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ABSTRACT
Video representations that support view synthesis based ondepth maps, such as multiview plus depth, have been widely
emerged raising interest in efficient depth maps coding tools. In this paper, we propose an innovative sparse decomposition on
wavelets based dictionary specially designed for the piece-wise planar nature of depth signal. We also evaluate performances
of the proposed dictionary for depth maps coding while paying special attention to the impact of depth coding errors on
resulting synthesized images. Obtained results prove the relevance of the proposed scheme able to considerably improve the
perceived quality of synthesized images.
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1. INTRODUCTION

Multiview Video plus Depth (MVD) includes sequences
of texture images and their corresponding depth maps. The
latter are bi-dimensional gray level images representing the
distance of each pixel to capture camera. Recent efforts
point toward an efficient coding that preserves depth maps
particularities, namely their piece-wise planar conception
and the critical impact of pixels near contours on perceptual
quality of synthesized views [1].

In this context, many coding research work aim at faith-
fully reconstruct depth map specific piece-wise planar con-
ception. Morvan et al [2] exploit the linear piece-wise na-
ture of platelet and wedgelet functions to approximate depth
planar surfaces separated by shaped edges. The wedgelet
representation is retained for 3D High Efficiency Video
Coding (3D-HEVC) standard [3]. Maitre et al. [4]. pro-
pose a codec that relies on a lifting implementation of
Shape-Adaptive Discrete Wavelet Transform (SA-DWT).
SA-DWT independently treats surfaces separated by edges
which, and unlike classical wavelet transforms, provides
much sparser decomposition with small coefficients along
depth discontinuities. Furthermore, Shen et al. [5] present
a new set of Edge-Adaptive Transform (EAT) as an alterna-
tive to the classical Discrete Cosine Transform (DCT). EAT
avoids filtering across depth discontinuities and so avoids
creating large coefficients. However, transform domains

used in [4] [5] need an encoded representation of major
edge locations to be shared between both encoder and de-
coder sides.

Since depth images are used for view synthesis and are
not themselves displayed, later efforts aim at reducing depth
maps coding artifacts that cause severe distortion of synthe-
sized views. Cheung et al. [6] define ”Don’t Care Regions”
(DCRs), for each pixel, where a depth value outside the
DCR will lead to a synthesis distortion larger than a thresh-
old value. Then, they perform sparsification of the depth
map in an orthogonal basis, optimally trading off its repre-
sentation sparsity and its adverse effect on synthesized view
distortion. More recently, this idea is reused by Cheung et
al. [7] replacing DCRs by penalty function. For each pixel,
a quadratic penalty function is defined based on sensitivity
of interpolated images to pixel depth values during render-
ing process. Transform domains used in [6] [7] are classi-
cal orthogonal basis that represent dictionaries of minimum
size, concentrating the signal energy over a set of few vec-
tors. However, vectors sets larger than basis, particularly re-
dundant dictionaries, are needed to build sparse representa-
tions of complex signals. In the last few years, the emerging
attention is to enlarge common orthogonal bases through
the design of suitable redundant dictionaries positioned as
an interesting alternative. The latter can be a mixture of or-
thogonal bases and/or dictionaries. Such merging approach
aims to design domains where each sub-dictionary is suit-
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able for representing one of the signal components. The
approaches for learning dictionaries from large input data
sets have also been envisioned in order to enhance the cor-
relation of dictionary atoms to signals. However, learned
dictionaries are further sensitive to image variations of prac-
tical scenarios. Furthermore, if the learning process of the
dictionary cannot be repeated in the decoder side, the dic-
tionary transmission is necessary. Increases in terms of stor-
age expense and codec complexity are also noticed due to
the feature-dependent nature of learned transform domains.

