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ABSTRACT
Nowadays, users interact with applications in constantly changing environments. The plethora of I/O modalities is
beneficial for a wide range of application areas such as virtual reality, cloud-based software, or scientific visualization.
These areas require interfaces based not only on the traditional mouse and keyboard but also on gestures, speech, or
highly-specialized and environment-dependent equipment.
We introduce a hypergraph-based interaction model and its implementation as a distributed system, called Mor-
phableUI. Its primary focus is to deliver a user- and developer-friendly way to establish dynamic connections
between applications and interaction devices. We present an easy-to-use API for developers and a mobile frontend
for users to set up their preferred interfaces.
During runtime, MorphableUI transports interaction data between devices and applications. As one of the novelties,
the system supports I/O transfer functions by automatically splitting, merging, and casting inputs from different
modalities. MorphableUI emphasizes rapid prototyping and, e.g., facilitates the execution of user studies due to
easy UI reconfiguration and device exchangeability.

Keywords
Dynamic interfaces; scenario-dependent interaction; rapid prototyping.

1 INTRODUCTION
Present-day technologies allow applications to run in
heterogeneous and changing environments. Different en-
vironments provide users with different input and output
devices. Even in the same environment, users typically
have different needs and preferences with respect to
such interaction devices. This wanted flexibility creates
a demand for user interfaces that are adaptable to chang-
ing environments and user preferences by spanning the
plethora of contemporary I/O modalities and devices.
However, the engineering workload involved in making
applications fully adaptable in this sense is very high,
and, as a result, applications nowadays often support
only a limited number of devices.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

Consider the following use-case: A group of experts
wants to perform a deep brain stimulation on a patient.
This kind of brain surgery requires various medical
datasets to be explored in advance as well as being
monitored during the process. Further assume that a
3D visualization application that is able to handle those
datasets is available. In the preparation stage, the experts
review the dataset at the office. The interaction setup
involves well-known devices such as mouse and key-
board, and the dataset is displayed on a monitor. Later,
the experts meet in the conference room and review the
surgery roadmap on a large display wall while stand-
ing in front of it. The interaction is done via gestures,
speech, and personal mobile devices. During the surgery,
the doctor relies on a big touchscreen to monitor the pro-
cess and change parameters on the fly via touch-based or
Leap-Motion-captured gestures. The latter is a benefit in
aseptic environments where touching should be avoided
or is not possible.

The scenario above outlines three different environments
and workflows based on the same application but with
different interaction requirements. One way to tackle
this issue is to add support for various devices to the
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Figure 1: MorphableUI guides users through the UI configuration process by proposing UIs learned from previous
decisions and assists with manual UI configuration. During runtime, the system dynamically connects the associated
application, devices and interaction data streams over a network.

application itself and extend that range when needed.
When new types of devices are introduced within the
field of an application, the latter must be modified in
order to accommodate these new interaction possibili-
ties. In contrast to this approach, we propose a model
that allows for dynamically connecting applications and
devices in a way that makes user interfaces adaptable
to changing environments and user preferences. This
method helps developers avoid having to adapt their ap-
plication to various types of devices and enhances rapid
prototyping possibilities. Users are given the freedom
to control applications in the way that best suits their
needs by making use of any device that is available in
their environment.

In addition, we present an implementation of the pro-
posed model. The implementation provides a uniform,
easy-to-use API for arbitrary devices and applications
and exposes a service that allows users and developers
to configure and dynamically change their interfaces.
We demonstrate the service’s capabilities by a mobile
application suitable for rapid and easy reconfiguration
of user environments.

2 RELATED WORK

To solve the outlined issues, two major tasks need to be
addressed. First, a way to abstract from actual devices,
manufacturers, and even modalities to cover all avail-
able interaction possibilities is required. Future devices
should also be captured by the developed abstraction.
Second, one needs a way to dynamically set up and mod-
ify interfaces by taking into account the environment
and user preferences. A number of different approaches,
especially to the first task, have been presented in the
past. Our work builds on these achievements and estab-
lishes an interaction environment that includes device
and application classification, UI generation, and I/O
data streaming.

