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ABSTRACT
We propose a new 3D mesh segmentation method based on the HMRF-EM framework. The clustering method
relies on the curvature attribute and considers the spatial information encoded by the mutual influences of neighbor-
ing mesh elements. A region growing process is then carried out in order to extract connected regions followed by
a merging procedure. The purpose of this latter process is to only preserve meaningful regions. Experiments con-
ducted on different meshes are encouraging and show that the proposed method gives satisfying results compared
with classical statistical ones such as kmeans and EM algorithms.
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1 INTRODUCTION
3D mesh segmentation has been an important 3D
shape analysis topic, essential for a wide range of
applications such as part-based shape recognition
or retrieval, Sketch-based Shape Retrieval [Cha15],
texture mapping, reverse engineering applications that
deals with CAD models and component-shape based
synthesis that provides new models by combinations of
parts from existing models [Kal12].

3D mesh segmentation consists in partionning the mesh
into disjoint sub-meshes according to some specific cri-
teria. Many segmentation algorithms have been pro-
posed in the litterature. They could be classified into
part-type ones that decomposes the mesh into semantic
and meaningful part and patch-type ones based on the
mesh geometry attributes such as curvatures, convexity,
roughness, etc.

Many 3D mesh segmentation methods have been pro-
posed such as clustering ones, region-growing ones
and spectral methods [Sha08]. In this work we fo-
cus on clustering methods that aim to associate an ap-
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propriate cluster label to each mesh element accord-
ing to some attribute values. Most of them are 3D
extensions of well known 2D classification algorithms
[Sha08, Lav08, Tsu14]. Curvature based descriptors
are widely used attribute since curvature is a very sig-
nificant criterion that describes the shape structure vari-
ation. However, clustering methods based on curvature
attribute generate many isolated fragments as curvature
is very sensitive to noise. So a post-treatment step is
always needed to deal with such problem.
In [Lav08], a clustering method based on the Markov
Random Fields (MRF) schema has been proposed. Au-
thors initialise their proposed method by a K-means al-
gorithm, the resulting labeled mesh is then median fil-
tered and used for the prior and observation parameters
estimation. The simulated annealing is subsequently
applied for the resolution of the maximun a posteri-
ori estimate (MAP) which is known to be a very time
consuming algorithm. It’s important to notice that few
work dealt with the MRF extension to 3D mesh pro-
cessing [And07, Wil04, Lav08].
In this work, we propose a new 3D mesh segmenta-
tion method based on the HMRF-EM clustering frame-
work [Zan01]. This framework incorporates the HMRF
model with the Estimation-Maximization (EM) algo-
rithm. Unlike [Lav08], the iterated conditional mode
is adopted for the optimization step that seeks the MAP
estimate and for the prior model estimation an adap-
tive weighted cost function is also defined based on
the dihedral angles of neighboring faces. This method
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takes into account both spatial and attribute information
which yields to be robust to noisy data. In fact, the mesh
geometry is encoded through the mutual influences of
their neighboring sites. A post treatment based on a
region growing method is then carried out in order to
generate only connected components.

This reminder of the paper is organised as follows : in
section 2, we describe the proposed method overview
while section 3 details the HMRF-EM framework
adapted for the 3D mesh dual graph. Section 4 deals
with the post treatment that aims to extract connected
regions from the resulting labled mesh. Finaly, some
experiments and results on different meshes are shown
in section 5.

2 METHOD OVERVIEW
Figure 1 shows the main steps of the proposed mesh
segmentation method. First, the curvature attribute of
the input triangular mesh, denoted by M (V,F) where
V is the set of vertices and F the set of triangles, is com-
puted. Then, we carry out a facet-based clustering algo-
rithm that combines HMRF model with EM algorithm.
To deal with facet-based clustering we consider the dual
graph M ∗ of M that is defined as follows : Each vertex
of the dual graph corresponds to a triangle of M and
two vertices of M ∗ are neighbors if and only if their
corresponding triangles in M share an edge. The cur-
vature attribute associated to each facet gravity center is
the mean curvature values computed on their vertices.
It’s important to notice that the proposed method could
deal with many others attributes rather than curvature
ones. Finally a connected region extraction step is per-
formed in order to eliminate isolated parts.

