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and if (A.7) holds, return zzz(t) = zzz and exit the loop; if (A.7) does
not hold, then shrink the hyperrectangle, as follows:
• if x0;1 < x

(t�1)
0;1 , set x0;1;L = x0;1; else if x0;1 > x

(t�1)
0;1 , set

x0;1;U = x0;1;
• if x0;2 < x

(t�1)
0;2 , set x0;2;L = x0;2; else if x0;2 > x

(t�1)
0;2 , set

x0;2;U = x0;2;
• if d < d(t�1), set dL = d; else if d > d(t�1), set dU = d;
• if A < A(t�1), set AL = A; else if A > A(t�1), set AU = A;
• if ' < '(t�1), set 'L = '; else if ' > '(t�1), set 'U = ';
• go back to 2).
Here, the hyperrectangles shrink toward ���(t�1) =

[x
(t�1)
0;1 ; x

(t�1)
0;2 ; d(t�1); A(t�1); '(t�1)]

T
, which is clearly in the

slice (see Step 1)).
Since the evaluation of l(yyyjzzz;www) may cause a floating-point underflow,
it is often safer to compute ln l(yyyjzzz;www) and modify the above algorithm
accordingly (see [12, Sec. 4]).
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Attenuation Estimation From Correlated Sequences

Tarek Medkour and Andrew T. Walden

Abstract—We calculate the frequency-dependent variance of the log
spectral ratio for correlated time series. This is used to produce a weighted
least-squares approach to attenuation estimation, with weights calculated
from estimated coherence. Applications to synthetic and real data illustrate
that, for correlated series, the method improves significantly on traditional
unweighted least-squares attenuation estimates.

Index Terms—Attenuation, coherence, correlation, spectral ratios.

I. INTRODUCTION

Attenuation can be estimated from the change in frequency content
observed between two sequences separated by two-way travel time�T
(e.g., [14] and [16]).

Given power spectra S11(f) and S22(f) corresponding to the
sequences fX1;tg and fX2;tg, we define the attenuation param-
eters through the spectral ratio as follows, S22(f)=S11(f) =
c0 � exp[�2�T �(f)], where �(f) is the attenuation coefficient and
c0 is a constant. The acoustic attenuation coefficient of soft biological
tissue has been observed to have a linear-with-frequency characteristic
[7]. Likewise a linear form has also been justified in seismology [4],
[17], and the ubiquitous linear assumption for attenuation is made in
this correspondence. Let �(f) = �f say, where � is a constant, so that

log
S22(f)

S11(f)
= c� 2�T �f (1)

where c = log c0 and the coefficient � is called the logarithmic decre-
ment and is measured in nepers (better known as the natural log of a
voltage ratio). Since �(f) = �f , by slight abuse of notation (we are
using time not distance) �(f) has units of nepers/wavelength. In terms
of the oft-used quality factor Q(f), (1) can be written

log
S22(f)

S11(f)
= c�

2��T f

Q
(2)

so that � = �=Q and �(f) = �f = �f=Q. Since one neper is
equivalent to 20 log10 e dB � 8:686 dB, it is apparent that �(f) �
(27:3=Q)f dB=wavelength.

While in attenuation studies via spectral ratios, it is invariably as-
sumed that the sequences involved are independent, [3], [8], here we
will consider estimation of the quality factor, Q, when the sequences
are correlated.

When the log spectral ratio in (2) is estimated via multitapering, it
is seen in Section II that at any frequency, this ratio can be viewed as
a log variance ratio in complex Gaussian random variables. This is ex-
plored in Section III where the distribution of the estimated log spectral
ratio (standardized by the true ratio) is developed, and, most impor-
tant, its cumulant generating function, and hence variance, are derived.
This frequency-dependent variance is a decreasing function of the or-
dinary coherence—which reflects sequence correlation—between the
two sequences. Section IV sets up the regression model through which
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Q is estimated and shows how the variance of the estimated log spec-
tral ratio enables a weighted least squares approach as an alternative
to unweighted (ordinary) least squares. Estimation of Q using syn-
thetic and real data is presented in Sections V and VI, respectively;
it is demonstrated that taking account of sequence correlation through
the weighted regression scheme leads to improved estimation.