2.1 I/O Abstraction
I/O hardware abstraction layers hide the details of the un-
derlying hardware. They are often used in VR/AR/MR
environments where one has to deal with various kinds
of often highly specialized I/O equipment such as mo-
tion tracking or 6 degree-of-freedom (6 DOF) devices.
One example of the latter is the Control Action Table
(CAT) [13]. It combines both 3D and 2D interaction
techniques and extends the UI design space. Another
option is to combine the CAT with other devices such
as HMDs or the sensors of a smartphone. In the case
of 6 DOF controls, one should also pay attention to
the human ability to coordinate movements [27]. One
well-established approach to wiring input devices and
applications that is used in a number of VR environ-
ments is the VRPN [25] system. Apart from introducing
abstract classes such as joysticks, VRPN streams the de-
vice input data over the network, allowing, for example,
distributed applications and scenarios.

As opposed to the broad hierarchy of VRPN, the ab-
straction layer of DEVAL [22] establishes a deep hier-
archy that puts more emphasis on the exchangeability
of devices. Both approaches are based on abstracting
from concrete devices and introducing hardware or de-
vice classes. These approaches have limitations when
it comes to multimodal exchangeability of interaction
techniques. In contrast, DEMIS [15] relies on events.
It also accounts for multi-level composite events and is
placed between the operating system and an application.

Frameworks such as emphMidas [24] focus on multi-
touch and further enhance the I/O abstraction. In terms
of distributed output and cross-device interaction, Poly-
Chrome [1] can be used to seamlessly connect multiple
devices for collaborative, web-based visualizations. Sys-
tems that want to support multi-device interaction can
benefit from the Device Indepentent Architecture [5].
Similar to our system, the authors propose to decouple
devices from applications in order to adapt to the given
environment. The work around the Virtual Interactive
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Namespace (VINS) [26] provides a distributed memory
space that permits the reuse and exchange of various
interactive techniques, which also enhances the devel-
opment of reusable interaction components. Another
library that supports designers and researchers with re-
gard to the development of novel interaction techniques
is Squidy [18]. It unifies various device drivers, frame-
works, and tracking toolkits and exposes a visual design
environment to increase the overall ease of use.

In order to establish our interaction event types, we
have chosen the contributions of Card et al. [4] and
Mackinlay et al. [19] as our starting point. Their work in
this area focuses on the design space for input devices.
One key idea is to split a device into a set of atomic
capabilities, e.g., a mouse wheel and mouse buttons and
the movement sensor in the case of a mouse. These
capabilities are captured by a taxonomy consisting of
classes such as 1D-3D motion or rotation. Hence, mouse
movement would be classified as 2D motion on the x-
and y-axes. In contrast to that rather mechanical point
of view, the work of Javob et al. [14] focuses more on
the perceptual structures of interaction tasks.

There is also work on other taxonomies dealing with
less traditional I/O techniques. For example, one might
consider gesture recognition. Here, Proton [17] pro-
poses a regular expression-based classification of touch
input. The work of Nebelig et al. [21] evaluates user-
defined Kinect gestures and speech commands for the
interaction with a wall-projected web browser. For mo-
bile devices, user-defined gestures are composed into a
motion gesture taxonomy of Ruiz et al. [23]. Widgets
are another important approach to generating user in-
put. One example of widget classification with a focus
on 3D tasks can be found in the work of Dachselt and
Hübner [6].

We do not merely aim to classify devices but also to
establish exchangeable connections to applications. For
that reason, one has to deal with the application side
of the interaction pipeline as well. Applications can
have a variety of interaction tasks to be performed. The
following six tasks, mainly suited for 2D, were proposed
by Foley [9]: select, position, orient, path, quantify, and
text. For 3D interaction, five basic interaction tasks were
introduced and refined by Bowman [2, 3]: navigation,
selection, manipulation, system control, and symbolic
input.

2.2 UI Adaptation
Our scenario involves varying environments, tasks, and
user preferences. The task of adapting a user interface
to such constraints can be tackled in multiple ways. For
instance, users can assign the output of directly con-
nected devices to application functions with the visual
editor ICON [7]. To a limited degree, input transfor-
mation is possible as well, but requires a skilled user
to perform the configuration. SUPPLE [10] formalizes
the UI configuration problem and focuses on the graph-
ical aspect of automated UI generation. Its successor,

SUPPLE++ [11], adds support for physically disabled
users by including user models. Kim et. al [16] in-
troduce interaction layering and abstraction based on
device capabilities to overcome the issue with different
interaction environments. UI adaptation also plays an im-
portant role in the automotive industry, driven especially
by the amount of external infotainment possibilities as
discussed in [20].

