmetric. The one-dimensional
classical harmonic oscillator Hamiltonian H = 1

2p
2 + 1

2x
2 has complex trajectories that are

periodic, but not PT symmetric. For this Hamiltonian the equations of motion are

ẋ = p, ṗ = −x. (4)

These equations are PT symmetric. There is one integral of the motion (the energy is conserved),
and thus this system can be reduced to the single first-order equation

ẋ2 + x2 = 2E2, (5)

where the energy E2 is a constant that may be real or complex. The general solution to (5) is
x(t) = E cos(t+A+ iB), where A and B are arbitrary real constants. If E is real, then

Rex(t) = E cos(t+A) cosh(B), Imx(t) = E sin(t+A) sinh(B). (6)
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Figure 3. Classical PT -symmetric trajectories in the complex-x plane for the
harmonic-oscillator Hamiltonian H = 1

2p
2 + 1

2x
2. These trajectories are the complex

paths x(t) = E cos(t+A+ iB) of a particle whose energy E2 is real. The trajectories
shown are a family of nested ellipses with foci located at the turning points denoted
by dots at x = ±E

√
2. We have chosen E to be real, so the turning points lie on the

real-x axis. (We could equally well have chosen E to be imaginary, and in this case the
turning points would lie on the imaginary axis.) The real line segment (a degenerate
ellipse) connecting the turning points is the conventional real periodic classical solution
to the harmonic oscillator. For E2 = 1 the elliptical trajectories are closed orbits, all
having the same period 2π.

Thus, the graph of the trajectory x(t) in the complex-x plane is the ellipse

[Rex(t)]2[E cosh(B)]−2 + [Imx(t)]2[E sinh(B)]−2 = 1 (7)

with semi-major and semi-minor axes |E cosh(B)| and |E sinh(B)|. Ellipses of the form in (7) are
shown in Fig. 3. These ellipses are PT symmetric; that is, they are symmetric with respect to
reflections about the imaginary axis. When E is real (imaginary), the turning points at ±E lie
on the real (imaginary) axis. If the energy E2 is complex, then the classical trajectories are no
longer PT symmetric, as we can see in Fig. 4. However, they are still closed and periodic.

The Lotka-Volterra equations provide a nice two-dimensional example of a PT -

symmetric dynamical system whose complex solutions are generally nonperiodic but

whose PT -symmetric complex solutions are periodic.

Example 3: PT -symmetric solutions to the Volterra equations: If we generalize slightly the
definition of P reflection to be P : (x, y)→ (y, x) [14], then the Lotka-Volterra equations

ẋ = x− xy, ẏ = −y + xy (8)

become PT symmetric. It is well known that the positive real solutions to these equations are
periodic they and provide a useful description of predator-prey population dynamics, where x(t)
represents the population of the prey species and y(t) represents the population of the predator
species. There is one constant of the motion for the Lotka-Volterra equations:

x+ y − log(xy) = C. (9)

For complex solutions C is generally a complex constant, but for PT -symmetric complex solutions
C must be real.
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Figure 4. Classical non-PT -symmetric trajectories in the complex-x plane for the
harmonic-oscillator Hamiltonian H = 1

2p
2 + 1

2x
2. These trajectories are complex paths

of the form x(t) = E cos(t + A + iB) for a particle whose energy E2 is complex. The
trajectories shown are not PT symmetric, but they are still closed and periodic. The
two turning points are indicated by dots.

Figure 5. Periodic PT -symmetric complex solutions to the Lotka-Volterra equations
(8). For the initial conditions x(0) = 1 + i and y(0) = 2.11221 − 0.403243i the
complex trajectories x(t) (left plot) and y(t) (right plot) are shown. Observe that
the trajectories are periodic and PT symmetric, where P reflection interchanges x and
y and T reflection consists of complex conjugation.

We first choose the set of initial conditions x(0) = 1 + i, y(0) = 2.11221− 0.403243i for which
C = 2 is real. The complex PT -symmetric solution, which is plotted in Fig. 5, is closed and
periodic. Next, we choose the set of initial conditions x(0) = 1 + i, y(0) = 1.09704 + 1.81173i
for which C = 1 + i is complex. The complex solution, which is plotted in Fig. 6, is not PT
symmetric and is not closed and periodic.