II. ESTIMATED SPECTRAL RATIO

Consider two real-valued N -length sequences fX1;tg and fX2;tg
which are taken to be jointly stationary, zero-mean, and Gaussian.
We estimate the power spectra for sequences 1 and 2 using the
multitaper method (e.g., [12]), which employs a set of K orthogonal
tapers. We first form the product uk;tXl;t of the kth real-valued taper,
k = 0; . . . ; K � 1, with the lth process, l = 1, 2, and then compute
the (scaled) Fourier transform

Jk;l(f) � (�t)1=2
N�1

t=0

uk;tXl;te
�i2�ft�t (3)

where �t is the sample interval.
Let Jk(f) = [Jk;1(f); Jk;2(f)]

T . Then asymptotically, asN !1

Jk(f)
d
= NC

2 (0;S(f)) (4)

[15], i.e., Jk(f) has a complex Gaussian distribution of dimension 2
with mean 0 and covariance matrix S(f) for 0 < jf j < fN , where
fN = 1=(2�t), and

EfJk(f)J
H
k (f)g =

S11(f) S12(f)

S�12(f) S22(f)
= S(f): (5)

The multitaper estimator of S(f) is

S(f) =
1

K

K�1

k=0

Jk(f)J
H
k (f) =

S11(f) S12(f)

S�12(f) S22(f)
: (6)

Then

Ŝ22(f)

Ŝ11(f)
=

1

K

K�1

k=0

jJk;2(f)j
2

1

K

K�1

k=0

jJk;1(f)j2
=

K�1

k=0

jJk;2(f)j
2

K�1

k=0

jJk;1(f)j2
(7)

where each term of the form jJk;l(f)j2 is a tapered periodogram. From
(2), we wish to understand the statistical distribution of the logarithm
of this estimated spectral ratio. From (7), the ratio can be thought of
as a (sample) variance ratio in complex Gaussian random variables.
We next study the general case of variance ratios for two-dimensional
complex Gaussian vectors.

III. VARIANCE RATIOS

Let Vk = [Vk;1; Vk;2]
T ; k = 0; . . . ; K � 1, be a size K

random sample of two-dimensional complex Gaussian vectors, each
NC
2 (0;���). Let W1 = K�1

k=0 jVk;1j
2 and W2 = K�1

k=0 jVk;2j
2,

and define R̂ = W2=W1, the ratio of sample variances for the two
complex vector components. The ratio in (7) has the same statistical
properties as R̂, with S(f) replacing ���.

Then [9, p.92] the probability density function (pdf) of R̂ is given
by, for x � 0

fR̂(x) =
xK�1(x+ r)rK(1� 2)K

B(K;K)[(x+ r)2 � 4rx2]K+1=2
: (8)

Fig. 1. pdf P̂ (a) for K = 1 (solid line), 5 (dotted line), and 10 (dashed line)
when  = 0:5, and (b) for  = 0 (solid line), 0.4 (dotted line), and 0.8
(dashed line) when K = 5.

Here, B(K;K) = �2(K)=�(2K) is the beta function, r = �22=�11
is the ratio of the true variances, and 2 = j�12j

2=[�11�22] is the
modulus squared of the complex correlation coefficient, with 2 < 1
assumed. It then follows that P̂ = log(R̂=r), has pdf

fP̂ (x) =
eKx(1 + ex)(1� 2)K

B(K;K)[(1 + ex)2 � 42ex]K+1=2
(9)

�1 < x < 1, the complex version of a result in [2].