3 MORPHABLEUI
We start off with outlining an abstract model for UIs and
user interaction in general. We enhance the construct by
enabling dynamic transformation of interaction events
via the split, merge, and cast operators. Based on that
model, we describe our novel approach of generating
admissible UIs using a hypergraph-based algorithm. We
conclude by presenting an implementation of these con-
cepts and offering a user- and developer-friendly way to
establish dynamic connections between arbitrary appli-
cations and interaction devices.

3.1 Model
3.1.1 Events, Capabilities, and Requirements
Different interaction devices can be used to perform
the same user task. In our medical example, the visual-
ization application allows users to move, i.e., pan, the
dataset, which can be achieved by moving the mouse and
also by swiping over a smartphone touchscreen. From
a more abstract point of view, what the mouse and the
smartphone provide is the ability to generate interaction
events of a specific type that are sent to and interpreted
by the application. Both devices generate the same type
of interaction event, precisely, a two-dimensional motion
event. Because the mouse and the smartphone provide
the means of generating interaction events of the same
type, they can be exchanged with respect to the task to
be performed.
The device characteristics or capabilities describe the
type of generated or processed interaction events. In-
put capabilities generate interaction events triggered by
the user, whereas output capabilities process interaction
events received from the application such as video out-
put. Note that some devices, e.g., smartphones, have
input as well as output capabilities.
The capability classification includes low-level types
of interaction events, e.g., Firing Event or 2D
Position, as well as higher-level types such as 3D
Manipulation. An example classification illustrat-
ing both input and output capabilities of a smartphone is

Capability Interaction event type
Pinch gesture Zoom Event
Gyroscope 3D Rotation
Slider widget 1D Motion
Touchscreen position 2D Position
Touchscreen display Video
Voice recognition Text

Table 1: Excerpt of the capabilities of a smartphone.
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Figure 2: By introducing requirements and capabilities,
the basic model decouples applications from devices.
Both sides are associated with the corresponding inter-
action event types. In this example, moving the mouse
can be used to pan the dataset. Since the swipe gesture
is associated with the same interaction event type, these
two interaction techniques can be exchanged.

d-pad

rotate
stickrotate 

dataset  

2D Motion

1D Rotation

cast

merge
2D Rotation
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event type devicecap.req.app
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Figure 3: Adding the novel split, merge, and cast opera-
tors allows the transformation of generated interaction
events and combination of different devices to perform
a task. Hence, rotating the dataset can be achieved by a
combination of the directional pad (d-pad) of a gamepad
and the stick rotation of a joystick.

given in Table 1. A Zoom Event can also be regarded
as an event of type 1D Motion. However, the pinch
gesture capability of a smartphone is tailored to accom-
plish the very specific task of zooming in or out, which is
why we associate it with that higher-level event type. As
explained in the next section, such a fuzzy specification
is not an issue since event types can be transformed into
other types if certain criteria are met.

Analogous to capabilities of devices, applications have
requirements for specific user tasks. Each one is tied to
an event type. Viewing devices and applications in this
way allows the exchange of devices if their capabilities
cover the requirements of the application as shown in
Figure 2. We call an admissible connection between
a capability and a requirement a wiring. Since an ap-
plication usually consists of multiple requirements, the
complete user interface can be formally defined as a set
of wirings.

Another aspect to be mentioned regarding the user ex-
perience is the I/O data sensitivity and range. These
additional properties can be provided on both the appli-
cation and device sides to enable automated unification
inside the framework that internally uses a unit hyper-
cube, which often results in improved interaction com-
pared to raw input that might differ significantly across
devices.

3.1.2 Dynamic Event Modification

In addition to panning, we now want to rotate our dataset,
which requires a 3D Rotation event. One might use
a gyroscope in a smartphone to generate the necessary

input. However, one also could combine, i.e., merge, dif-
ferent lower-dimensional input capabilities. Hence, the
definition of a wiring must be extended to also include
connections between one requirement and multiple ca-
pabilities. The latter have to generate interaction events
that can be transformed to yield a single event matching
the application requirement.