In this paper, we are interested in studying a predefined
mixed dictionary adapted to depth maps sparse representa-
tion. In fact, many efforts were carried out to study the most
appropriate dictionary for a given class of images such as
astronomical images and cartoon-images. This is not the
case for the particular class of depth maps. Being redun-
dant, the proposed dictionary, unlike orthogonal basis used
in [6] [7], promotes sparsity and avoids high coefficients
mainly near contours. Being predefined, the proposed dic-
tionary, unlike the non-fixed EAT and SA-DWT, does not
imply a coding overhead for the transform reconstruction
in the decoder side. The proposed dictionary is then ex-
ploited for depth maps compression to evaluate its relevance
for synthesis quality.

Section 2 brings particular attention to fundamental con-
cepts of sparse representations. In Section 3, we aim at
studying an efficient dictionary in terms of depth maps
sparsity-distortion tradeoff. The dictionary is then ex-
ploited, in Section 4, for compression purpose taking into
account the quality of view synthesis process, the ultimate
depth maps application.

2. SPARSE REPRESENTATIONS

Classical transform coding techniques make use of or-
thogonal basis, such as Fourier and cosine basis. In such
transform domains, signal representation is unique. More
recently, sparse representation concept has been developed
and its exploitation in image processing is increasingly ex-
panding. Sparse representations proved their performances
for texture images compression. It is therefore interesting
to explore them for depth maps compression.

Sparse representations distinguish significant compo-
nents of a signal as a small number of elementary signals
selected from a very large transform domain, named re-
dundant dictionary. Sparse representations aim at finding
a representationy of the original signal as a compact linear
combination of a small atoms number weighted by trans-
form coefficients :y = D x wherey ∈ R

M the repre-
sentative vector of the original signal of dimensionM and
D ∈ R

M×n a dictionary ofn atoms withn >> M . x ∈ R
n

is a sparse vector of transform coefficients. Sparsity of vec-
tor x refers to the number of zero coefficients it contains.
Because of dictionary redundancy, signal representation is

not unique and several combination of vectorx are possi-
ble. The most appropriate combination corresponds to the
sparsest one, i.e. the one with the fewest non-zero coeffi-
cients. The Orthogonal Matching Pursuit (OMP) [8] is one
of the most developed decomposition algorithms devoted to
search such a combination. OMP is a greedy multistage
decomposition algorithm that selects, at each iteration, the
most correlated atom to the original signal and then sub-
tracts its contribution. This process is iteratively repeated
for the residual signal in order to achieve an approximation
tolerating an admissible reconstruction errorρ.

3. DEPTH MAPS SPARSITY-DISTORTION
TRADEOFF

Efficiency of depth maps representation, both in terms of
sparsity and similarity to original data, highly depends on
transform domain choice. It seems useful, even required,
to use atoms highly correlated to depth maps that we try to
model.

3.1. Discrete Cosine/Linear Discrete B-Spline Wavelets dic-
tionary

As introduced in Section 1, depth maps include two ma-
jor components, namely smooth regions and depth discon-
tinuities. Then, it is suitable to combine, in the same dic-
tionary, two sets of atoms conducive to each of them. In
that way, we guarantee complementarity of concatenated
atoms where each type of them is capable of reconstruct-
ing some signal characteristics that the other one is unable
to efficiently do. Typically, we propose the Discrete Co-
sine/Linear Discrete B-Spline Wavelets (DC/LDBSW) dic-
tionary that includes two kinds of atoms :
Discrete Cosine (DC) atoms for smooth regions : DC
atoms of (1) are stemmed from discrete cosine transform :

DC =

{

cos

(

Π(2i− 1)(k − 1)

2n

)

