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ABSTRACT
Sparse coding techniques have given good results in different domains especially in feature quantization and
image representation. However, the major weakness of those techniques is their inability to represent the
similarity between features. This limitation is due to the separate representation of features. Although the
Laplacian sparse coding doesn’t focus on the spatial similarity in the image space, it preserves the locality of the
features only in the data space. Due to this, the similarity between two local features belong to the similarity of
their spatial neighborhood in the image. To overcome this flaw, we propose the integration of similarity based on
Kullback-Leibler and wavelet decomposition in the domain of an image. This technique may surmount those
limitations by taking into account each element of an image and its neighbors in similarity calculation.
Classifications rates given by our approach show a clear improvement compared to those cited in this article.

Keywords
Sparse coding, features quantization, image representation, Laplace sparse coding, Kullback-Leibler , wavelet
decomposition.

1. INTRODUCTION
Computer vision applications have experienced a
great revolution with the integration of sparse coding
techniques. Unfortunately, those techniques have not
be able to model the locality and the similarity among
the instances to be encoded owing to the
overcomplete codebook and the independent coding
process. Several approaches have been proposed to
overcome this limitation. In [Gao10a], Gao proposed
a method called Laplacian Sparse Coding which
exploits the dependence among local features.
Specifically, he suggested using histogram
intersection based K-NN method to build a Laplacian
matrix, which will characterize the similarity of local
features. Furthermore, Laplacian matrix will be
incorporated into the function of sparse coding to
maintain the consistence in sparse representation of
those features. In [Gao10b], Gao improved the
technique of Kernel Sparse Representation. It is
essentially the sparse coding technique in a high
dimensional feature space mapped by implicit
mapping function. In 2013, he proposed the
Hypergraph Laplacian Sparse Coding techniques
[Gao13]. In this case, he extracts the similarity
between the instances within the same hyperedge
simultaneously and also composes their sparse codes
similar to each other.

In this paper, we propose an amelioration of the
Laplacian sparse coding technique by changing the
manner of similarity computation. In our case, the
calculation of similarity in the image domain is based
on the divergence of Kullback-Leibler and wavelet
decomposition. This idea comes from its capacity to
take into account neighbors’ similarity.
This paper is composed of four sections. In section1,
we introduce the Laplacian sparse coding technique.
Section 2 describes the kernel sparse representation.
We explain our approach in section3 and in the last
one, we evaluate our approach.

2. Laplacian sparse coding
Sparse coding technique was proposed in order to
reduce the problem of hard quantization. It solves the
problem by proposing a sparse linear combination of
basis vectors for each image feature. Sparse coding
looks for a linear reconstruction of a signal

, ( )dx x IR using the bases in the

codebook 1 2( , ,..., ), ( )d k
kU u u u U IR   .

The matrix of the sparse codes is

1 2( , ,..., )nV v v v where 1K
iv IR  and ikv is the

weight of the vector ix in the basis vector ku , the

optimization problem of sparse coding can be
reformulated as follows:
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0 ,
1

min min iFU V
i

v subject to x UV or X UV v   

2

1,
min 1; 1,...,i jFU V

i

X UV v subject to u j K    

 is the tradeoff parameter used to balance the
sparsity and the reconstruction error.
Because of the independent encoding feature
resulting from an overcomplete or sufficient
codebook. Asuming that 1 2( , ,..., )nX x x x the

vector of features, W is the matrix of similarity

having ijW the measuring of similarity of the pair

( , )i jx x . D the matrix of degree defined by

1

n

ij
j

Dii W


 is a diagonal matrix.