A. Uncorrelated Components

When the components of the vector are uncorrelated, P̂ involves
some familiar distributions. If K = 1, and �12 = 0 ) 2 = 0, then
P̂ = logf[jV0;2j

2=�22]=[jV0;1j
2=�11]g, which is the log of the ratio

of two independent chi-square random variables with two degrees of
freedom (�22), i.e., the log of an F2;2 random variable. In this case, the
pdf in (9) takes the form fP̂ (x) = ex(1+ ex)�2 = 1=[4 cosh2(x=2)],
agreeing with [3]. For general K > 1 and 2 = 0; P̂ is the log of
the ratio of two independent chi-square random variables each having
2K degrees of freedom, i.e., the log of an F2K;2K random variable,
with pdf fP̂ (x) = eKx(1 + ex)�2K=B(K;K); this pdf is shown
for K = 5 by the solid curve in Fig. 1(b). Also, when 2 = 0,
both W1=�11 and W2=�22 have the �22K=2K distribution and are
independent, so EfP̂g = Eflog(W2=�22) � log(W1=�11)g = 0.
Further, varfP̂g = varflog(W2=�22) � log(W1=�11)g, and
[1] varflog�22Kg =  0(K), so that varfP̂g = 2 0(K). Here,
 0(z) = f�00(z)�(z)� [�0(z)]2g=�2(z) denotes the trigamma
function, the second derivative of the log of the gamma function.

B. Correlated Components: Mean and Variance

We are primarily interested in the case where the components of
the random vector are correlated and the general pdf in (9) applies,
illustrated in Fig. 1. From Fig. 1(a), we see that for a fixed 2, the effect
of increasing K , the number of independent terms being averaged, is
a reduction in the variance of P̂ . Likewise, we see from Fig. 1(b) that
for a fixed K , increasing the correlation 2 also reduces the variance;
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a high correlation between the elements Vk;1 and Vk;2 naturally makes
the ratio formed from them less variable.

The moment-generating function (MGF), M(t), corresponding to
the pdf in (9), is derived in the Appendix . It is given by

M(t) =
�(K + t)�(K � t)

�2(K)
(1� 2)K2F1(K � t; K + t;K; 2):

(10)

Here, 2F1(a; b; c; y) is the hypergeometric function with
2 and 1 parameters and argument y. In fact [5, p. 1045],
2F1(K � t;K + t;K; 2) may be written explicitly as

1

m=0

�(K � t+m)�(K + t+m)�(K)(2)m

�(K � t)�(K + t)�(K +m)m!
(11)

so from (10), M(t) is given by

(1� 2)K
1

m=0

�(K � t+m)�(K + t+m)(2)m

�(K +m)�(K)m!
: (12)

For calculation of the mean, and in particular the variance, it
is convenient to use the cumulant-generating function given by
C(t) = logM(t), for which the mean is C0(0) and the variance is
C 00(0). Clearly, C(t) is given by

log(1�2)K+ log

1

m=0

�(K � t+m)�(K + t+m)(2)m

�(K +m)�(K)m!
(13)

from which we obtain

EfP̂g = C 0(0) = 0 (14)

and varfP̂g is equal to

2

D

1

m=0

�00(K +m)�(K +m)� [�0(K +m)]2 (2)m

�(K +m)�(K)m!
(15)

where D = 1

m=0
[�(K +m)(2)m]=[�(K)m!]. We can write this

variance in a simpler form. Since 2 < 1, we can write D = (1 �
2)�K (using the negative binomial expansion). Hence, using the form
of  0(z) given above, we get

varfP̂g = 2(1� 2)K
1

m=0

�(K +m) 0(K +m)(2)m

�(K)m!
: (16)

In the case when 2 is nonzero, its percentage effect on variance
reduction can be calculated via

100 �
varfP̂ j2 = 0g � varfP̂ j2g

varfP̂ j2 = 0g
: (17)

This is illustrated in Fig. 2. We see that for K � 3, this variance im-
provement is approximately linear over most of the range of 2.

We now return to the estimation ofQ and apply the statistical results
derived above.

