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ABSTRACT
Current simulations in virtual surgery use three-dimensional representations of organs without any internal struc-
ture. For some applications, however, there is a need to represent also the organs internal anatomical structures,
such as blood vessels. We present, in this paper, a technique that allows arbitrarily oriented cuts through objects,
particularly anatomical structures, reconstructing the mesh surface in the cutting zone. In the process, all internal
structures participate in the final rendering of the generated surface. As a case study, we selected a human liver
model with vessels and present the internal visualization of the liver in real time for arbitrary cutting planes. Our
work has applications, for instance, in improving current state-of-the-art surgery simulators for training of students
and medical doctors. Simulations present many advantages over other training since they reduce time and cost
spent by professionals, offering less risk to the patients. Besides, studies show that the amount of realism seen in
the simulators is positively correlated to the engaging of students in learning.

Keywords
Computer graphics, visualization system, solid textures, cuts in objects

1 INTRODUCTION
For many applications in Computer Graphics, geomet-
ric representations using only the surface of objects
(boundary representation) is enough. However, there
are some applications that require visualization and
possibly interaction with the interior of the objects. Sur-
gical simulators are an example. Surgical operations
such as hepatectomy [Clavien et al., 2007] for instance,
require cutting the liver in distinct regions depending
on the condition of each patient. Furthermore, this
possibility is missing from current research on virtual
simulators [Delingette and Ayache, 2005] [Echegaray
et al., 2014] [Endo et al., 2014] which have focused
their work on other aspects of the simulation.

Current solid texturing techniques generate seamless
textures inside objects. However, they cannot deal with
cases when there are other objects inside the surface
geometry, such as blood vessels inside the liver. This
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Figure 1: Result from our technique. A liver with a cut
showing the blood-vessels as empty shapes. Informa-
tion about this result as cut 1 in Table 2.

paper proposes a new technique that allows arbitrary
cuts in objects, particularly anatomical structures. The
technique allows not only the reconstruction of the sur-
face’s texture in the cutting zone, but also takes into
account the object’s internal structures. Our approach
considers the geometric object as a whole, composed
by surface and inside, and reconstructs the mesh in the
cutting zone. Finally, it renders an internal texture on
the cutting surface. In Fig. 1 we show an example of a
result from our approach. Next generation surgical sim-
ulators, for instance, can benefit from this approach in
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order to improve realism, and, therefore, skills develop-
ment.

2 RELATED WORK
In this section, we discuss selected related work in the
field of solid texturing.
The idea of solid texturing or 3D texturing was intro-
duced in 1985 [Perlin, 1985] [Peachey, 1985] and has
evolved much since. Solid textures are defined as a
process in which a texture generating function is eval-
uated directly on IR3. This function defines a volume,
and the object looks as if it was carved from this vol-
ume. A survey published by Pietroni and colleagues
[Pietroni et al., 2010] presents a detailed review of sev-
eral techniques for solid texturing and texture synthesis.
From the original papers, other researchers [Ghazanfar-
pour and Dischler, 1995] [Ghazanfarpour and Dischler,
1996] extended the idea using spectral analysis and tex-
ture synthesis applied to 2D orthogonal views [Dis-
chler et al., 1998]. Another method adapted a texture
synthesis process called optimization-based with his-
togram matching, globally minimizing its energy func-
tion [Kopf et al., 2007]. In the following year, a proce-
dure introduced a new technique to synthesize solid tex-
tures restraining them to a voxel subset, forcing spatial
determinism [Dong et al., 2008]. Recently, a new ap-
proach tried to deal particularly with regular and semi-
regular patterns [Du et al., 2013].
Cutler et al. [2002] presented a scripting language in
order to define internal layers for objects. Two years
later, [Owada et al., 2004] proposed a new method that
consists in specifying the interior of an object by using
a browsing and modeling interface, controlled by the
user. Pietroni et al. [2007] used few images represent-
ing cross sections of an object in order to render any
point inside it. Takayama’s research [Takayama et al.,
2008] extended the concept of lapped textures [Praun
et al., 2000] to solid textures, covering the whole ob-
ject’s volume instead of only its surface. In the same
year, a new system called volume painter [Owada et al.,
2008] projected volumes from sketches defined by the
user. In 2010, a new concept called diffusion surfaces
[Takayama et al., 2010] was able to render structures
that have a smooth color variation in its internal struc-
tures, like fruits and vegetables.
From the above review, it can be understood that, in the
current state-of-the-art on solid texturing, no technique
deals with objects with internal structures. Our tech-
nique considers internal structures and allows visually
and geometrically consistent arbitrary cuts on the ob-
jects, extending, in this way, the state-of-the-art in solid
texturing.