We suggest three types of operations on interaction
events that allow such transformations: cast, split, and
merge. The cast operator transforms the semantics of
an interaction event if possible. In the case of a Zoom
Event, one is able to cast it to 1D Motion. The split
operator splits one event into multiple, in most cases
lower-dimensional, events. Hence, a 3D gyro sensor
can be used for panning a picture in 2D by splitting the
underlying 3D Motion capability into 1D Motion
and 2D Motion. The merge operator is its inverse
and merges multiple interaction events into one. An ex-
ample transformation pipeline for the 3D Rotation
requirement is depicted in Figure 3.

3.2 Graph
Being able to transform device I/O according to the three
introduced operators clearly enhances the UI design
space. This section tackles the issue of computing such
wirings. First, a number of different representations for
the interaction event types and their interconnection are
discussed. Second, we present an iterative algorithm that
proposes admissible wirings for a given requirement.

Taking interaction events as input, the operators execute
a certain transfer function and return the corresponding
interaction event (or events, in the case of a split opera-
tion) as a result. From the point of view of an interaction
event, operators are perceived as incoming, if that event
is the result, or outgoing, if that event is the input.

One way to project this model onto a data structure is
to use trees with the event types as vertices and opera-
tors as edges. Another approach is to use context-free
grammars with event types as symbols and operators
as production trees. Intuitively, both approaches share
the same computational logic: one starts at the type of
the application requirement and examines all possible
decompositions. At this point, two major drawbacks can
already be observed. First, both representations contain
duplicates of event types since each one can have mul-
tiple outgoing and incoming operators. As a result, the
representation is difficult to maintain since one has to
care about all production rules or trees if a type or oper-
ator is added or removed. Second, the need to account
for all possible decompositions leads to an exponential
runtime of the algorithm, which is a problem in cases
with a mentionable number of devices and operators.

We design a hypergraph with event types as vertices and
operators as hyperedges. Informally, this generalized
graph form is needed because the split and merge opera-
tors represent a 1-to-N connection and involve more than
two vertices. Hyperedges allow N-to-M connections and
are a feasible data structure for our task. One additional
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Figure 4: A subset of the established hypergraph. Event types are captured as vertices whereas hyperedges represent
the operators. To maintain clarity, a number of edges and vertices are omitted. The proposed iterative algorithm
uses device tokens that traverse the hypergraph until the requirement vertex is reached. The result is a subgraph
representing the wiring between device capabilities and a requirement. One example of a wiring is highlighted.

concept based on the work in [12] is utilized, the so-
called backward and forward arcs. Both are special
types of directed hyperedges, either 1-to-N (forward) or
N-to-1 (backward). Hence, a forward arc precisely ex-
presses the layout of the split operator, and a backward
arc represents a merge operation. Thus, the task of com-
puting admissible UIs can be completed by computing
a sub-graph connecting the vertex associated with the
application requirement to one or more vertices repre-
senting device capabilities as depicted in Figure 4.
Note that the length of a path between two vertices di-
rectly corresponds to the resulting transfer function ap-
plied on the I/O data. Thus, a large distance, i.e., a large
number of required operators, corresponds to a less di-
rect mapping. The distance aligns with one’s intuition
since using three 1D Motion events to accomplish
a 3D Motion task is less direct than using a single
3D Motion event. Based on that property, an itera-
tive algorithm that presents possible wirings ordered
by ascending distance between requirement and device
capabilities is beneficial. Hence, a user would first re-
ceive a number of adjacent solutions and demand further
solutions if needed.
Our key idea is to use tokens commonly known from
Petri Nets. Each token represents a device and is initially
placed at the corresponding vertex. For example, a to-
ken for the swipe gesture will start in the 2D Motion
vertex. Tokens can be moved over edges to adjacent
vertices if the traversal requirements outlined in Table 2
are met.
Possible traversals are executed sequentially, ordered by
their cost. Similar to Dijkstra’s shortest path algorithm,
the cheapest traversal is estimated by computing the
distance we already traveled as formalized in Table 2.
The approach is summarized in Algorithm 1. Tokens
arriving at the vertex corresponding to the requirement
carry a valid wiring since the token history stores the
sequence of executed traversals. In this way, solutions

are presented to the user step by step. Again, later pro-
posals indicate a less direct transfer function is needed
to transform the I/O data required by the application. To
sum up, the main advantages of the presented approach
include the iterative solution generation, the in-place
search with a data structure without duplicated event
types, and the amortized polynomial time and space of
the algorithm.
Finally, we establish a way to validate external, e.g.,
handcrafted, assignments of device capabilities for a re-
quirement. For this purpose, the same algorithm can be
employed. The corresponding device capability tokens
are inserted, and the algorithm executed until a solution
is found, no further traversals can be executed, or a step
limit is reached. If the algorithm finds a solution, the de-
manded mapping is admissible, and the wiring including
the required operator chain is returned. Note that this
procedure allows for black box proposals consisting of
the endpoints—requirement and capabilities—without
the need to provide the complete operator sequence.