3 THE HMRF-EM FRAMEWORK
3.1 Neighborhood and contextual rela-

tionship
In this work, we deal with the irrugular dual graph
M ∗(V∗,E∗) and we consider V∗ as the set of sites de-
noted S. The MRF theory assumes that the sites are re-
lated to each other via a neighborhood system defined
as Ns = {t ∈ S, t 6= s et s ∈Nt}
In addition, a clique system is defined on S describ-
ing the configuration of all mutually neighboring sites
or the site itself. In this work, we consider single-site
clique and pair-site clique denoted respectively by C1
and C2 (see figure 2).

3.2 The Hidden Markov Random Field
Let X = {Xs;s ∈ S} and Y = {Ys;s ∈ S} be two random
fields corresponding respectively to labels and observa-
tions. The label field takes values in a discrete set L and
the observation one in D.

Figure 1: Method overview.

Figure 2: clique system.

In the segmentation context, we aim to estimate x a con-
figuration of X based only on an observation y of Y . The
underlying field X is non-observable, therefore the ap-
propriate model is the Hidden Markov Random Field
(HMRF).

A random field X is called a MRF on S with respect
to the neighborhood system N if and only if P(x) > 0
and P(xs|xS−{s}) = P(xs|xNs), where Ns is the neigh-
borhood of the site s. This last property expresses the
behavior of the random variable on a site is determined
by the neighboring random variables realisation and we
can model practically all random variables whose mu-
tual interdependence is resulting only from the combi-
nation of local interactions.

The Hammersley-Clifford’s theorem [Bes74] estab-
lishes equivalence between MRF and Gibbs field. The
distribution of X is given then by :

P(x) =
1
Z

exp(
−U(x)

T
) (1)
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Where Z is the normalizing constant and U(x) the en-
ergy function which is the sum of clique potentials
Uc(x) over all possible cliques C:

U(x) = ∑
c∈C

Uc(x) (2)

The energy U could be written as follows:

U(xi = `|xNi) = ∑
j∈Ni

φi, jδ (xi,x j) (3)

Where δ (i, j) =
{
−1 i f i = j
1 else

and φi, j =
∥∥ei j

∥∥∣∣αi j
∣∣

Where
∥∥ei j

∥∥ is the length of the shared edge and
∣∣αi j

∣∣
is the absolute of the angle between the normals of the
two faces sharing an edge (figure 3) :

αi, j = arccos
nv1v2v3 ·nv2v4v3∥∥nv1v2v3

∥∥∥∥nv2v4v3

∥∥ (4)

Where nv1v2v3 et nv2v4v3 are the normals of the two faces
and · is the scalar product of vectors. The normal nv1v2v3
is given by :

nv1v2v3 =
(v2− v1)× (v3− v1)

‖(v2− v1)× (v3− v1)‖
(5)

Where × is the vector product of two vectors.

Figure 3: Dihedral angle: angle between the normals.

In a Bayesian context, we seek the solution of the max-
imum a posteriori expressing the most probable realiza-
tion of the hidden variables given the observed one,

P(x|y) = P(x)P(y|x)
P(y)

(6)

Assuming that {ys}s∈S are conditionally independent

P(Y = y|X = x) = ∏
s

P(Ys = ys|Xs = xs) (7)

The a posteriori probability became a function of the so
called a posteriori energy

P(X = x|Y = y)∝ exp(LogP(Y |X)−U(x))∝ exp(U(x|y))
(8)

Where

U(x|y) = ∑
s∈S
−LogP(ys|xs)+ ∑

c∈C
Uc(x) (9)

And the maximum a posteriori estimator giving the la-
beling x̂ is equivalent to

x̂MAP = argminx(U(x|y)) (10)

The observation model is a multi-variate Gaussian one.
In this work, we consider a 2 dimensional observation
(maximum and minimun curvature). Thus the a poste-
riori energy is given by :

U(x|y) = ∑s∈S(− 1
2 (ys−µxs)

T Σ−1(ys−µxs)+Log(2π |Σxs |
1/2))

+β ∑(s,t)∈C2
φs,tδ (xs,xt)

(11)

where µxs and Σxs are, respectively, the mean vector and
the covariance matrix of class xs.