3 OUR TECHNIQUE
This section presents our technique for dealing with ar-
bitrary cuts in objects with internal structures. Overall,

our algorithm receives two 3D meshes and a set of three
images as input. The two meshes represent respectively
an object’s surface and the content in its interior. The
three images are orthogonal samples of the 3D internal
texture of the object.

Then, for any given cutting plane, our technique returns
a consistent geometry – object’s surface plus interior –
and a texture to be mapped on the region defined by
the cut. We generate the final solid texture by an inter-
polation function applied at each point on the cutting
plane. If the plane intersects with the internal structure,
the triangles in the overlap area are defined as holes and
thus are not rendered. Figure 3 presents the pipeline of
our technique with the two primary processes labeled:
A-Remeshing the Objects, detailed in Section 3.1; and
B-Texturing the Object, detailed in Section 3.2.

3.1 Remeshing the Objects
This section describes the sequence of steps for remesh-
ing the input objects, surface and interior, according to
the cutting plane. Our algorithm works for any trian-
gular mesh, even concave and with disconnected parts.
At the end of process A, each object is sectioned at the
intersection of the model with the cutting plane, the sur-
face model is retriangulated, and the internal parts are
flagged as holes.

Case 1 Case 2

Case 3 Case 4

Before the cut After the cut Before the cut After the cut

λ≤0 λ>0

λ=0

λ≤0 λ>0

λ=0

λ≤0 λ>0 λ≤0 λ>0

Before the cut After the cut Before the cut After the cut

λ≤0 λ>0 λ≤0 λ>0 λ≤0 λ>0 λ≤0 λ>0

λ=0 λ=0

λ=0 λ=0 λ=0 λ=0

Figure 2: Possible cases of cuts applied to each triangle
of the mesh in 2D view.

3.1.1 Cutting the Models
The first step consists of sectioning the object’s trian-
gles according to the cutting plane. Depending on the
spatial location of the vertices with respect to the plane,
defined by the λ value, different solutions are applied.
We calculate λ by applying the coordinates of each tri-
angle vertex on the equation of the cutting plane, pro-
ducing the possible cases seen in Figure 2.

For all cases, the three vertices of each triangle are
tested. In case 1, if λ of all vertices satisfy λ ≤ 0, they
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Final Result

B. Texturing the Object

Final Result

A. Remeshing the Objects

Figure 3: Overview of our technique. Given two 3D meshes, a set of three images and a cutting plane as input, our
technique calculates the resulting geometry (A) and a texture to be mapped on the cutting zone (B).

remain the same because they are in the side of the ob-
ject that remains. In Case 2, if λ of all vertices satisfies
λ > 0, the triangle is removed from the object, since it
is on the side which will be eliminated. In Case 3, if
only one of the three λ values satisfies λ ≤ 0, then the
remaining two vertices are repositioned to the intersec-
tion point of the plane with the triangle. In the last case,
if two λ satisfy λ ≤ 0, the remaining vertex is moved
to one of the intersection points and another triangle is
created connecting the two intersection points with the
generated triangle. At the end of this step, the results
are consistent new meshes taking into account the cut-
ting plane, as shown in Figure 4.

a b

Figure 4: Example of a sphere model before (a) and
after (b) the cut.

3.1.2 Segmentation in Topologically Connected
Sets

The result of the previous step is the two original ob-
jects modified by the cut. Now we need to group sets of
vertices into topologically connected sets, called seg-
ments. This step classifies in separate groups all the
connected vertices on the cutting plane and allows our
solution to work with geometries where a cut will split
the original object into two disjoint parts. The key idea
is to make a depth search along the vertices which were
cut in the previous step, searching for the neighboring
ones under the same conditions until the first vertex is
reached again, forming a topologically connected set
and their respective order. Figure 5 shows an example
where two connected sets are detected.

a b

Figure 5: Example of a torus mesh before (a) and after
(b) being cut by a plane. In (b) two distinct connected
sets can be observed.

3.1.3 Transforming the vertices to 2D
All the vertices in the cut area already segmented in
connected sets are defined in world coordinates. In
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order to apply two-dimensional algorithms in the next
steps, these vertices are transformed to a new basis de-
termined by u, v and n, with n being the cutting plane’s
normal vector.