IV. REGRESSION ON SPECTRAL RATIO ORDINATES

A. Regression Model

Two common types of orthogonal tapers used in multitaper spectrum
estimates are the Slepian tapers and sine tapers (see, e.g., [15] for de-
tails). In both cases, we can express the bandwidth of the estimator as

Fig. 2. Variance improvement percentage as a function of  forK = 1 (solid
line), 3 (dotted line), and 6 (dashed line).

B = l=(N�t) Hz, for some small positive integer l. Hence, the mul-
titaper spectrum estimators at Fourier frequencies fk = k=(N�t) and
fk+l will be uncorrelated [12].

We choose, from the set of Fourier frequencies, a subset of
m increasing frequencies f 0j ; j = 1; . . . ;m, with f 0j+1 � f 0j �
B; j = 1; . . . ;m � 1, within the signal band of the series.
At these frequencies, the random variables �j = P̂ (f 0j) =

logf[Ŝ22(f
0

j)S11(f
0

j)]=[Ŝ11(f
0

j)S22(f
0

j)]g will be uncorrelated.
From (1), logfS22(f 0j)=S11(f

0

j)g = c � 2�T �f 0j . Adding �j to
both sides gives logf[Ŝ22(f 0j)]=[Ŝ11(f

0

j)]g = c� 2�T �f 0j + �j , for
j = 1; . . . ;m. From (4) and (6) and the results of Section III, we know
that Ef�jg = 0, (14), and varf�jg is given by (16) with 2 replaced
by 2(f 0j) = jS12(f

0

j)j
2=[S11(f

0

j)S22(f
0

j)], the ordinary (magnitude
squared) coherence. If we estimate � as �̂ in the linear regression

Yj = c+ �xj + �j ; j = 1; . . . ;m (18)

where Yj = log[Ŝ22(f
0

j)=Ŝ11(f
0

j)], xj = 2�T f 0j , and � = ��, the
estimate of Q follows as Q̂ = ��=�̂.

We can write the m equations of (18) in the form

YYY = XXX��� +NNN (19)

where YYY is the m� 1 column vector of Yj ’s, XXX is the m� 2 matrix
with first column all 1’s and second column consisting of the xj ’s, ���
is the 2� 1 column vector of parameters c and �, and NNN is the m� 1
column vector of the �j ’s.

B. Unweighted Least Squares

As is well known [13, p. 592], the least-squares estimator corre-
sponding to (19) is

�̂��U = XXXTXXX
�1

XXXTYYY = ��� + XXXTXXX
�1

XXXTNNN (20)

where �̂��U = [ĉU ; �̂U ]
T . Since NNN has mean zero, �̂�� is an unbiased

estimator, and its covariance matrix, ���U say, is

���U =E �̂��U � ��� �̂��U � ���
T

= XXXTXXX
�1

XXXTVVVXXX XXXTXXX
�1

(21)

where VVV is the covariance matrix of NNN . Since the frequencies fj have
been selected in order that the �j are uncorrelated, we know that VVV =
diag(varf�1g; . . . ; varf�mg).



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007 381

C. Weighted Least Squares

The weighted least-squares estimator corresponding to (18) is [13,
p. 592]

�̂��W = XXXTVVV �1XXX
�1

XXXTVVV �1YYY = ���+ XXXTVVV �1XXX
�1

XXXTVVV �1NNN

(22)

where �̂��W = [ĉW ; �̂W ]T . �̂��W is thus an unbiased estimator, and its
covariance matrix, ���W say, is given by

���W = E �̂��W � ��� �̂��W � ���
T

= XXXTVVV �1XXX
�1

: (23)

D. Using Estimated Coherence

In practice, when forming up the matrix VVV , we will only have an
estimate of 2(f 0j) for use in varf�jg in (16). We shall use the exactly
unbiased estimator

~2(f 0j) = 1� (1� ̂2(f 0j)) 2F1(1; 1;K; 1� ̂2(f 0j)) (24)

where ̂2(f 0j) is the simple raw estimate of coherence. This formula fol-
lows from [10, p. 211] by correct identification of degrees of freedom
followed by a doubling to allow for the change from real to complex
degrees of freedom; it is more accurate than other well-known formulas
for relatively small degrees of freedom. The corresponding estimate of
VVV will be denoted ~VVV .