, i ∈ {1, ...,M}, k ∈ {1, ..., n}

}

(1)

whereM is the signal dimension. The dictionary sizen is
equal torM with r ∈ N

∗. If r = 1, DC is an orthogonal ba-
sis. Otherwise, DC is a dictionary of redundancyr. The DC
atoms are indisputably adapted to smooth areas representa-
tion. This is even more valid for depth maps where smooth
areas do not present texture, such as for natural images, but
distances of scene objects to capture cameras.
Linear Discrete B-Spline Wavelets (LDBSW) for depth
discontinuities : LDBSW atoms, defined by 2, are trans-
lated and discretized versions of linear B-spline waveletsat
different resolution levelsj. The discretization consists in
considering the linear B-spline wavelets values at equally
spaced knots on a compact interval with distanceZ2j+1 be-
tween two adjacent knots :
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LDBSW =

{

ϕ2(i
φ

− k), i ∈ [1,M ] ∩ Z

}

∪

{

2
j
2 ψ2(2

j
i− h), i ∈ [1,M ] ∩

Z

2j+1

}

j ∈ [0,log2(M)−1]∩Z

(2)

where k ∈ [0,M [∩Z, h ∈ [0, 2jM [∩Z and

ϕ2(x) = δx,1

ψ2(x) =
1

12
ϕ2(2x)−

1

2
ϕ2(2x− 1) +

5

6
ϕ2(2x− 2)−

1

2
ϕ2(2x− 3) +

1

12
ϕ2(2x− 4)

ϕ2 andψ2 are scale and wavelet functions.M is the sig-
nal dimension andj the resolution level ranging from0 to
log2(M)− 1. k andh are translation parameters ofϕ2 and
ψ2, respectively. The cut-off approach is used for transla-
tion of ϕ2 andψ2 at signal interval boundaries. This intro-
duces redundancy by considering all the wavelet functions
having non-trivial intersection with the interval. LDBSW
atoms are piece-wise linear so they comply with the piece-
wise planar definition of depth maps. Furthermore, the par-
ticular B-splines wavelets of order 2, compared to higher
order B-splines wavelets, greatly limit edge smoothing and
model in a better way the sharp depth details. This allows
a good quality for view synthesis, the ultimate depth maps
application.

To build the bi-dimensional dictionary suitable for image
processing, the tensor product of the so constructed unidi-
mensional dictionary with itself is considered.

3.2. Complementary of DC and LDBSW atoms

We consider two(8× 8) blocks that respectively present
areas with and without contours ofBreakdancers [9] depth
map. The original signal in figure 1 corresponds to the
concatenated columns of the block into a single one-
dimensional vector of depth values. The residual signal
results from few OMP iterations. As shown in figure 1,
the residual signal of the smooth block is already uniform
and is set around zero. However, residue of the block con-
taining discontinuities is not yet uniform and requires more
iterations. We can retrieve the piece-wise linear shape of
LDBSW atoms that will be useful to reduce this residual
signal in next iterations of OMP.

3.3. Comparison and discussion

In this section, we aim at judging the efficiency of
DC/LDBSW dictionary for depth maps sparse representa-
tion. As already mentioned, the DC atoms stemmed from
discrete cosine transform are well suited for smooth ar-
eas approximation. It then remains to assess reliability of
LDBSW atoms for depth discontinuities representation. For

Figure 1. Original signal (top) and residual signal (bottom) issued
from few OMP iterations for blocks ofBreakdancers depth map :
smooth block (black) and block with discontinuities (green).

this purpose, we compare the DC/LDBSW dictionary to
Discrete Cosine/Linear Discrete B-Spline (DC/LDBS) dic-
tionary, where LDBS atoms are translated and discretized
versions of linear B-spline functions of different supports.
We also carry out a comparison to Discrete Cosine/Cubic
Discrete B-Spline Wavelets (DC/CDBSW) and Discrete
Cosine/Directional Anisotropic Atoms (DC/DAA). As well
as LDBSW dictionary, atoms of CDBSW dictionary are
stemmed from discrete B-spline wavelets. The difference
lays in the mother wavelet order that it is no longer lin-
ear. Used B-spline wavelets in CDBSW dictionary are cu-
bic (i.e. order 4). Being the successors of X-lets, atoms
of DAA dictionary are 2D non-separable functions built by
applying geometric transformations to a generating mother
function [10]. The latter is a smooth low resolution function
in the direction of the contour, and behaves like a wavelet in
the orthogonal direction. Using LDBS, CDBSW and DAA
dictionaries for comparison is not randomly made. The lat-
ter have proved among the most pertinent for signal sparse
representation. Furthermore, comparison to these dictio-
naries would allow us to stress the relevant properties of
LDBSW atoms for depth maps sparse representation.