To find the classification map x̂ by the maximum a
posteriori estimator corresponding to a minimization
of the energy function U(X |Y ), a global optimization
algorithm can be used such as simulated annealing.
This algorithm was initiated by Kirkpatrick [Kir84] and
adopted by Geman and Geman [Gem84] in the image
processing context. The simulated annealing aims to
find the global minimum of the energy that may have
several local minimum. With analogy to thermodynam-
ics, this algorithm incorporates a decreasing tempera-
ture parameter into the minimization procedure. For
each temperature, it iteratively updates the energy func-
tion that will be accepted or rejected according to its
probability which depends on the temperature param-
eter. This process is repeated until equilibrium state
is reached. The simulated annealing algorithm ensures
convergence to a global minimum energy but generates
a large number of configurations as the temperature de-
creases which makes it a very time consuming algo-
rithm. To overcome this disadvantage, we often use
local algorithms such as the iterated conditional modes
(ICM). This algorithm was proposed by Besag [Bes86],
its principle is to iteratively update the sites labels based
on the observation y and the current neighbors configu-
ration of the each site. The new value x̂s is obtained by
maximizing the local probability P(xs|xNs ,y).

Since we are in a parametric context, an estimation of
the Gaussian distribution parameters is required. In this
work, we use an unsupervised algorithm of the maxi-
mum likelihood, the Expectation- Maximization (EM)
algorithm.
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3.3 The HMRF-EM algorithm
The combination of the ICM algorithm aiming to es-
timate the MAP resulting from the MRF theory and
the EM algorithm gives an iterative algorithm called
HMRF-EM and it can be resumed as follows:

In an iteration t:

• estimation of x̂ by ICM

• estimation of θ`(µ`,Σ`)

µ̂
(t)
` =

∑i∈S P(t)(`|yi)yi

∑i∈S P(t)(`|yi)
(12)

Σ̂
(t)
` =

∑i∈S P(t)(`|yi)(yi− µ̂
(t)
` )T (yi− µ̂

(t)
` )

∑i∈S P(t)(`|yi)
(13)

where

P(t)(`|yi) =
P(t)(yi|x`,θ`)P(t)(`|x̂Ni)

P(yi)
(14)

The spatial information is encoded in the prior distribu-
tion P(t)(`|x̂Ni) given by :

P(`|x̂Ni) =
exp(−U(`|Vi))

∑ξ∈L exp(−U(ξ |Vi))
(15)

4 CONNECTED REGION EXTRAC-
TION

Once faces have been classified, a labeling operation is
performed in order to extract connected significant re-
gions. This procedure consists of a region growing step
that produces a large set of connected regions which
will be reduced with the following merging step (fig-
ure 4). In fact this latter one aims to merge similar
neighbor regions according to a region distance mea-
sure [Lav05, Lav04]. In what follows, we briefly de-
scribe the region growing-region merging procedure.

Figure 4: The region growing-merging process.

4.1 Region growing
Starting from seed triangles corresponding to faces
which its neighbors belong to the same cluster, we
iteratively expand the regions with new labels (each
identified seed triangle is considered as a new region).
Each triangle Ti that it is not yet labeled and has
the same cluster as the seed triangle of the region

that aggregate its neighbors joins this latter region.
The growing step normally leads to holes between
the identified connected regions (the triangles in the
boundary of two regions are not labeled). In order to
fulfill those holes, we assign a not labeled triangle to
the most represented region in its neighbors and we
repeat this process until every triangle is labeled. This
step is called crack filling.

4.2 Region merging
The number of connected region produced by the grow-
ing step depends on the number of the clusters from the
faces classification performed by the HMRF-EM algo-
rithm. Generally, numerous small regions are identified
and need to be merged with similar ones in order to have
significant areas and for that a region adjacency graph
(RAG) is used. The nodes on this graph represent the
connected regions and the edges represent an adjacency
between two regions. Edges are weighted with a simi-
larity distance between the two corresponding regions.
The region distance measure Di j between two adjacent
regions Ri and R j is given by:

Di, j = DCi j×Ni j×Si j (16)

Where DCi j is the curvature distance between Ri and R j
and equal to

∥∥Ci−Ci j
∥∥+∥∥C j−Ci j

∥∥, Ci and C j are re-
spectively the curvature values of Ri and R j correspond-
ing to the mean of the faces curvature of each region,
and Ci j is the mean curvature of vertices on the bound-
ary between Ri and R j. The Ni j coefficient measures the
nesting between the two corresponding regions which
describes the spatial disposition of the regions and the
Si j coefficient allows to accelerate the merging of the
smallest regions.
The processing of the graph reduction is as follows: at
each iteration, the edge that has the smallest weight
is eliminated and hence the corresponding regions are
merged. Since the regions number is decreased by one,
the graph is then updated and the process is repeated un-
til the weight of the smallest edge is larger than a given
threshold or a fixed number of regions is reached.