3.3 Implementation of MorphableUI
We addressed the distributed multi-device design issue
by developing an interaction model and a corresponding
algorithm that computes admissible wirings for given
application requirements. In the following, we demon-
strate our implementation of MorphableUI to prove the
established concepts. We introduce three main compo-
nents: Gates that serve as entry points for application
and device developers. A server that maintains the in-
teraction topology and provides external services, and
the MasterUI, a mobile frontend that builds on such a
service and allows users to select and configure UIs.

3.3.1 Gates
A MorphableUI gate is a C-library that allows users to
plug applications and devices into the interaction topol-
ogy spanned by our framework. The gate component
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Algorithm 1 Iterative computation of admissible
wirings. The algorithm returns tokens that arrive at
the requirement vertex. The corresponding sequence
of operators can be extracted from hist(t). Traversal
rules and definitions can be found in Table 2. The algo-
rithm sequentially executes the next cheapest traversal.
After an execution and the resulting token movement,
traversals of the affected vertices have to be updated.

Input:
application requirement r
device capabilities c1, ...,cn

Initialization:
for all ci do

insert new t into corresponding v
end for
create empty TraversalList
mark requirement vertex as vr
for all e do

compute cheapest trav V→W on e (see R)
add trav V→W to TraversalList

end for

Iteration:
repeat

exec. cheapest trav V→W in TraversalList (see R)
for all v ∈V,W do

for all e, e incident to v do
remove trav V→W associated with e from
TraversalList
compute cheapest trav′V→W on e
add trav′V→W to TraversalList

end for
end for

until new t arrives in vr
return t

comes with a simple API that allows users to send and
receive interaction events as shown in the Listing 1. An
application that demands 3D Rotation only has to
call such a receive function or register a callback to ob-
tain incoming events. On the other side of the pipeline,
e.g., the gyro sensor of a smartphone constantly pushes
its captured rotation events via a send function.

Gates gather the information about application require-
ments and device capabilities from a developer-provided
json file. Our implementation in plain C allows the use
of the same gate implementation on desktops, mobile
(iOS, Android), and other platforms such as Raspberry
Pi. To faciliate the integration into modern software, a
set of wrappers in other languages is available. The wrap-
pers expose the same API and are available in languages
such as Python, JavaScript, Java, C++, Objective-C, and
Go. In terms of interaction event streaming performance,
we point out that the gate-to-gate streaming is executed
directly, i.e., without routing data over the server com-
ponent presented in the next section.

Traversal rules R

Definitions and notation
• v,w : vertices, e : edge, V,W : sets of vertices
• trav V→W traversal on edge connecting V and W
• traversal types: split v→W , cast v→w, merge V→w
• t a token with history hist(t) of executed traversals
• t associated with one or more (after merging)
device capabilities c
• cost(t) = |hist(t)|

Candidate tokens for a traversal trav V→W
• all t in v ∈V not yet visited any w ∈W
• merge constraint: one t from each v ∈V required
and selected tokens must not be associated with
the same c (prevents merging a capability with itself)
• cheapest trav V→W (not necessarily unique)
defined as: min(∑ cost(t) | t participating in trav V→W )

Executing a traversal trav V→W
• split v→W : ∀w ∈W : insert duplicate td of tsrc in w
• cast v→w: insert duplicate td of tsrc in w
• merge V→w: insert new tn in w,
∀tsrc : add hist(tsrc) to hist(tn)
• ∀t(td or tn) add trav V→W to hist(t)
• ∀tsrc : if visited all adjacent v and 6 ∃ outgoing
merge edge: delete(tsrc)
• note: the second condition is needed since a
potential merge candidate might arrive later

Table 2: Our Algorithm 1 operates on tokens. They
initially represent device capabilities and are moved in
a hypergraph on edges standing for operators between
vertices representing the interaction event types.