As comparison criterion, we make use of Sparsity Ra-
tio (SR) metric. It is defined as the number of pixels in
the image divided by the number of non-zero coefficients
used for its representation. A high value of SR reflects the
dictionary ability to represent signals with the least number
of transform coefficients. Figure 2 presents SR values ob-
tained by sparse decomposition ofBreakdancers, Ballet [9]
andChampagne sequences on candidate dictionaries using
OMP algorithm for different PSNR values.

As shown in figure 2, DC/LDBSW dictionary achieves
higher SR values than DC/LDBS. This is thanks to the os-
cillatory behavior of LDBSW atoms that makes them visu-
ally more similar to OMP residual signals than LDBS atoms
(see figure 1). Compared to DC/CDBSW, DC/LDBSW dic-
tionary allows better sparsity-distortion performances.In
fact, LDBSW atoms are B-spline wavelets of lower order
than CDBSW ones. This allows them to strongly limit depth
discontinuities smoothing, which is crucial for view synthe-
sis.

For 1D signals, wavelets are recognized to be efficient
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Figure 2. SR values obtained by sparse decomposition ofBreak-
dancers, Ballet and Champagne sequences on DC/LDBSW,
DC/LDBS, DC/CDBSW and DC/DAA dictionaries using OMP
algorithm for different PSNR values.

for sparse representation of piece-wise smooth singulari-
ties. Despite their success, wavelets lose their optimality
when extending them to 2D. They fail to detect regular-
ity of contours. In order to overcome the non-optimality
of 2D wavelets, it has been proposed to use geometrical-
oriented atoms, i.e. the X-lets. Recently, efforts have been
made towards redundant dictionaries of transformed gen-
erating function using, as DC/DAA, anisotropic geometric
transformations. However, geometric atoms relevance for
smooth and regular contours of natural images significantly
decreases for sharp and irregular discontinuities of depth
maps. In fact, DC/LDBSW dictionary achieves, as shown in
figure 2, sparser depth maps representation than DC/DAA.
This is particularly clear for depth maps with strong discon-
tinuities such asBallet andChampagne.

4. SYNTHESIZED VIEWS RATE-
DISTORTION TRADEOFF

As a conclusion of the previous section, DC/LDBSW
combination allows the best depth maps sparsity-distortion
performances against other candidate combinations. This
may presage efficient results for depth maps compression.
Thus, we integrate DC/LDBSW dictionary within a depth
maps compression scheme taking into account the quality
of rendered views.

4.1. Compression method

As it has been observed that efficient depth maps com-
pression is achieved by applying a down-sampling prior to
encoding [11], the proposed scheme carries out a decima-
tion by a factor of 2 of the initial depth map. One in two
pixels is retained per row and per column. Then, an edge
detection is applied to decimated depth map. Resulting
edge image is next divided into blocks labeled as 1, if they

Figure 3. Flowchart of the proposed method.

include contours, and 0 otherwise. Sparse representation
of each block is performed using the OMP algorithm on
DC/LDBSW dictionary.

As stated in Section 1, coding distortions near contours
lead to harmful artifacts of synthesized views. Whereas,
coding degradation in smooth surfaces has limited impact
on synthesized views quality. Then, we typically adapt the
stopping criterion of OMP algorithm to the nature of depth
maps blocks, whether they contain contours or not. In order
to favor sparsity for smooth blocks (i.e. labelled as 0), the
approximation issued from the first iteration of the OMP
algorithm is sufficient. In fact, smooth block decomposition
on DC/LDBSW dictionary provides, thanks to DC atoms,
a uniform residual signal around zero since the first OMP
iteration (see figure 1).