The Laplacian Sparse Coding, proposed in [Gao10a],
takes into account the similarity between images both
in features and image domains. The expression of
Laplacian Sparse Coding is as follows:

1

22

,..., 1

min
2

n

i i i i j ij
v v i i ijF

x Uv v v v W


      (1)

This expression is defined by
2

1

min ( )T
i

V i iF

X UV v tr VLV     (2)

Taking into account the Laplacian definition
L D W  [Lux07].
Since the codebook U is not optimal , the expression

can be rewritten as follows :
2

, 1

min ( )T
i

U V i iF

X UV v tr VLV     (3)

3. KERNEL SPARSE CODING
To ameliorate the technique of features representation
using sparse coding, Gao proposed another approach
called Kernel Sparse Representation. He noticed that
kernel trick can pick up the nonlinear similarity of
features. Kernel Sparse Representation is basically
the sparse coding approach in a high dimensional
feature space mapped by implicit mapping function
[Gao10a] [Gao10b].
With the same consideration of sparse coding, we
assume that there exists a feature mapping

function : , ( )d kIR IR d k   with

1 2 1 2

( ),

( , ,..., ) ( ( ), ( ),..., ( ))k k

x x

U u u u U u u u



     
.

According to this formulation, the expression of
Kernel Sparse Coding is written as follow:

1,
min ( )
U v

x U v U v    (4)

Gao used Gaussian kernel due to its excellent
performance in many works [Chen10] [Don04].

4. PROPOSED APPROACH
4.1. General context of multiresolution wavelet

decomposition

Multiresolution wavelet decomposition analyses an
image in time and frequency domains together. For
lower frequency, it offers poor time resolution and
better frequency resolution. Whereas, for higher
frequency, it offers poor frequency resolution and
better time resolution.
A multiresolution analysis is a family of nested sub

spaces 2 ( )L IR noted ( )j j ZV  which have the

following properties:

 

,

1

2

: ,

, 0 ,

( )

j j
n j n n

n Z

j j j
j Z

j
j Z

Vj a a IR

V V V

V L IR








  
   
  

  

 



(5)

Hypothesis (5) means that ( )j j ZV  is a space

generated by the family ,( )j n n Z . Its definition

depends on the chosen topology for the functional
space. We can define it more strictly as the adhesion
of the finite space of linear combinations of

functions ,j n . Thus the approximation of a signal

f on the space jV is:

,
j

n j n
n

Aj a  (6)

Coefficients j
na are calculated by performing a scalar

product signal with the

family features ,j n :

,,j
n j na f   (7)

To write the difference between two consecutive

spaces jV and 1jV  , the space 1jW  is generated by a

function ,j n :

, :j j
j n j n n

n Z

W d d IR


  
  
  
 (8)

The functions ,j n have values on the space jW that

is complementary to jV in 1jV  . We have the same

translational properties, expansion on ,j n than

on ,j n . The set of functions ,j n is called space

details. Thus, the detail of the signal f in the space

jW is calculated as follows:

,
j

j n j n
n

D d  (9)

And the coefficients of details j
nd are calculated by

the following formula:
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,,j
n j nd f   (10)

The signal of which is assumed to be represented on a

basis of jV . Apply wavelet transform to the k IN

scale returns to representing the signal to a base
adapted to the direct sum:

1 1...k k k jV W W W     (11)

The series of spaces jV being fitted and following

any function 2 ( )f L IR of size n , can be

decomposed into the basis of wavelets and scaling
functions:

2 2

, ,
1 1 1

j j
n n

j
j i

j k k i kk
k i k

f a d with j m
  

     (12)

If we perform an analysis to the last level, f

becomes:

2 1...n nf A D D D     (13)

4.2. Multiresolution Laplacian sparse coding

Gao in [Gao10a] [Gao10b] [Gao13] tried to preserve
similarity by adding the Laplacian capacity to sparse
coding technique. Furthermore, he ameliorated his
technique by adding the hypergraph technique to the
Laplacian sparse coding where the similarity among
the instances is defined by a hypergraph. In this case,
this technique captures the similarity among the
instances within the same hyperedge simultaneously,
and also makes their sparse codes similar to each
other as shown in (4).
Despite these contributions, the modeling technique
based on sparse coding remained unable to cover all
similarities between features. This Laplacian sparse
coding approach analyses images spatially and does
not focus on the details of each object. We can
therefore say that the analysis is done in a superficial
way. For this, we propose the multiresolution
Laplacian sparse coding to deepen these analyses.
Based on multiresolution Laplacian sparse coding,
the modeling of images takes into account the
modification of the neighbors of each object of an
image. This idea came from the modeling capacity
based on the divergence of Kullback-Lebleir and
wavelet decomposition.