5 EXPERIMENTAL RESULTS
In figure 5, we compare our segmentation method with
the Kmeans and EM clustering algorithm using 4 ob-
jects. In this experiment we set the number of clus-
ters to 2 for the octopus and the dinosaur objects and
to 4 for the vase and the eyeglass objects. Similar re-
sults are obtained for the octopus object identifying 9
regions (the head and the 8 arms). For the vase object
the kmeans algorithm seems to provide finer decompo-
sition than the EM and the HMRF-EM algorithm. In
fact it allows to distinguish 6 regions rather than 3. We
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can note that both partitions (3 or 6 region decomposi-
tion) correspond to meaningful parts of the object. Con-
sidering the eyeglass object, our method overperforms
the kmeans and the EM algorithm since it enables to
extract the two temples and the frame. In the case of
the dinosaur object, the head was extracted only by the
HMRF-EM method.

In order to show the efficiency of the proposed method
for meshes that presents different curvature variations,
we conducted experiments for 6 models (see figure 6).
Our method provides good results for objects present-
ing low and medium curvature changes (first row in Fig-
ure 6). It generates non meaningful regions otherwise.
In table 1, we measured the computational time for
meshes presented in figure 6. The most time consum-
ing step of the HMRF-EM algorithm is the classifica-
tion step by the ICM algorithm where the prior energy
is computed using neighboring triangles. Its complex-
ity is equal to O(`×K×N) = O(N), with ` is the upper
bounds of the iterations number, K is the clusters num-
ber and N is the triangles number. Thus the complexity
of the HMRF-EM algorithm is linearly dependent of
the triangles number to be classified. As we can clearly
notice in the table 1, for too dense meshes, the com-
putation time is much higher than the one for simple
meshes. The HMRF-EM algorithm was implemented
with MATLAB. All experiments were performed on a
PC with an Intel Core i7, CPU 2.5GHz and 8GB RAM.

3D Model N K Processing time(s)
Mushroom 448 8 3.87
Octopus 2682 4 11.24
Bearing 7227 7 54.11
Fish 15142 4 71.31
Cup 30254 6 227.35
Bust 50456 10 645.25

Table 1: The computing time for different meshes

6 CONCLUSION
In this paper, a new 3D mesh segmentation based on the
HMRF-EM framework has been proposed. The markov
random field modelization is combined with the EM al-
gorithm for parameters estimation. The definition of the
prior model for this extended algorithm is based on di-
hedral angles which favorise the grouping of triangles
having similar curvature values. After this clustering
step, a region growing-merging process is applied in or-
der to extract connected regions. Results show the effi-
ciency of this extended framework. In a future work, we
propose to use different type of attributes such as local
mesh descriptors to improve segmentation results for
more complex objects. In particular we aim to consider
the 3D spectral information where the low frequencies
correspond to the global shape while the hight frequen-
cies contribute to the geometric details.

7 REFERENCES

[And07] Andersen, V. Smoothing 3D Meshes using
Markov Random Fields. Master’s thesis, IT Uni-
versity of Copenhagen, 2007.

[Bes74] Besag, J. Spatial interaction and the statistical
analysis of lattice systems. Journal of the Royal
Statistical Society. Series B (Methodological),
vol. 36, No. 2, pp. 192-236, 1974.

[Bes86] Besag, J. On the statistical analysis of dirty
pictures. Journal of the Royal Statistical Society,
vol. 48, No. 3, pp. 259-302, 1986.

[Cha15] Changqing, Z., and Zhe, H., and Rynson,
W., H., L., and Jianzhuang, L., and Hongbo, F.
Sketch-based Shape Retrieval using Pyramid-of-
Parts. CoRR abs/1502.04232,2015.

[Gem84] Geman, S., and Geman, D. Stochastic re-
laxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, PAMI
vol. 6, No. 6, pp. 721-741, 1984.

[Kal12] Kalogerakis, E., and Chaudhuri, S., and
Koller, D., and Koltun, V. A Probabilistic Model
for Component-based Shape Synthesis. ACM
Trans. Graph., vol.31, No.4, pp.55:1-55:11, 2012.

[Kir84] Kirkpatrick, S. Optimization by simulated an-
nealing : Quantitative studies. Journal of Statisti-
cal Physics, vol. 34, No. 5-6, pp. 975-986, 1984.
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Figure 5: (a) K-Means and region growing, (b) the 2-dimensionnal EM and region growing, (c) the HMRF-EM
and region growing.
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Figure 6: Segmentation results for objects with different curvature variations.
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