On the contrary, blocks with contours (i.e. labelled as 1)
are handled as regions of interest where distortions have to
be minimized in order to achieve a good synthesis quality.
To do this, OMP algorithm has to iterate until the error be-
tween the original and the approximated signals is under a
fixed reconstruction error. The simple usage of depth map
quadratic error can lead to suboptimal results since it only
measures coding artifacts and does not reflect the real im-
pact of the latter on the final rendering quality. Therefore,
we make use of the quadratic error in the synthesized frame
and not in the depth map itself. We particularly use the dis-
tortion metric of Kim et al. [1] that takes into consideration
camera parameters and proves the proportional relation be-
tween the quadratic error in the synthesized view and the
absolute error in the depth map.

4.2. Experimental results and analysis

Since the main use of depth maps is in view synthesis
operations, experimentations are concerned with the eval-
uation of views that can be synthesized from already com-
pressed depth images. The following experimentations con-
sist in coding left and right views fromBreakdancers, Ballet
and Champagne sequences. The decoded views are then
used for view synthesis using View Synthesis Reference
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Software (VSRS) [12] of Nagoya University. We note that
from each test data sets, the first 16 frames were used.

To evaluate the DC/LDBSW dictionary interest for com-
pression performances, we compare results obtained by the
proposed compression method with DC/LDBSW dictio-
nary to those obtained by the same method with DC/LDBS
dictionary. We particularly choose DC/LDBS dictionary
for comparison since it is the most competitive one to
DC/LDBSW dictionary in terms of sparsity, as shown
in figure 2. Performances of the proposed scheme with
DC/LDBSW dictionary are also compared to 3D-HEVC,
the ongoing 3D compression standard. We do compare our
method to the 3D-HEVC standard since it is the latest ref-
erence for comparison that includes latest efforts of 3D re-
search community being approved by MPEG. We typically
make use of 3D-HEVC Test Model version 4.1 (3D-HTM
4.1) [13] for which temporal and inter-view predictions are
disabled because our method does not involve them.

The performances of candidate methods are compared
in terms of rate-PSNR tradeoff of synthesized views. More-
over, we make use of the new human visual system based
metric, Structural SIMilarity plus (SSIMplus) [14]. We also
propose the visual evaluation of areas zoomed from synthe-
sized views.

4.2.1 PSNR vs. Bitrate

Figure 4 depicts performances of candidate methods in
terms of Bitrate-PSNR of synthesized views forBreak-
dancers, Ballet andChampagne sequences. Results of fig-
ure 2 have proved relevance of DC/LDBSW dictionary,
against DC/LDBS one, in terms of sparsity. Figure 4 comes
to show that DC/LDBSW dictionary is also better than
DC/LDBS in terms of Bitrate-PSNR of synthesized views.
Compared to 3D-HEVC, DC/LDBSW dictionary integrated
within the proposed scheme provides better performances
for medium and high bitrates, achieving a gain of0.1 dB at
0.1 bpp for Breakdancers, 0.4 dB at0.08 bpp for Ballet and
0.2 dB at 0.1 bpp for Champagne. However, 3D-HEVC
allows better performances at very low bitrates since quan-
tized values of wedgelet coefficients are restricted com-
pared to indices of atoms dictionary that cannot be quan-
tized.