4.3. Wavelet and Kullback-Leibler divergence

Wavelet transform of an image I is the analysis of the

image by a family of functions , ,j k j k
 . It consists

of a dilated and translated  function called mother

wavelet. Because of the localization properties in
space and frequency of the mother wavelet, the

wavelet coefficient , ,( ) ,j k j kw I I  provides

information about the content of the image I around
point k and in a frequency band near the scale j . If

the image is relatively smooth, then the wavelet
transform concentrates most of the spatio-frequency
information of the image into a few large amplitude
coefficients [Pir08].
As a first approximation, these coefficients are
uncorrelated which leads to processing by
thresholding and denosing the wavelet coefficients
which is very effective in image compression. But in
reality, the wavelet coefficients scales are correlated
at different scale. For example the presence of a
discontinuity along a curve is translated into a point
of this curve 0k by large coefficients at all

scales
0,, ( ) j kj w I .

Dependency models between different coefficients
have been proposed to improve the description of
spatial structures [Gor05] [Hub81]. In particular there
is a dependency between a wavelet coefficient

,( ) j kw I and its closest neighbor’s ladder 1,( ( ) )j kw I  .

Banerjee et al. showed that coefficient vectors
statistics wavelet shape (equation 14) is used to
characterize the spatial structures of a very different
kind [Ban05].

, , 1, , 1 , 1( ) ( ( ) , ( ) , ( ) , ( ) )
x yj k j k j k j k j kw I w I w I w I w I   (14)

To do this, it simply adjusts a Gaussian mixture
model for each phenomenon to describe the joint
probability of these vectors. In this case, it is unclear
what types of structures will be present in the
submissions, it cannot therefore set a model.
However, it is hoped that the distribution of these
vectors will be representative of spatial structures
present in the image. Consequently, it is important to
define a measurement taking into account the joint

probability neighborhoods vectors wavelet ,( ) j kw I .

Given the variability of spatial structures that can be
encountered in the residual, the choice of a
parameterization would be difficult to justify. We
propose to introduce similarity metrics without valid
parameterization of the distribution of
neighborhoods: the metrics derived from the
information theory such as residual entropy
neighborhoods, mutual information or the Kullback-
Leibler divergence between distribution
neighborhoods of wavelet coefficients of the two
images.

Suppose a neighborhood ,( ) j kw I containing

d coefficients. Distribution of all neighborhoods of

the image
I

is denoted by ( )w Ip and

checks ( ) ( ): ( ) 1
d

w I w I

IR

p IR IR et p x dx  .

The differential entropy of Shannon ( )w Ip is defined

by:
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( ) ( ) ( )( ) ( ) log ( )
d

w I w I w I

IR

H p p x p x dx   (15)

It measures the amount of information contained in
this distribution. The Kullback-Leibler is a measure
of similarity between the distributions 1( )wp I and

2( )wp I .

1 2

1
1

2

( ( ) || ( ))

( )( )
( )( ) log

( )( )d

KL w w

w
w

wIR

D p I p I

p I x
p I x dx

p I x




(16)

Based on equations (15) and (16), the Kullback-
Leibler distance is expressed as a difference of
entropies:

1 2

1 2 1

( ( ) || ( ))

( ( ), ( )) ( ( ))

KL w w

x w w w

D p I p I

H p I p I H p I




(17)

Knowing that the cross-entropy is defined as follows
[Pir08]:

1 2

1 2

( ( ), ( ))

( )( ) log ( )( )

d

x w w

w w

IR

H p I p I

p I x p I x dx



 (18)

The use of these measurements on the distributions of
the intensity of pixels of an image gives good results
in the field of segmentation and image realignment
[Ban05] [Fuk90] [Koz87]. A Kullback distance in
wavelet space was also proposed for the indexing
problem in [Col05] [Leo05]. Specifically, in these
two articles, the authors parameterize the distribution
of the wavelet coefficients for each scale j by a

generalized Gaussian and sum the Kullback distances
obtained at each scale for the similarity between the
two images.
We propose to study similar measures to determine
the similarity between two images, but with two
major differences. First, the wavelet coefficients at
different scales are not independent. Now summing
the Kullback distances at each scale corresponds to
the supposed independence. We therefore consider
the accompanying entropy coefficients, in particular
those of the previously described neighborhoods. On
the other hand, we do not parameterize distributions
game. We suggest measuring the similarity between
images 1I and I2 as follows [Pir08]:

1 2( 1, 2) ( ( ) || ( ))
j jj KL w w

j

S I I D p I p I (19)

 1( )
jwp I is the non-parametric distribution of the

coefficients of neighborhoods wavelet image 1I

to scale j [Pir08].