3.3.2 Server

While gates are spread over the network, their oper-
ability depends on a central server that is responsible
for the environment coordination. Precisely, the server
contains a memory-efficient C++ implementation of Al-
gorithm 1, maintains user sessions, and keeps track of
available gates. The server behaves as a broker between
the gates and the users. It exposes necessary informa-
tion about available applications and devices gathered
from the gates to the users and configures gate stream-
ing pipelines according to the user-definded interfaces.
Apart from this UI configuration functionality, further
explained in the next section, the server exposes a set of
external services available for developers. For instance,

// initialization
Gate gate("ImageVis3D.json");
gate.start();
// runtime
Event evt = gate.receiveEvent("Pan dataset");
// something inside the target software
translate(glm::vec3(evt.x, evt.y, 0), data);

Listing 1: Example integration in C++. The gate
is initialized with a json file containing a list of
requirements or capabilities. During runtime, the target
software polls or sends interaction events.
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Figure 5: The MasterUI is a mobile frontend for our
system that allows to select and customize UIs. The
application selection screen already prototypes the role
feature addressed in future work. The right image dis-
plays possible assignments for a given requirement.

REST interfaces are provided for both UI generation
and interaction environment monitoring.
Assume that the server received a UI configured by a
user via our frontend. According to our model, the UI
consists of one wiring for each application requirement,
while each wiring represents an I/O processing pipeline
with a sequence of operators. This information is sent
to all participating gates that then dynamically set up
the necessary gate-to-gate streaming connections. The
operator chain is always placed on the receiving side
since data might be incomplete prior to that point. Hence,
in the case of an input requirement, the operator chain
resides in the application gate and vice versa.

3.3.3 UI Configuration App
One of the services provided by the server is to allow
configuration and launch of user-defined interfaces. To
deliver a user- and developer-friendly contribution, Mor-
phableUI comes with a default mobile frontend, the
MasterUI, depicted in Figure 5. This app guides users
through the UI generation pipeline and allows on-the-
fly customization during runtime, which is beneficial
for, e.g., rapid prototyping tasks. This component is
designed as a personal assistant that behaves according
to the bring-your-own-device paradigm. Hence, every-
one is able to use their private smartphone to create and
apply desired UIs.
An example configuration process is depicted in Figure 5.
First, the user has to choose the application he or she
wants to control. In a second step, the UI is assembled.

The straightforward way is to configure each application
requirement manually. Hereby, wirings are requested
from the hypergraph algorithm in an iterative way until
the user sees a satisfying device assignment.
Remember that the proposal ordering corresponds to the
length of the involved operator chain and thus reflects
the number of needed event transformations between the
capabilites and the application requirement. Instead of
manually configuring each wiring, users are also able
to request automated proposals for complete UIs and
choose between or reconfigure them.
The ability to obtain automated UI proposals is based on
stored information about previous usage, i.e., on what
the user already designed for this or similar applications.
Similarity, then, is defined by the percentage of equal
requirement types. Intuitively, there is a chance that re-
quirements associated with the same type of interaction
event behave analogously. Thus, we implicitly port UIs
across applications by generating such proposals. This
approach also accounts for interfaces designed by others
since it turned out to be a good starting point compared
to blank initialization. One of our future goals is to en-
hance this automated proposal and learning ability to
anticipate users’ needs and minimize the UI configura-
tion efforts.

4 INTEGRATING MORPHABLEUI
To demonstrate how the theoretical model and its realiza-
tion behave in the real world, we have added support for
a set of devices and applications and evaluated the inte-
gration efforts of our framework in external projects. A
few lines of code suffice to enable full access to the Mor-
phableUI interaction features. The Listing 1 provides an
overview of the necessary steps including setup and run-
time. Note that the appications does not need to know
the available devices at all nor to restart or recompile if
a new device becomes available.

4.1 Sample Devices and Applications
4.1.1 Device Support
Our prototype covers conventional desktop environ-
ments, joysticks, gamepads, Kinects, Leap Motions,
monitors and mobile displays for mono video output,
and head-mounted displays for stereo video output. The
underlying video streaming relies on a JPEG-encoded
frame transmission, i.e., each frame is packed into an
interaction event and transported to the output device.
Furthermore, MorphableUI supports iOS and Android
smartphones and tablets. These devices expose capabil-
ities such as swipe and pinch gestures, gyroscope and
accelerometer sensors, speech input, and widgets such as
sliders and virtual joysticks. To demonstrate the range of
possible use-cases, smart home sensors for temperature,
wind speed, and air pressure were also integrated.