The actual weighted least-squares estimate used in practice, and re-
ferred to hereafter, is then given by (22) with VVV replaced by ~VVV .

Since Q = ��=�, what we shall refer to as the unweighted and
weighted least-squares estimates of Q are defined as Q̂U = ��=�̂U
and Q̂W = ��=�̂W , respectively.

V. APPLICATION TO SYNTHETIC DATA

We first compare the unweighted and weighted estimates ofQ under
controlled conditions by simulation. We used

X1;t = Yt + �t and X2;t = bt � Yt (25)

where fYtg is a zero-mean stationary process, f�tg is a zero-mean
white noise process with variance �2� , independent of fYtg, and fbtg
is a linear filter, with � denoting convolution. Let us denote the power
spectrum of fYtg by SY Y (f); a broadband spectrum was modeled
having relatively less power around f = 0.2 and above 0.4. For model
(25), the magnitude squared coherence may be readily calculated and is
given by 2(f) = SY Y (f)=[SY Y (f) + �2� ]. Fig. 3(a) shows two co-
herence structures we used, coherence model 1 (solid line) and model 2
(dashed–dotted line), corresponding to �2� = 0:1 and 0:5, respectively.
Given SY Y (f) and �2� , a particular log spectral ratio of the form (2)
was accomplished by calculating fbtg appropriately.

A total of 500 independent simulations were used for all results
shown. K = 3 tapers were used, and for computational speed, sine ta-
pers were utilized. Fig. 3(b) shows median estimates ofQ for coherence
model 1. The upper part shows Q̂U (solid line) and Q̂W (dashed line)
when the true value of Q was 100 for N = 128, 256, 512, and 1024.
The lower part shows the same when the true value of Q was 50. (The
horizontal dotted lines show the true Q values.) Convergence is seen to
occur with increasing sample size, with the weighted estimates outper-
forming the unweighted.

Fig. 3(c) gives median estimates ofQ for coherence model 2. Shown
are Q̂U (solid line) and Q̂W (dashed line), for Q = 50. The coherence
here is uniformly lower than for model 1. The result, as expected, is
that although the weighted scheme still performs better, the difference
is less marked.

Fig. 3(d) shows the average squared deviations from the true value
of 50—i.e., the estimated mean-square error (MSE)—for Q = 50 and

Fig. 3. (a) Coherence model 1 (solid) and model 2 (dashed–dotted). (b) Median
estimates ofQ for coherence model 1. Upper: Q̂ (solid line), and Q̂ (dashed
line) for Q = 100. Lower: same for Q = 50. (c) Median estimates of Q
for coherence model 2. Q̂ (solid line), and Q̂ (dashed line) for Q = 50.
(d) Estimated MSE for unweighted (solid line) and weighted (dashed line) least
squares for Q = 50 and coherence model 1.

coherence model 1. The solid line is for the unweighted scheme and
the dashed line for the weighted scheme. Again, convergence is seen
to occur with increasing sample size, with the weighted estimates out-
performing the unweighted.

VI. APPLICATION TO REAL SEISMIC DATA

To compare the unweighted and weighted estimates of Q under
uncontrolled conditions, we analyze 30 seismic series from a North
Sea data set. The series were recorded at 25-m spacing along the sea
surface. At each location, a seismic waveform created by an airgun
array explosion travels into the sea and subsurface rock, reflects off
the layers, and the amalgam of reflected events are recorded at the
surface as the seismic series. Processing reduces multiple reflections,
enhancing primary events. Absorption of seismic waves in the earth
results in preferential attenuation of high frequencies with depth,
and as stated earlier has a linear-with-frequency characteristic [17].
Processing of seismic data for attenuation estimation avoids any
time-variant steps, meaning that no change in deconvolution operators
or filters are allowed over the total time interval involved; the data
discussed here was specially processed for attenuation estimation.