Non-Hermitian quantum-mechanical Hamiltonians having unbroken PT symmetry

are interesting because these operators have only real eigenvalues. Because of the

quantum-classical correspondence principle, some light might be shed on the meaning

of these quantum states by considering the PT -symmetric complex solutions of the

equations of classical mechanics. The first examples studied have been the PT -

symmetric complex solutions of the one-dimensional nonlinear oscillatorH = p2+x2(ix)ε

(ε ≥ 0) [9, 10, 11, 12]. The Hermitian quantum version of the Hamiltonian that describes

rigid body rotation was treated in the doctoral thesis of Casimir [15]. As far as we know,

the PT -symmetric quantum version of this problem has not yet been treated.
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Figure 6. Nonperiodic non-PT -symmetric complex solutions to the Lotka-Volterra
equations (8). For the initial conditions x(0) = 1 + i and y(0) = 1.09704 + 1.81173i
the complex trajectories x(t) (left plot) and y(t) (right plot) are clearly not periodic
and not PT symmetric. (The initial conditions are indicated by dots.)

This paper examines the complex PT -symmetric solutions to Euler’s differential

equations (1). In Sec. 2 the Euler equations (1) for free rigid-body rotation are derived

and their complex solutions are examined. Some concluding remarks are given in Sec. 3.

2. Complex Angular Momentum Dynamics

The complex body-angular-momentum solutions L(t) ∈ C3 satisfy Euler’s equations [16]

L̇ =
∂C

∂L
× ∂E

∂L
, (10)

where C and E are conserved quadratic functions defined by

C(L) = 1
2
L · L, E(L) = 1

2
L · I−1L. (11)

Here, I−1 = diag(I−1
1 , I−1

2 , I−1
3 ) is the inverse of the (real) moment-of-inertia tensor

in principal-axis coordinates. These equations are PT symmetric; they are invariant

under spatial reflections of the angular momentum components in the body P : L→ L

composed with time reversal T : L→ −L.

We now make the simplifying choice I−1 ≡ diag(1, 2, 3), which reduces (10) to

Euler’s dynamical equations in (1). Equation (1) may be written equivalently as

L̇ = L× KL with K ≡ diag(−1, 0, 1). (12)

Since L is complex, we set L = x + iy and obtain four conservation laws, the real

and imaginary parts of C(L) = 1
2
L · L and H(L) = 1

2
L · KL = E(L)− 2C(L), where

C(L) = 1
2
x · x− 1

2
y · y + ix · y, H(L) = 1

2
x ·Kx− 1

2
y ·Ky + ix ·Ky.(13)

The solutions to Euler’s equations that have been studied in the past are the real

solutions to (12), that is, the solutions for which y = 0. For this case the phase space

is three dimensional and the two conserved quantities are

C = 1
2

(
x2

1 + x2
2 + x2

3

)
, H = 1

2
x2

3 − 1
2
x2

1. (14)

If we take C = 1
2
, then the phase-space trajectories are constrained to a sphere of radius

1. There are six critical points located at (±1, 0, 0), (0,±1, 0), and (0, 0,±1). The
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Figure 7. Real phase-space trajectories for Euler’s equations (1). Choosing C = 1
2

in (14) limits these trajectories to the surface of a three-dimensional sphere of radius
1. The critical points lie at (±1, 0, 0), (0,±1, 0), and (0, 0,±1). The trajectories for
various values of H in (14) are shown.

trajectories for various values of H are shown in Fig. 7. These are the conventional

trajectories that are discussed in standard textbooks on dynamical systems [13]. (When

H = 0, the resulting equation is a first integral of the simple pendulum problem [1].)

Let us now examine the complex PT -symmetric solutions to Euler’s equations (12).

For this case phase space is six dimensional, which is difficult to visualize. However, the

requirement of PT symmetry implies that the constants of motion C and H in (13) are

real. The vanishing of the imaginary parts of C and H gives the two equations:

x · y = 0, x · Ky = 0. (15)

These two bilinear constraints may be used to eliminate the y terms in the complex

equations (12). When this elimination is performed one obtains the following real

equations for x on the PT constraint manifolds (15):

ẋ = x× Kx +M(x) x. (16)

Here, the scalar function M = PN/D, where the functions P , N , and D are given by

P (x) = 2x1x2x3, N(x) = x2
1 + x2

2 + x2
3 − 1,

D(x) =

∣∣∣∣Re

(
∂C

∂L
× ∂H

∂L

)∣∣∣∣2 = x2
1x

2
2 + x2

2x
2
3 + 4x2

1x
2
3. (17)

(This form may be helpful in thinking about the PT-symmetric quantum spin problem.)