3.1.4 Computing the Holes for each Segment
The triangulation algorithm, presented in the next step,
needs information about which parts are of the surface
object and which parts are of the interior of the object,
to triangulate only the parts which are part of the ob-
ject’s surface. We need therefore to identify these parts.
We call h a 2D point located inside a two-dimensional
segment which will not be triangulated (a hole). We
compute h by calculating the average of the first two
ordered intersection points found between a line con-
necting one of the diagonals from the hole’s bounding
box and the intersected edges (Figure 6).

a b

h
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•

•

•

•

h

•

•

•

•

•

•

•

Figure 6: Examples of holes. h marks the point inside
the hole. It is computed as the average of the two inter-
section points with one of the diagonals.

After, we apply a point-in-polygon algorithm to check
if h is inside the hole. Otherwise, we repeat the process
with the remaining diagonal, as seen in Figure 7.

a b
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Figure 7: A case when the average of the intersection
points is outside the hole (a). In this case we use the
other diagonal to compute h (b).

3.1.5 Triangulation
Once we have all the segments and holes identified, we
can compute a triangulation of the segments; holes are
not triangulated. We use the Triangle library presented
by Shewchuk [1996] to triangulate the vertices that de-
fine a segment. This library correctly creates a set of
triangles leaving the holes without triangles. Figure 8

shows an example for two disconnected segments, one
of them containing a hole, marked in gray in the figure.

3.1.6 Removal of External Triangles

In this step, we remove all the triangles that are outside
the original segments by calculating the barycenter of
each one followed by a point-in-polygon technique, as
shown in Figure 8. Since we decided to compute the
triangulation algorithm only once due to its cost instead
of for each segment separately, this simple procedure
correctly eliminates all triangles which are not part of
the mesh.

a b c

Figure 8: A set of vertices grouped in two segments
with a hole in the second one (hatched) (a). Respective
triangulation of the set in red lines before (b) and after
(c) the removal of external triangles.

3.1.7 Mapping back to 3D

Since the next step, texturing, requires the points in
world coordinates, we transform the computed trian-
gles back to world coordinates. This is the last step in
remeshing the original objects according to the cutting
plane, resulting in a new cut object, triangulated at the
defined plane.

3.2 Texturing the Object
This section describes the steps comprising the process
B of Figure 3, Texturing the Object. At the end of this
process, we will obtain a rendering for the cutting plane
taking into account the holes. We use a simple solid tex-
turing technique based on the interpolation of images.
Although this solution can be used on its own as a tex-
turing technique, we will explain it as a continuation of
the previous section. Given the triangles on the plane al-
ready computed and three images defining the object’s
internal texture, we apply a function that interpolates
the images, returning a color for each point according
to its spatial location.

3.2.1 Color Sampling

Let I be an image formed by a matrix Iw · Ih of pix-
els, each pixel accessed by Ii, j with i as rows and j
as columns. The three input images denoted by Ik,
k ∈ {1,2,3} are set in the orthogonal planes z = 0,
y = 0 and x = 0, respectively. Also, they are centered
at the origin of the surface object and limited accord-
ing to the object’s bounding box defined by max =
(maxx,maxy,maxz) and min = (minx,miny,minz).
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Our color sampling technique can compute a color for
any point inside this domain although we are only in-
terested in the cutting plane’s triangles. Figure 9 shows
a graphical representation of the images on the three-
dimensional space.

a b

Figure 9: Color sampling for a point p from three im-
ages arranged in the 3D space (a) and their respective
color contributions ck (b).

Let ck, k ∈ {1,2,3} be the color related to a given pixel
for each of the input images Ik and p a point defined
inside the object’s bounding box. The positions Iki and
Ik j of each pixel corresponding to each of the images
associated with the point p can be calculated as:

I1i, j =

{⌊
(maxy− py)

(maxy−miny)
· I1h

⌉
,

⌊
(maxx− px)

(maxx−minx)
· I1w

⌉}

I2i, j =

{⌊
(maxx− px)

(maxx−minx)
· I2h

⌉
,

⌊
(maxz− pz)

(maxz−minz)
· I2w

⌉}

I3i, j =

{⌊
(maxy− py)

(maxy−miny)
· I3h

⌉
,

⌊
(maxz− pz)

(maxz−minz)
· I3w

⌉}
Therefore, each one of the colors associated with the
point p can be computed as ck = Iki, j .

3.2.2 Calculating the Weight Factors
In this step, we interpolate the three colors computed in
the previous step in order to generate a unique color for
the point p. This interpolation is based on the distance
between p and the images, where each ck has an asso-
ciated weight factor when computing the final color.

Let f be a weight factor corresponding to a contribution
percentage of an image I on a point p. We calculate the
auxiliary factors fq as:

fq = 1−
∣∣∣∣1− (maxq− pq)

maxq−minq
2

∣∣∣∣,
where q indicates the axes z, y and x, respectively.