For each series, we extracted two 0.508-s segments (N =
128 samples, sample interval �t = 0.004 s) with �T = 0.56 s.
These are shown in Fig. 4. For each of the series, the upper segment
corresponds to the sequence fX1;tg and the lower segment to the
sequence fX2;tg. The lower segment results from reflections deeper
in the earth and thus higher frequencies are more attenuated com-
pared to the upper segment. The analysis bandwidth was chosen as
B = 4=(N�t) Hz, i.e., B slightly less than 8 Hz. The f 0j were thus
taken as 4; 12; 20; . . . ; 68 Hz, since seismic frequencies are typically
confined to the interval 4–70 Hz. Consequently, the number of Slepian
tapers used, K , were chosen as K = 3 [12, p. 335].

The estimated covariance matrices of the form (21) and (23) using ~VVV
will be denoted ~���U and ~���W , respectively. The estimated variances are
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Fig. 4. Two segments of 30 seismic time series.

Fig. 5. Histograms over the 30 seismic series of: (a) the unweighted ^Q and
(c) weighted ^Q least-squares estimates of Q; (b) and (d) the corresponding
estimated standard deviations.

then varf�̂Ug = ~�U;22 and varf�̂W g = ~�W;22, where the subscript
“22” in ~�U;22 denotes the bottom right entry of the 2� 2 matrix ~���U .

Retaining only the first two terms of a Taylor expansion of Q̂ =
��=�̂ and taking the variance [13, p. 90] gives the approximate result
varfQ̂g = (Q4=�2)varf�̂g. The more useful estimated standard devi-
ations of the estimator ofQ for unweighted least squares and weighted
least squares are given by, respectively

sdfQ̂Ug =
Q̂2

U

�
sdf�̂Ug =

Q̂2

U

�
[ ~�U;22]

1=2 (26)

sdfQ̂W g =
Q̂2

W

�
sdf�̂W g =

Q̂2

W

�
[ ~�W;22]

1=2: (27)

Histograms over the 30 seismic series of the unweighted Q̂U and
weighted Q̂W least-squares estimates of Q, and of the corresponding
estimated standard deviations, are given in Fig. 5. Table I gives the min-
imum, average, and maximum of the values from which the histograms
are formed. It can be seen that the weighted least-squares estimates of

TABLE I
MINIMUM, AVERAGE AND MAXIMUM OVER 30 SEISMIC SERIES OF THE

ESTIMATED Q VALUES, USING UNWEIGHTED, ^Q , AND WEIGHTED,
^Q LEAST-SQUARES (TOP BLOCK) AND OF THE CORRESPONDING

ESTIMATED STANDARD DEVIATIONS (BOTTOM BLOCK)

Fig. 6. (a) Estimated log spectral ratio (series 15) and unweighted (dotted line)
and weighted (dashed line) least squares line fits. (b) Values of the diagonal
matrix ~VVV .

Fig. 7. As for Fig. 6, but for series 27.

Q have a much smaller range and smaller average than achieved by un-
weighted least squares. Moreover, the average Q̂W obtained, of about
100, agrees with typical North Sea results [14]. Moreover, the weighted
least-squares estimates of the corresponding standard deviations have
a much smaller range and much smaller average than achieved by un-
weighted least squares.

Two particular analyses further illustrate the approach. Fig. 6(a)
shows the estimated log spectral ratio for series 15 and regression
fits using unweighted (dotted line) and weighted (dashed line) least
squares. Q̂U = 105 and Q̂W = 102, i.e., both are very similar.
Fig. 6(b) shows the values of the diagonal matrix ~VVV . Note that
varfP̂ j~2(f 0