4.2.2 SSIMplus Index

Since PSNR is a pure mathematical metric, we propose
to use a new full-reference measure, SSIMplus. It pro-
vides real-time prediction of the perceptual quality of a
video based on human visual system behaviors, video con-
tent characteristics, e.g. spatial and temporal complexity
and video resolution, display device properties, e.g. screen
size, resolution, and brightness, and viewing conditions,
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Figure 4. Rate/PSNR curves ofBreakdancers, Ballet andCham-
pagne synthesized views obtained from original textures and depth
maps encoded using 3D-HEVC and the proposed method with
DC/LDBS and DC/LDBSW dictionaries.

e.g. viewing distance and angle. Compared to most popu-
lar and widely used quality assessment measures, SSIMplus
has shown a higher perceptual quality prediction accuracy
and closer performances to Mean Opinion Scores [14].

Table 1 shows SSIMplus results of candidate methods
obtained for test sequences at0.01 bpp, 0.05 bpp and0.1
bpp. The evaluation is performed at these different bi-
trates that correspond to three critical values, namely low,
medium and high bitrates. As already mentioned, the first
16 frames were used from each test data sets. It is clear
from table 1 that the proposed compression scheme with
DC/LDBSW dictionary produces better SSIMplus results
against DC/LDBS dictionary. Confronted to the ongoing
3D-HEVC standard, the DC/LDBSW dictionary achieves
a mean gain of 2 at0.05 bpp and 4 at0.1 bpp. At 0.01
bpp, better results are performed by 3D-HEVC, achieving a
mean gain of 2.

4.2.3 Zoomed areas

Besides PSNR and SSIMplus Human Visual System-based
measure, figure 5 allows visual evaluation of areas zoomed
from synthesized views ofBreakdancers, Ballet andCham-
pagne sequences. Since 3D-HEVC performances are better
than those of our method at low bitrates, the visual eval-
uation is performed at0.01bpp. Compared to DC/LDBS
dictionary, the proposed method with DC/LDBSW dictio-
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Table 1. SSIMplus values ofBreakdancers, Ballet and Cham-
pagne synthesized views obtained from original textures and depth
maps encoded using 3D-HEVC and the proposed method with
DC/LDBS and DC/LDBSW dictionaries at0.01 bpp, 0.05 bpp and
0.1 bpp.

Sequence Method 0.01 bpp 0.05 bpp 0.1 bpp

Breakdancers
3D-HEVC 29 34 38

DC/LDBS 28 35 38

DC/LDBSW 27 37 41

Ballet
3D-HEVC 32 42 43

DC/LDBS 29 40 46

DC/LDBSW 30 43 47

Champagne
3D-HEVC 39 46 47

DC/LDBS 37 45 48

DC/LDBSW 37 47 50

Mean
3D-HEVC 33 40 42

DC/LDBS 31 40 44

DC/LDBSW 31 42 46

nary can clearly achieve better visual synthesis quality with
much less harmful distortions. Compared to 3D-HEVC, the
proposed method with DC/LDBSW dictionary can achieve
a competitive synthesis quality despite the outperformance
of the latter at this bitrate in figure 4 and table 1. As exam-
ples, we distinguish areas circled in red where 3D-HEVC
outperforms our method. The latter allows however better
quality than 3D-HEVC for areas marked in green.

5. CONCLUSION

In this paper, we have combined depth maps compres-
sion and sparse representations that proved to be partic-
ularly relevant for compression purposes. Typically, we
aimed to propose a redundant mixed dictionary adapted
to depth maps sparse representation. Experimental results
lead to the conclusion that it is the combination of a dis-
crete cosine dictionary with well-localized linear B-spline
wavelet atoms that yields a significant improvement in the
sparsity of high-quality approximations of depth maps. Ap-
plied for depth maps compression, DC/LDBSW dictionary
also shows good tradeoffs between bitrate and distortion of
synthesized views. As perspective, we aim to propose an
approach allowing a joint compression of the two compo-
nents of MVD, namely texture and depth. In addition to the
sparsity ratio, we aim to study the DC/LDBSW dictionary
efficiency in terms of other comparison criteria that take into
account the redundancy and the coherence of the proposed
dictionary. Studies and comparisons to learned dictionaries
are also in our scope.
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