Given the factors fk related to the images Ik, as in Figure
9, then:

fk =
fq

fx + fy + fz

3.2.3 Rendering by Texture Mapping
This step has two main goals: the first shows how to
obtain the final color of the point p and the second ex-
plains how to render the triangles on the cut plane using
texture mapping.

We generate the final color c for a given point p as:

c = ∑
k=1,2,3

ck fk (1)

In order to obtain the final texture for the triangles that
define the cutting plane, we use a two-dimensional reg-
ular grid on the plane to sample the texture and cre-
ate a texture map. We set this grid with n lines and m
columns on the two-dimensional bounding box defined
according to the triangles to be rendered in the plane
space.

We compute the colors of these points with equation
(1), assigning these colors directly onto a new image
I. Further, we define this image as a texture and nor-
malized (u,v) coordinates for the vertices on the plane.
Finally, we map the created texture on the triangles and
render the image. This process is illustrated in Figure
10.

a b

c d

Figure 10: Rendering and texture mapping process.
Given a triangulation and the points on the grid in the
plane space (a), the points are represented in the world
space (b). Then, the colors are calculated, producing a
new texture image (c) that is mapped on the triangles to
be rendered (d).

4 RESULTS AND DISCUSSION
We used OpenGL for the graphics API and the tests ran
on an Intel Core i7-4770 CPU 3.40 GHz with 16GB
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RAM, Windows 8 64 bits and NVIDIA GeForce GTX
770 for graphics. We choose a liver model with blood
vessels as a case study to test our solution. We con-
structed the models from CT images of the SLIVER07
project [Heimann et al., 2009]. We used the Training
data - part 1 pack containing about 300 images with
resolution 512x512 from the abdominal region already
with binary masks to segment the liver. Then we used
MeVisLab to obtain the geometric models (Figures 11-
a and 11-b) as detailed in Table 1.

Model Vertices Triangles
Liver 3350 6673

Vessels 11216 22662
Table 1: Details of the input models.

We used the textures for the liver from Xue-mei et al.
[2009] where they addressed texture synthesis for
surgery simulators and the texture for the vessels from
ElHelw et al. [2004]. We used the same image for the
three textures to represent the inner liver. Ideally, three
different images should be used. These results can be
seen in Figure 11-c. The textured models separately
and superimposed are illustrated in Figures 11-d, 11-e
and 11-f, respectively.
Next we show several results from the inputs, as a set
of cuts generated by our system. Table 2 presents in-
formation related to these cuts, including the number of
intersection surface points (IP), number of triangles on
the plane (TP), plane texture grid resolution (GR) and
execution time (ET) in milliseconds.
The cuts are organized into different groups to illustrate
our technique for various goals. The first cut is shown
with full texture (Figure 1) and in wireframe (Figure
12) to illustrate a plane containing several intersections
with vessels.
Cuts 2 to 7 (Figure 13) present six cuts maintaining the
same cutting direction. As the grid resolution remains
constant, its related execution time increases according
to the number of triangles intersecting with the vessels.
Cuts 8 to 13, shown in Figure 14, use the same cutting
plane but with increasing resolution of the grid, zoomed
in on the right of each cut. In this sequence, we also see
an increase in the rendering time, due to the increasing
resolutions of the grid. Also, we can barely see differ-
ences in the final rendering with resolutions above 256.
For a video illustrating our technique in action, please
visit https://vimeo.com/128415963. This
video was captured directly from the screen.

5 CONCLUSIONS
We presented a technique for cuts in objects with inter-
nal structures with possible application on surgery sim-
ulators. In general, research related to surgical simu-
lators does not deal with internal structures of organs,
lacking information that could increase visual realism.

Although we presented our technique focusing on
organs, it can also deal with other types of three-
dimensional models that have an internal structure.
For the sake of generalization, we tested our approach
using a watermelon model. Results are presented in
Figure 15. The seeds are geometrically modeled as
internal objects. The watermelon texture at the cutting
plane looks plausible, and the seeds are correctly cut.
After this paper, a number of new avenues can be ex-
plored. First, other image combinations can be tested
besides the trilinear approach we presented here. Then,
validation studies should be planned to, using pho-
tographs of real objects, assess the outcome produced
by the different texturing interpolations. For the cut-
ting, we aim to extend our approach to support arbi-
trary cutting surfaces, such as those defined by im-
plicit equations or 3D meshes, instead of a single planar
surface. Further, as those improvements will require
higher computation power, we intend to explore paral-
lel implementations on the GPU before integrating our
solution into an operational surgery simulator.
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