j) = 0g = 2 0(3) = 0:7899 when K = 3, as here.
Reduced variance around 20 and 60 Hz is apparent (due to significant
coherence), but the lack of any strong leverage points in the regression
means that this information has little effect on the straight line fit.
This can be contrasted with Fig. 7 resulting from series 27. Here, the
lowest frequency point pulls the unweighted regression line down-
wards, resulting in Q̂U = 254, while for weighted regression the low
variance around 20 Hz, due to strong coherence, causes significant
compensation by upweighting the estimated log spectral ratio around
20 Hz. As a result, Q̂W = 123, a much more sensible value. These two
figures illustrate extreme cases of none or large differences between
the weighted and unweighted approaches, whereas Fig. 5 and Table I
are an agglomeration of many more subtle effects.
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M(t) =
2K�1cK1 e

p(K+1)=2

�(K)cK�1
2

1

0

1

0

yKut+(K�1)=2 � IK�1(c2ye
p=2u1=2)e�c [r+e u]ydudy: (33)

VII. CONCLUSION

In attenuation studies via spectral ratios, it is invariably assumed that
the sequences involved are independent. We have shown that correla-
tion between the sequences involved, as measured by ordinary coher-
ence, can be exploited to adjust the frequency-dependent variance of
estimated log spectral ratios; this variance was derived by explicitly cal-
culating the cumulant generating function for the log spectral ratio. The
frequency-dependent variance then informs a weighted least-squares
approach to Q estimation. Studies using synthetic and real (seismic)
data showed the efficacy of the method.

APPENDIX

The derivation of the MGF, M(t), given in (10), begins by writing
fP̂ (x) = ex+pfR̂(e

x+p), where p = log r, and noting [11, p. 137]
that

fR̂(x) =
1

0

yfW ;W (y; xy)dy (28)

where fW ;W (�; �) is the joint pdf of W1 and W2 given by [6]

fW ;W (w1; w2) =
2K�1cK1

�(K)cK�12

(w1w2)
(K�1)=2

�IK�1(c2[w1w2]
1=2)e�c [rw +w ] (29)

where I�(�) is the modified Bessel function of the first kind and order
� , c1 = 1=[�4

11r(1 � 2)], c2 = 2=[�2
11r

1=2(1 � 2)] and c3 =
1=[�2

11r(1 � 2)].
So

fP̂ (x) = ex+pfR̂(e
x+p) = ex+p

1

0

yfW ;W (y; ex+py)dy (30)

and therefore the MGF M(t) is given by

EfeP̂ tg=
1

�1

extfP̂ (x)dx

=
1

�1

extex+p
1

0

yfW ;W (y; ex+py)dydx: (31)

Making the change of variable u = ex, we obtain

M(t) = ep
1

0

ut
1

0

yfW ;W (y; epuy)dydu (32)

which, using (29), becomes (33) at the top of the page. This may be
conveniently written as

M(t) =
2K�1cK1 e

p(K+1)=2

�(K)cK�12

1

0

yKe�c ryG(y)dy (34)

and G(y) =
1

0
ut+(K�1)=2IK�1(c2ye

p=2u1=2)e�c e uydu. Using
[5, eq. 6.643.2], we obtain

G(y) =
2�(K + t)

c2�(K)
y�[t+(K=2)+1]c

�[t+(K=2)]
3 ec y=(8c )

�M
�[t+(K=2)];(K�1)=2

c22y

[4c3]
(35)

for t > �K , where M�;�(�) is the Whittaker function. Substituting
this back into (34) and making the substitution w = c22y=(4c3) gives

M(t) =
22(K�t)�(K + t)cK1 c

�2t
3

�2(K)c
2(K�t)
2 etp

�
1

0

wK=2�t�1e�[(4c r=c )�1=2]w �M
�[t+(K=2)];(K�1)=2(w)dw:

(36)
Then, from [5, eq. 7.621.1], this can be written

M(t) =
�(K + t)�(K � t)

�2(K)etp
4c1

2

c22

K
c2

2c3

2t

�2F1(K � t;K + t;K; 2) (37)

for t < 1=4 and 1=2 > 1; this latter condition always holds since
2 < 1. Once the forms of c1, c2 and c3 are substituted, (10) is ob-
tained, with validity jtj < 1=4.
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