4.1.2 Application Example: ImageVis3D
The volume rendering software ImageVis3D [8] scales
to very large biomedical datasets. It already accounts
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Requirement Interaction event type
Rotate dataset 3D Rotation
Pan dataset 2D Motion
Resize dataset Zoom
Toggle between 1D-TF and Iso Toggle
Rotate clipping plane 3D Rotation
Set smoothstep function for TF 2D Position

Table 3: A set of ImageVis3D requirements. The one-
dimensional transfer function is denoted by 1D-TF and
isosurface rendering by Iso.

for heterogeneous environments by being able to run
on everything from mobile devices to high-end graph-
ics workstations. To allow such flexibility on the I/O
side, we have connected the software to our framework
by capturing a set of basic functionalities as shown in
Table 3.

From the captured interaction tasks, manipulating the
transfer function was of increased interest for the de-
velopers of ImageVis3D. One surprisingly intuitive in-
terface was moving the hand over the leap motion and
changing the inflection point of the smoothstep function
by lifting or lowering the hand. Alternatively, rotating
one’s hand was also rated as intuitive for changing the
slope of the smoothstep function.

4.2 Developer Survey
To gain feedback on our approach, we asked nine appli-
cation developers (all male) interested in MorphableUI
to fill out a questionnaire after the first successful in-
tegration of our system into their target software, in-
cluding both academic and industrial collaborations to
cover a wide sample range. The questions included
both subjective topics (difficulty of integrating the soft-
ware, required support) and objective topics (needed
development time for integrating the libraries into their
software including glue code, time for defining the re-
quirements/capabilities). The subjective questions were
answered via a 7-point Likert scale, with 1 meaning
very easy/none and 7 indicating very hard/always. The
objective questions used minutes as a scale, since they
targeted development efforts. Complementary questions
about the programming experience and age of the par-
ticipants were designed to provide hints about possible
side effects for inexperienced users.

Our results show that the integration of MorphableUI
could be done in less than one hour in all cases, but most
participants required less than 30 minutes. The design
time for capabilities/requirements fluctuated more, lin-
early depending on the amount and complexity of the
targeted interaction. For the question regarding the diffi-
culty of integrating MorphableUI into existing software,
we see a mean value of 2.0 with a standard deviation
(SD) of σ = 0.71. Hence, the developers found the pro-
cess easy and encountered no major difficulties. This
result is further strengthened with the outcome for the
question concerning the required support for integrating
the software: it shows a mean value of 2.0 with a SD of

Difficulty of
Integration

Needed
Help

Time for
Integration

Time for
Requirements Exp.

P1 2 2 20 min 30 min 3 yr.
P2 3 3 40 min 30 min 1 yr.
P3 1 1 5 min 5 min 7 yr.
P4 2 1 15 min 10 min 2 yr.
P5 3 2 30 min 5 min 4 yr.
P6 2 4 40 min 20 min 6 yr.
P7 2 2 20 min 5 min 4 yr.
P8 2 2 30 min 5 min 4 yr.
P9 1 1 10 min 10 min 3 yr.

mean 2.0 2.0 23.3 min 13.3 min 3.7 yr.
sd 1 1 12.5 min 10.61 min 1.86 yr.

Table 4: P1 to P7 were integrations of MorphableUI into
existing applications, P8 and P9 added new interaction
devices to our system. In detail, P1-P4 were interactive
3D visualization tools, P5 an interactive physical sim-
ulation, P6 a connection to the FMI standard, P7 the
integration into OgreVR, P8 connected the Community
Core Vision, and P9 added support for the Leap Motion.

σ = 1.0, meaning the developers only needed little sup-
port. We cannot conclude that the developer experience
had a direct impact on the integration or requirement/-
capabilities design time. Hence, the complexity of the
target software seems to be a more prominent factor.