 0j  is normalization weight according to

attach redundancy wavelet system used [Pir08].

Based on the expression of the sparse coding and
equation (2), we introduce the formula of
multiresolution sparse coding:

1

2

,..., 1

2

min

2

n

i i i
v v i iF

i j ij
ij

x Uv v

v v S





  

  

 


(20)

Based on the same equation (2), matrix W adopted
by Gao in [Gao13] is filled by the coefficients of
similarity of Kullback-Leibler S.
Using equation (19) in implementation, Sylvain

Boltz in [Bol06] proposed an estimator of the
Kullback-Leibler as follows:

( , ) log
1

(log ( )) (log ( ))

KNN
R

KL

T

k kT T

N
D T R

N

d R d T   











 

 

 

(21)

T and R  are a set of data.
T R

N and N  are the number

of samples. ( )k s is a radius equal to the distance to

the thk nearest neighbor of s excluding s itself.

This estimation is based on k nearest neighbors K-
NN.
This estimator of the Kullback-Leibler distance can
be computed relatively quickly whatever the size of
samples. It is more robust to the choice of the number

of k nearest neighbors.
Using the definition of Laplacian as in Gao in
[Gao13]. We get the same equation (3).

5. EXPERIMANTS RESULTS
5.1. UIUC-Sport Dataset

This dataset consist of 8 classes [Li07]. Each class
contains a set of images described in the following
table:

Type Rowing Badminton Polo Bocce
Number 250 200 182 137

Snowboarding Croquet Sailing Climbing

190 236 190 194

Table 1. Description of UIUC-Sport Dataset

5.2. Corel 10 Dataset

Corel 10 dataset is composed of 10 classes [Lu09].
Each class contains 100 images. The ten classes are
skiing, beach, buildings, tigers, owls, elephants,
flowers, horses, mountains, and food.
5.3. Results

To compare our results with those of Gao in [Gao13],

we have chosen the same basis and the same number

of selected images. The following tables resume all

results.
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Table 2. Classification rate based on of UIUC-
Sport Dataset

Table 2 evaluate classification rates obtained with
different methods. Results of comparison have shown
that our approach performs better results than the
LScSPM [Gao13] approach in the context of

classification applied to UIUC sport dataset.

Method Classification
rate

Spatial Mismatch Kernel [Lu09] 90.0
Spatial Markov Model [Lu09] 77.9
ScSPM [Yang09] 86.6±1.01
LLC [Wang10] 87.93±1.04
LScSPM [Gao13] 88.76±0.76
LScSPM+CM [Gao13] 91.86±0.89
Our approach 92.91

Table 3. Classification rate based on of Corel 10
Dataset

In table 3, we compared our technique to six other
techniques in case of classification application.
Results illustrated in the same table showed that
multiresolution Laplacian sparse coding is the best
technique of image representation for classification
application.

6. CONCLUSION
In this paper, we suggested an improved method of
image representation based on Laplacian sparse
coding and the divergence of Kullback Leibler and
wavelet decomposition. This measure of similarity is
calculated between images which combine the
concepts of information theory and wavelet
transform. The principle of this approach is to sum
the Kullback distances of each scale distributrion
called neighborhood vectors of wavelet coefficients.
The neighborhood coefficients, containing not only
spatial locations but also relative scales, capture the
spatial dependencies and inter-scale coefficients

which can detect finer spatial structures. The
Kullback distance on these vectors is estimated in a
non-parametric manner despite their higher
dimension, thanks to entropy estimators of nearest
neighbors.
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