The system (16) has nonzero divergence, so it cannot be Hamiltonian even though

it arises from constraining a Hamiltonian system. Nonetheless, the system has two
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Figure 8. Level surfaces in (x1, x2, x3) space for the two constants of the motion, A
and B in (19). The top row shows the level surfaces corresponding to A = −1, 0, and
1 and the bottom row shows the level surfaces for B = −1, 0, and 1.

additional real conservation laws, and it reduces to the integrable form

ẋ1 = x2x3

(
1 + 2x2

1N/D
)
, ẋ2 = −2x1x3

(
1− x2

2N/D
)
,

ẋ3 = x1x2

(
1 + 2x2

3N/D
)

(18)

on level sets of two conserved quantities:

A =
(N + 1)2N

D
, B =

x2
1 − x2

3

D

(
2x2

2x
2
3 + 4x2

1x
2
3 + x4

2 + 2x2
1x

2
2 − x2

2

)
. (19)

In Fig. 8 the level surfaces in (x1, x2, x3) space are displayed for three values of A and

for three values of B.

The PT -symmetric trajectories in (x1, x2, x3) space are characterized by the values

of A and B in (19) and these trajectories are precisely the intersections of the level

surfaces shown in the top and bottom rows of Fig. 8. For example, in Fig. 9 the level

surfaces corresponding to A = 1 and B = 0 are superposed. One can see that the

intersection of these surfaces is a pair of closed butterfly-shaped curves in (x1, x2, x3)

space. In Fig. 10 many such butterfly-shaped trajectories are shown, and all such

trajectories are closed and periodic. All of these trajectories lie outside a unit ball

centered at the origin.

In Fig. 11 we display the PT -symmetric trajectories that lie inside the unit ball

centered at the origin. All of these trajectories pass through the origin. However, these
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Figure 9. Superposition of two level surfaces in Fig. 8 corresponding to A = 1 and
B = 0. The trajectory, which is the intersection of these two level surfaces, is a closed
butterfly-shaped curve in (x1, x2, x3) space.

trajectories are periodic and do not stop at the origin. While one can see from (1) that

the origin is a critical point for real trajectories, it is clear from (17) and (18) that the

origin in (x1, x2, x3) space is not a critical point.

3. Conclusions

In this paper we have used the Euler equations for the free rotation of a rigid body

about its center of mass to illustrate the following picture: Given a real dynamical

system of differential equations, the real solutions form a tiny subset of the rich and

interesting class of complex solutions. If this system is PT symmetric, then some of

the complex solutions will themselves be PT symmetric. The PT -symmetric solutions

are characterized by having real constants of the motion, such as the energy, and thus

we view these solutions as being physical. The PT -symmetric trajectories are different

from the other complex trajectories in that they are closed and periodic. For example,

if we take the constants of the motion in (13) to be complex, H = 1 + i and C = 1 + i,

then we see in Fig. 12 that while the complex trajectories resemble the butterfly-shaped

orbits shown in Fig. 10, they are open rather than closed and periodic orbits. Our results

indicate that the following three statements are equivalent: (i) A complex rotating-rigid-

body solution is PT symmetric; (ii) its constants of motion are real; (iii) it is periodic

(except for possible heteroclinic cycles).

It is crucial that the trajectories of a classical dynamical system be multiply



Complexified Dynamical Systems 11

Figure 10. Closed and periodic butterfly-shaped trajectories plotted in (x1, x2, x3)
space. At the center of the figure there are no trajectories indicated. All curves shown
in this figure lie outside the unit ball centered at the origin. Trajectories on the unit
ball are shown in Fig. 7. The trajectories that lie inside the unit ball are shown in
Fig. 11. Trajectories outside the unit ball never cross to the interior of the unit ball.

periodic because only then do the methods of Bohr-Sommerfeld quantization apply. In

conventional quantum mechanics only the real phase-space trajectories are considered,

and these trajectories terminate at the turning points. On the other side of the turning

points is the so-called “classically-forbidden region.” We take a broader view and argue

that the set of all PT -symmetric classical orbits constitutes a complex atom. Any one

of these orbits can be used to determine the energy levels of the associated quantum

system because these orbits are closed and thus Cauchy’s theorem implies that the

energy levels so obtained will be unique. Furthermore, the reality of the energy levels,

which is a crucial property of a physical quantum system, is a consequence of the PT
symmetry of the underlying classical system.
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