5 BENEFITS AND LIMITATIONS
A common question is whether MorphableUI is bene-
ficial for a particular application. Despite that results
from preliminary user studies indicate high acceptance,
this topic requires further discussion. On the one hand,
mapping a complex software such as Photoshop with
hundreds of different tasks does not seem feasible with
the proposed technique. First, the UI generation process
will generally consume more time, and reassigning cer-
tain controls will often result in scrolling through large
lists compared to, for example, browsing well-structured
settings menus. Second, applications that are tightly
coupled to a specific environment or device setup often
cannot take advantage of the offered I/O exchangeability.
On the other hand, applications often have a set of basic
functionalities that are accessible in different environ-
ments and can be controlled in multiple ways depending
on the use-case. In the Photoshop example, users still
might want to control panning and zooming via a tablet
with the non-dominant hand.
Hence, we recommend combining MorphableUI with
traditional hard-wired interfaces. That is, we suggest
using our system to cover only a small subset of require-
ments where device exchangeability is expected to be
important. In the case of our ImageVis3D scenario, we
recommend users stick to a traditional UI for tasks such
as opening a file and rely on MorphableUI for object ma-
nipulation or the streaming of the video output. During
development, prototyping tasks benefit massively from
the effortless integration, as the system allows to try out
a plethora of I/O devices out of the box.

6 SUMMARY AND FUTURE WORK
The paper established a requirement- and capability-
based model for distributed, multimodal interaction. We
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introduced a classification building upon interaction
event types and expressed their relations by three op-
erators: split, merge, and cast. This formalization allows
higher-order I/O data transformation and enhances the
exchangeability compared to other approaches. The
problem of computing admissible UIs by generating
wirings for each requirement is tackled by a token-based,
iterative algorithm working on a hypergraph. The ver-
tices correspond to the interaction event types, and edges
represent the operators. The generated wiring proposals
are ordered by the length of the resulting operator chain.
Hence, the order expresses the amount of performed I/O
data transformation.
The implementation consists of three main components.
The gate is a library that serves as an entry point for
applications and devices. During runtime, I/O data is
streamed directly between the gates over the network.
The server monitors the devices and applications and
exposes services such as the UI configuration. MasterUI
is a mobile frontend built upon such a service. It al-
lows users to dynamically configure their interfaces and
receive notifications about changes in the interaction
topology. Finally, support was added for a set of sample
devices and applications to showcase the effortless inte-
gration of our system which particularly enhances the
area of rapid prototyping of multimodal interfaces.
There are a number of different issues to be targeted in
the future. One goal is to increase the number of sup-
ported devices such as the Microsoft HoloLens, which
is mainly an engineering task. At this point, it might
be of interest to extend the existing model by hardware
characteristics of the input devices. Considering widgets
as I/O capabilities, a sophisticated arrangement would
be beneficial. For now, the system does not have any
hierarchical concepts and places the widgets, such as vir-
tual joysticks, at predefined positions. To fully support
that kind of interaction, the UI configuration pipeline
has to be extended to deal with layout settings.
Another idea is to arrange requirements into roles on the
application side as already prototyped in Figure 5. In our
brain stimulation example, one would differ between the
doctor and patient. The latter role has limited interaction
requirements allowing, for example, only to panning and
rotating the dataset. Another user-related feature that
will be included in future work is security and authen-
tication. One use-case is to prevent unauthorized I/O
device access to a set of private devices limited to one
particular user.
In this paper, we mainly focused on I/O exchangeabil-
ity and enabled a novel approach for multimodal, dis-
tributed interaction and rapid prototyping. One of our
next goals is to measure and enhance user experience in
MorphableUI by conducting usability studies. Clearly,
our framework can also be used to provide interfaces
that are not very user-friendly. For this reason, we plan
to combine the UI generation with a sophisticated on-
line learning algorithm to further improve the UIs being
proposed automatically based on prior knowledge. In
addition, multi-user setups will be focused more since

the framework does not impose any limitations on the
number of users for one application.
The set of interaction events that we used for the capa-
bility and requirement classification does not pretend to
be complete. Further refinement is needed depending
on the application area and the use-case. To tackle this
issue, we are developing a MorphableUI tool chain. The
chain will include a GUI-based hypergraph modification
tool that allows the addition of new types of events with-
out the need to touch or (re-)compile code. Also, a web
application that facilitates monitoring the interaction
environment and assists developers and administrators
would further enhance the framework. The main issue,
therefore, is to find a compact and meaningful graphi-
cal representation of the environment including device
locations, active user interfaces and the corresponding
wirings between devices and applications.
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